Synergic Cross-Layer BPaaS Monitoring & Adaptation Framework

<u>K. Kritikos¹</u>, C. Zeginis¹, F. Griesinger², D. Seybold², J. Domaschka² 1: ICS-FORTH, Greece 2: University of Ulm, Germany

Outline

- Problematic
- Solution Overview & Architecture
- CAMEL Overview & Extensions
- Validation
- Future Work Directions

Problematic – Issues

- Flexibility & cost reduction in BPs via the cloud
 - Business process as a Service (BPaaS)
- Need to handle whole lifecycle of BPaaS

Problematic – Issues

- Focusing on Execution activity, there exists the need to:
 - Monitor & Adapt BPaaS in a cross-layer manner to sustain a certain service level
- Issues
 - Many layers involved: laaS, PaaS, SaaS, BPaaS
 - Need for flexibility in metric specification & computation
 - Need to realise layer-specific adaptation mechanisms
 - Need to coordinate such mechanisms to deal with complex, problematic situations

Problematic – Related Work Analysis on Service Adaptation

Work	Cross-Layer	Levels	Туре	Dynamic	History
[7]	N	S	R	N	N
[8]	N	S	R	Ν	N
[9]	N	S	R	Ν	N
[10]	N*	ISW	R	Y*	N
[11]	Y	ISW	R	Y	N
[12]	Y	ISW	R	Y	N
[5]	Y	ISW	A	N	N
Amazon EC2	N	Ι	R	Ν	N
PaaSage [6]	N	IP	R	Ν	N*
[15]	Y	IS	R	N	N
Our Framework	Y	IPSW	A	Y	Y

Our Solution

Solution Overview

- Overall BPaaS Management: CloudSocket project
 - Model-based approach for business-to-IT alignment & BPaaS provisioning
 - Lifecycle activity-specific environments
- BPaaS Monitoring:
 - Flexible metric specification via CAMEL [1]
 - Distributed monitoring approach across layers & clouds
 - CAMEL metric computation formulas/trees cover the measurability gap across layers & clouds
 - Layer-specific frameworks from FORTH [2] & UULM [3] Partners integrated to cover all layers
 - SLO-based evaluation mechanism [4] based on Complex Event Processing Engine

Solution Overview

- BPaaS Adaptation:
 - Composition of existing adaptation frameworks [2, 3]
 - To cover all possible layers
 - Pro- & re-active adaptation [2] via:
 - rule-based approach
 - event correlation via execution history mining
 - warning events
 - semi-automatic production of adaptation rules
 - Dynamic adaptation via concretisation & execution of abstract adaptation workflows specified in CAMEL
 - On-the-fly execution of adaptation workflows
 - Adaptation rule editing
 - Adaptation history recording & browsing

Solution Architecture

Solution Architecture

CAMEL – Overview

- Multi-DSL focusing on capturing different domain-specific aspects of multi-cloud applications:
 - Deployment, Requirement, Provider, Organisation, Location, Security, Metric, Scalability, Value Type, Unit
- Produced from existing languages (e.g., CloudML [5], Saloon
 [6]) & new ones (SRL [7])
- Use of OCL rules for integration & semantic domain validation

CAMEL – Overview

- Based on Eclipse EMF
 - Default tree-based editor
 - Programmatic support
- Text-based editor for devops based on XText technology
- More details:
 - www.camel-dsl.org
 - www.github.com/camel-dsl:
 - Meta-model
 - Domain-code
 - Text-based editor code

CAMEL – Overview

- Monitoring:
 - Specification of metric (computation) trees
 - Metric conditions
 - Metric scheduling & measurement window
- Scalability
 - Scalability rules mapping events to scaling actions
 - Both horizontal & vertical scaling actions supported
 - Events can be simple or composite
 - Simple events map to metric conditions
 - Composite events to event composition via temporal or logical operators

CAMEL – Extension

- Capability to specify complex adaptation actions instead of just scalability rules
 - Simple actions (SimpleAdaptationTask) mapping to layer-specific adaptation capabilities
 - Scale-in/out, Scale-up/down, Migration, Service Replacement, Workflow Recomposition, Task Add/Modify/Replace/Omit
 - Composite actions (CompositeAdaptationTask) mapping to a combination of actions via well-known control-flow constructs
 - Sequence, Parallel, Conditional, Switch
- Complex adaptation behaviour specified abstractly
 - Freedom to choose from alternative implementations of layer-specific simple adaptation actions

Synergic Cross-Layer Adaptation Framework Validation

Cross-Layer Adaptation Scenario

Validation

- Initial Rule Set:
 - R1: cpu_viol(i_ninja,send_invoice) \rightarrow hscale(i-ninja)
 - R2: down(i_ninja,send_invoice) \rightarrow re-run (i-ninja)
- R2 covers non-permanent failures
- New rule is introduced by expert via CAMEL to handle permanent failures
 - R3: down(i_ninja,send_invoice) ∧ failed(R2) → seq(migrate(i_ninja), s_replace(i_ninja,send_invoice))

Future Work

- Implementation and validation of distributed physical architectures for both frameworks
- Devise of sophisticated adaptation workflow concretisation algorithm
- Development of:
 - New adaptation capabilities
 - Alternative implementations of existing ones
- Dynamic injection of developed adaptation capabilities
- Adaptation history analysis
 - Statistical knowledge about successibility of rules and actions
 - Adjustment of adaptation rules
 - Update of semi-automatic adaptation rule derivation algorithm to exploit this knowledge
 CloudSocket

References

- 1. A. Rossini, K. Kritikos, N. Nikolov, J. Domaschka, F. Griesinger, D. Seybold, D. Romero, D2.1.3 CloudML Implementation Documentation (Final version), PaaSage project deliverable, 2015.
- 2. Zeginis, C., Kritikos, K., Plexousakis, D.: Event pattern discovery in multi-cloud service-based applications. IJSSOE 5(4), 78–103 (2015)
- 3. Domaschka, J., Seybold, D., Griesinger, F., Baur, D.: Axe: A novel approach for generic, flexible, and comprehensive monitoring and adaptation of cross-cloud applications. In: European Conference on Service-Oriented and Cloud Computing, pp. 184–196. Springer (2015)
- 4. Kritikos, K., Zeginis, C., Paravoliasis, A., Plexousakis, D.: CEP-Based SLO Evaluation. In: BPM@Cloud Workshop in ESOCC. Springer (2017)
- 5. N. Ferry, A. Rossini, F. Chauvel, B. Morin, A. Solberg, Towards model-driven provisioning, deployment, monitoring, and adaptation of multi-cloud systems, in: L. O'Conner (Ed.), Proceedings of CLOUD 2013: 6*th* IEEE International Conference on Cloud Computing, IEEE Computer Society, ISBN 978-0-7695-5028-2, 887–894, 2013.
- 6. C. Quinton, D. Romero, L. Duchien, Cardinality-based feature models with constraints: a pragmatic approach, in: T. Kishi, S. Jarzabek, S. Gnesi (Eds.), SPLC 2013: 17th International Software Product

Line Conference, ACM, 162–166, 2013

7. K. Kritikos, J. Domaschka, A. Rossini, SRL: A Scalability Rule Language for Multi-cloud Environments, in: CloudCom, IEEE, 1–9, 2014.