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Abstract—While various platforms are offering facilities for
single-cloud application design, deployment and provisioning,
there is a need to move to multiple clouds in order to
achieve cost-effectiveness and avoid vendor lock-in. Apart from
not supporting multi-cloud application management, many
platforms usually focus on the deployment and provisioning
phases of the cloud-based application lifecycle by neglecting the
design phase. However, the design selection of the best possible
cloud service composition affects the provisioning phase, as the
more distant from optimality is the selected solution, the more
adaptation actions will be enacted. To this end, there is a high
need for cloud application design tools and methods which
can select the best possible cloud service composition based on
user requirements. This paper satisfies this need by proposing a
cloud service composition approach able to optimally compose
different types of cloud services by simultaneously satisfying
various types of user requirements. These types, not concur-
rently supported by any cloud application design tool, include
quality, deployment, security, placement and cost requirements.
Moreover, the proposed approach addresses a particular design
choice type not currently considered in literature.

I. INTRODUCTION

As Cloud Computing promises the cost-effective and on-
demand use of resources to support application execution
and provisioning, it has been embraced by the application
design and development community. As such, various ap-
plications and business processes are currently designed and
ported to the cloud. To support moving towards the cloud,
various commercial and open-source platforms promise the
rapid development and management of cloud applications.

However, such platforms are limited to managing single-
cloud applications. Sometimes, they also do not enable
switching to other cloud providers as the application code
is hardwired in exploiting a specific cloud provider API. To
exploit the cloud’s real benefits, avoid vendor lock-in and
achieve cost-effectiveness, the move to multi-clouds must
be supported [1]. Multi-cloud applications, in this way, will
be capable of exploiting those cloud services which better
suit their requirements by also respecting cost constraints
independently from which cloud provider offers them.

To this end, there is now a trend towards supporting
multi-cloud applications. This can be derived by observ-
ing that some cloud platforms, driven by real user needs,
support hybrid-cloud deployments. This is also reflected in
the European Commission’s priorities in research as well
as the acceptance of particular European projects aiming

at supporting the whole multi-cloud application manage-
ment lifecycle, such as PaaSage (http://www.paasage.eu)
and ModaClouds (http://www.modaclouds.eu). The current
commercial and research offerings address well some life-
cycle management activities, including application deploy-
ment, provisioning, and adaptation, but not the design and
development ones. As such, they cannot be used for selecting
software-as-a-service (SaaS) solutions to realize application
components. They also tend to neglect all possible end-
user requirements, such as security or high-level quality
of service (QoS) requirements, but focus more on low-
level resource ones. They finally do not currently support
other requirements types concerning, e.g., the co-location of
application components in the same virtual machine (VM)
or cloud.

Concerning application design, the cloud service com-
position approaches proposed can compose one or more
types of cloud services. Such approaches usually exploit
optimization techniques and consider both functional and
QoS requirements. However, they seem to neglect other
requirements types, such as component placement and se-
curity requirements. In addition, they do not consider some
alternative design choices which can well happen in real
situations. In particular, during application design, there can
be trade-offs on the application level QoS and cost between
using and deploying an internal service or exploiting an
external service with no maintenance or deployment costs.

To remedy for the above limitations, this paper presents
a cloud service composition approach for multi-cloud ap-
plications able to find the most optimal solution such that
all end-user requirements of any type are satisfied by also
considering all possible design choices. The types of require-
ments considered include: (a) high- and low-level security
requirements, (b) high- and low-level QoS requirements, (c)
resource requirements and (d) component (co-)location re-
quirements. These requirements are structured in an abstract
deployment model, which is concretized by our approach
by also considering the set of cloud provider offerings and
internal SaaS realizations of the requester organisation.

This approach was realized by specifying an optimiza-
tion problem which is subsequently solved via using con-
straint satisfaction optimization problem (CSOP) solving
techniques [2]. It has also been applied in a particular
use case to highlight its main benefits over the state-of-



Task Component Component
Name Description

MT, AT, TCT Con It hosts the three main servlets
of the application

MT MC (choice) It realizes MT’s functionality
AT AC It realizes AT’s functionality
AT DC A DB storing the information used

for the analysis
TCT TCC It realizes TCT’s functionality

WO (choice) It orchestrates the application workflow

Table I: The components mapping to application tasks

the-art. The approach experimental evaluation shows that
its performance is satisfactory and appropriate in realistic
circumstances.

The rest of the paper is structured as follows. Section
2 provides a use case used to highlight the main benefits
of the proposed approach which is analyzed in Section 3
and experimentally evaluated in Section 4. Related work is
analyzed in Section 5. Finally, the last section concludes the
paper and draws directions for further research.

II. USE CASE

This case concerns designing a real-world traffic manage-
ment application [1] that regulates traffic at particular areas
of a city. This application comprises three main tasks which
are analyzed below:

• monitoring task (MT): It monitors traffic conditions in a
particular area as well as air pollution and noise levels.

• analysis task (AT): It analyzes all information moni-
tored and produces traffic regulation plans which opti-
mally address the current traffic situation.

• traffic configuration task (TCT): It enforces traffic reg-
ulation plans derived by AT. This can involve changing
the frequency in traffic lights, informing drivers about
congested places as well as emergency personnel about
accident placement and the particular actions to follow.

To realize this application, various software compo-
nents/services have been developed or are required, where
either one or more map to a particular task. Moreover, a
service oriented architecture (SOA) is chosen to realize the
application tasks, such that some components need to be
hosted on particular servlet containers. Table I clearly shows
the respective task-to-component mapping:

For some components, there is a choice of either selecting
an existing realization (developed in house by the end-user
or purchased or just downloaded) or exploiting a particular
external service. This choice is indicated in parenthesis after
the respective component’s name.

Concerning service performance and cost, Table II in-
dicates the respective offerings along with information on
which cloud provider offers them, when they are exter-
nal. The internal services performance was determined via
benchmarking which lead to the eventual VM requirements
for them (given later on in this section). In addition, these

Comp. Service QoS/cost chars. Provider
Name Name Name
MC MonService RT ≤ 4 sec, Av ≥ 99.99%,

Thr ≥ 10 reqs / sec, cost = 10$ CP1
MC TraffService RT ≤ 8 sec, Av ≥ 99%,

Thr ≥ 5 reqs / sec, cost = 5$ CP2
MC MC-Internal RT ≤ 8 sec, Av ≥ 99.99%,

Thr ≥ 6 reqs / sec, cost = 0$
AC AC-Internal RT ≤ 1.5 min, Av ≥ 99.99%,

Thr ≥ 6 reqs / sec, cost = 0$
TCC TCC-Internal RT ≤ 0.5 min, Av ≥ 99.999%,

Thr ≥ 12 reqs / sec, cost = 0$
WO Orchestrator Av ≥ 99.99%,

Thr ≥ 12 reqs / sec, cost = 19$ CP1
WO WFEngine Av ≥ 99%,

Thr ≥ 8 reqs / sec, cost = 15$ RedHat
WO WO-Internal Av ≥ 99.99%,

Thr ≥ 8 reqs / sec, cost = 0$

Table II: The QoS and cost features of the services

services’ cost is zero as it maps to an already purchased
hosting infrastructure. The symbols used in this table have
the following meaning: RT maps to response time, Av to
availability and Thr to throughput. Cost information is per
month based on the cost model of the providers.

The end-user also requires the satisfaction of requirements
of the following types for his/her application:

• Deployment requirements:
– There is a communication requirement from WO

to all application servlets, i.e., MC, AC, and TCC,
and from AC to DC.

– MC, AC and TTC should be deployed on Con.
These components will be hosted at the same
instance of Con only when it is decided that they
will be collocated.

– AC and DC require a “high” VM, WO and MC a
“medium” VM while TCC a “small” VM.

– AC and DC should be co-located while AC should
not be co-located with any other component (apart
from Con that hosts it).

• Cost requirements: Application cost must not be more
than 380 $ per month.

• Quality requirements:
– Duration of the whole application should not be

longer than 2.5 minutes
– MC, AC and TCC should have throughput greater

than or equal to 10, 6 and 5 reqs/sec, respectively.
– MC and AC should have availability of 99.99%

while TCC of 99.999%.
• Security requirements:

– The security controls (https://cloudsecurityalliance.
org/research/ccm/) to be supported for the applica-
tion must be: AAC-02 (independent reviews and
assessment of provider at least annually), DSI-
01 (data & service classification), DSI-05 (data
leakage prevention), TVM-02 (timely vulnerability



Provider Offered VM Security Security SLO
Control

CP1

(A) 2 core, 7.5 GB, (A) AAC-02 (A) mti ≥ 8
32 GB → 0.140$ (B) AAC-03 (B) ir (99%) ≤ 3

(B) 4 core, 15 GB, (C) DSI-01
80 GB → 0.280$ (D) DSI-05

(C) 4 core, 7.5 GB, (E) EKM-03
80 GB → 0.210$ (F) TVM-02

(G) SEF-05

CP2

(A) 2 core, 2GB, (A) AAC-02 (A) mti ≥ 6
10 GB → 0.06$ (B) AAC-03 (B) ir (99%) ≤ 2
(B) 2 core, 4GB, (C) DSI-01
50 GB → 0.12$ (D) DSI-05
(C) 4 core, 8GB, (E) EKM-03
130 GB → 0.24$ (F) TVM-02

(G) SEF-05

CP3

(A) 1 core, 2GB, (A) AAC-02 (A) mti ≥ 6
10 GB → 0.02$ (B) AAC-03 (B) ir (99%) ≤ 4
(B) 2 core, 4GB, (C) DSI-05
20 GB → 0.04$ (D) EKM-03
(C) 4 core, 4GB, (E) TVM-02
40 GB → 0.1$

CP4

(A) 1 core, 2GB, (A) AAC-02 (A) mti ≥ 4
20 GB → 0.12$ (B) DSI-01 (B) ir (99%) ≤ 4

(C) DSI-05
(D) TVM-02
(E) SEF-05

Table III: The offerings of the four cloud providers

detection) and SEF-05 (monitoring & quantifica-
tion of security incident type, volume and cost).

– Meantime between incidents [3] should be 6
months (mti ≥ 6)

– 99% of critical incidents are reported within 4
hours (ir (99%) ≤ 4)

A “high” VM requirement maps to at least 4 cores, 4
GBs of RAM and 40 GBs of hard disk, a “medium” VM
requirement maps to at least 2 cores, 2GBs of RAM and 20
GBs of hard disk and a “small” VM requirement maps to 1
core, 2 GBs of RAM and 10 GBs of hard disk.

Let us now consider four cloud providers, namely CP1,
CP2, CP3 and CP4. These providers offer particular cloud
services/VMs and realize a particular set of security con-
trols. Table III shows the VMs satisfying the end-user
requirements offered by these providers (along with cost
information), a subset of security controls supported by
these providers and the security SLOs promised. Please
consider that real values for VM characteristics and cost
were considered by collecting them from cloud provider web
pages. Thus, we are as realistic as possible, provided that
cloud providers do not usually advertize SLO and security
information. Thus, we have opted for an idealized use case
matching the real world in the near future, when cloud
providers decide to advertize such information due to the
main benefits that this will provide to them.

By considering all above information, a common cloud
service composition approach would not consider the alter-
native design choices and end-user’s security requirements.
As such, we can assume that the end-user will not specify

Solution Cost Availability Duration Security
1 130 $ 99.99% 128 seconds no
2 286 $ 99.99% 124 seconds yes
3 129.8 $ 99.99% 124 seconds no

Table IV: Cost, QoS and security features of the solutions

that his/her components can be realized via external services.
Thus, in the end, the respective approach would solve a
simple optimization problem by just selecting a IaaS services
composition. The outcome of such an approach would be a
solution mapping application components to the following
VMs (i) AC + DC → CP3 (C), (ii) MC → CP3 (B) and
(iii) HO + TCC → CP3 (B). Co-location of HO and TTC
in CP3 VM of type (B), while not imposed by any direct
constraint, is proposed as TCC does not demand strict VM
requirements so that it can be supported via a VM with better
characteristics that suit the HO’s resource requirements.

Our approach, as considers all possible information, will
lead to selecting a better solution all user requirements,
including the security ones, which maps to selecting the
external services offered by CP1 for all choices, the CP1
(C) VM for AC + DC and the CP2 (B) offering for TCC. To
enable a more fair comparison, we also consider a solution
produced by our approach not accounting the security re-
quirements, identical to the solution of the common service
composition approach with the sole exception that MC and
HO are not mapped to SaaS services. Table IV summarizes
the QoS, cost and security features of the three solutions.

The third solution, while not considering security require-
ments, is still more optimal than the first. The comparison
between the second and third solution indicates the trade-off
between security and cost that must be considered to produce
the best possible solution based on user requirements.

The last two solutions propose a multi-cloud application
design product spanning over two cloud providers (CP1 and
CP2 for the second and CP1 and CP3 for the third). The
second solution has left out the remaining cloud providers as
they do not satisfy the user security constraints: CP4 violates
the security SLO for mean time between failure while CP3
has not realized the DSI-01 and SEF-05 security controls.

III. CLOUD SERVICE COMPOSITION APPROACH

To cater for all possible design choice alternatives, we
model out of the existing cloud service space and end-
user requirements posed a particular optimization problem
which, when solved, can discover the most optimal solution
satisfying all user requirements posed irrespectively of their
type. The approach followed was inspired by the service con-
cretization work in [4]. In the following, we analyze the way
the constraint problem is modelled in a step-wise manner,
starting from optimization objectives and going down to the
formulation of the high- and low-level constraints mapping
to user requirements. Then we check the complexity and
possible constraint solving technologies for this problem.
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A. Cloud Service Composition Problem Formulation

To formulate the optimization objective of the problem,
we rely on the Analytical Hierarchy Process (AHP) [5] to
derive the relative importance of the quality parameters and
cost to the end-user. The result of this process is an assign-
ment of weights to all of these parameters, indicating their
relative importance, whose sum should equal to one. We
also follow Simple Additive Weighting (SAW) technique [6]
which maps the optimization of all criteria considered to a
single optimization objective which is equal to the weighted
sum of the application of the global value derived for each
parameter (QoS and cost) on its utility function posed. More
formally, the objective is formulated as follows:

maximize

(
Q∑

q=1

wq ∗ ufq (valq)

)
(1)

The utility function of each parameter is formulated based
on the formulas in [4] which cater for slightly violating
some problem constraints to address over-constrained user
requirements. Two similar formulas (see Equations (2-3))
can be expressed, depending on the monotonicity of the
respective parameter (i.e., the first for negatively monotonic
parameters like cost and the second for positively monotonic
parameters like availability), where m is the max function,
vmax
q and vmin

q are the maximum and minimum values
requested by the end-user for the parameter q and aq is
a real number in [0.0,1.0] used to regulate the percentage of
values allowed outside the user-requested range.

The value vq that a parameter q can take depends on
the type of parameter and its derivation can be application-
specific. To this end, in the general case, we consider that
a particular user-specified function is provided taking as
input the respective parameter values of the application
components. In other terms:

valq = fq (val
q
i ) (4)

where valqi is the parameter value for application component
i. The use of a function covers all possible cases in parameter
value derivation. In this way, by considering the running
example, the application availability equals the product of

availabilities of the three main components (i.e., MC, AC
and TCC), while application cost is equal to the cost of
all components (thus mapping to the respective cost of the
infrastructure-as-a-service (IaaS) or SaaS exploited).

Before specifying the problem constraints, we introduce
the main decision variables mapping to three variable arrays:

• yi indicating whether the internal service or the external
SaaS services will be used to realize component i

• xijk which indicates whether for component i, the IaaS
offering k of the cloud provider j has been selected
(internal service selection case).

• zil indicating whether for component i, the SaaS service
l has been selected.

We differentiate between IaaS and SaaS services as they map
to different formulas indicating how their parameter values
can be mapped to the respective values at the component
level. While it could be argued that there is no need for
explicating which IaaS offerings are provided by which
cloud provider, we need to make this differentiation so as
to be able to specify co-location constraints.

It is apparent that two cases exist for each component:
(a) there is no choice for realizing but just for deploying
it and (b) there is indeed a realization choice. In the first
case, it is enough to enforce that only one cloud provider
and respective offering can be selected. In the second case,
we need to indicate that either the condition for the first
case should hold or that only one external SaaS must be
selected for realizing the component. Both cases can lead to
requiring the satisfaction of the following constraint:∑

j

∑
k

xijk +
∑
l

zil = 1 (5)

While this is obvious for the second case, it is also true for
the first if we regard that yi is fixed to be one and zil to be
zero for this case.

Apart from the above constraints, we need to go down to
the level of components and indicate how their parameter
values are derived from those of the offerings selected for
them. We first assume that a component’s parameter value is
a function either over the resources exploited (memory, CPU
and storage) or computed from the respective parameter
value of the external SaaS realizing it. More formally:

valqi = yi∗fq
i (corei,memi, storei)+(1−yi)∗

(∑
l

zil ∗ valqil

)
(6)

where fq
i is the function over the resources for parameter q

of component i while valqil is the parameter value for the
l external SaaS of component i. The above assumption is
valid even for the first case (internal service deployed on the
cloud) if we consider that the usual way of deriving high-
level requirements is either via benchmarking, simulation,
or performance model learning [7] such that we can map



different service levels of application components to differ-
ent resource levels. Thus, we regard that the end-user has
exploited one of the three possible approaches to produce the
respective functions for those quality parameters of interest.
We also envisage a step-wise approach to performance
modelling. First, performance models for components are
generated and then we go up to the level of the application.
In this way, the component performance models will be more
precise and will also lead to more accurate application per-
formance models rathen than attempting to map immediately
the application performance to the underlying resources.

In this sense, we only need now to specify how the
low-level resource values are produced for a particular
component. This maps to the following three formulas:

corei =
∑
jk

xijk ∗ corejk (7)

memi =
∑
jk

xijk ∗memjk (8)

storei =
∑
jk

xijk ∗ storejk (9)

where corei, memi, and storei are the variables mapping
to the component’s i number of cores, main memory size
and storage size, respectively, while corejk, memjk, and
storejk are the corresponding but fixed resource values for
the concrete VM offering k of provider j .

The cost of each component is calculated by considering
the next formula:

costi = yi∗
∑
jk

xijk∗costjk+(1−yi)∗
∑
l

zil∗costil (10)

where costjk is the cost of IaaS offering k of provider j
and costil is the cost of SaaS l. Thus, a component’s cost
equals the cost of the IaaS or SaaS it exploits.

We provide a specific formulation for co-location con-
straints depending on their type. Two main types are con-
sidered: (a) two components must be co-located in the same
VM and (b) they must be co-located at the same cloud.
For each type, there is also the opposite case of requiring
not co-locating two components. We consider that while the
need for the first type is obvious, the second type is needed
in cases where there is significant communication between
two components but we do not need to co-locate them in
the same VM due to interference issues. Thus, it is better
to have both components at the same cloud where a high-
communication bandwidth is quaranteed.

The first type of (positive) co-location constraint is for-
mulated as follows:

xijk = xi′ jk (11)

where i and i
′

are the two components for which the co-
location constraint is posed. This constraint indicates that

the decision for both components should coincide. Thus all
values for respective array parts in which i and i

′
are fixed

should be equal. The negative case is expressed as follows:

if (xijk == 1)⇒ xi′ jk = 0 (12)

indicating that if a particular offering k of a cloud provider
j is selected for component i, then this provider’s offering
cannot be selected for component i

′
.

The second type of (positive) co-location constraint is
formulated as follows:∑

k

xijk =
∑
k

xi′ jk (13)

where i and i
′

are the two components for which the co-
location constraint has been posed. This constraint indicates
that for both components the same cloud has been selected
which maps to requiring that the sum of values of the
decision variables (mapping to the provider’s offerings) for
each cloud provider to be equal for these components. The
negative case can be expressed as follows:

if

(∑
k

xijk == 1

)
⇒
∑
k

xi′ jk = 0 (14)

indicating that if any offering of cloud provider j is selected
for component i, then no offering from this provider can be
selected for component i

′
.

To conclude formulating the problem, we need to cater
for the user security requirements which can be separated
into high-level in terms of security controls and low-level
in terms of SLOs. In the first case, we introduce set
variables and enforce set operations to address the respective
requirements. In particular, we enforce that if a particular
cloud provider has been selected, then this provider should
have realized all security controls required by the end-user.
This is translated to the following complex constraint:

if

(
yi ∧

∑
k

xijk == 1

)
=⇒ cc− ccpj = ∅

else if ( 6 yi ∧ zil) =⇒ cc− ccpzil.provider = ∅ (15)

where cc is a fixed variable set mapping to all required
security controls, ccpj is a fixed variable set mapping to the
security controls supported by provider j, and zil.provider
is the index of provider which offers SaaS l for component
i. We consider that the security control requirements should
hold for any provider whose service is selected. In case such
requirements are posed at the component level, the above
formula can be remodelled by replacing cc with cci mapping
to the fixed set variable for component i equal to the security
controls to be realized by the provider whose service is used
to realize or support this component.



In case of low-level security requirements, a similar
constraint is posed:

if

(
yi ∧

∑
k

xijk == 1

)
=⇒ seqpj ≥ seqp

else if ( 6 yi ∧ zil) =⇒ seqpzil.provider ≥ secp (16)

where seqp is the low required threshold for security prop-
erty p while seqpj is the respective property value promised
by provider j. This formula is meaningful for positively
monotonic security properties. The opposite case can be eas-
ily derived but due to space limitations is not shown. If the
user provides both low and upper thresholds, the constraints
for both security property types must be enforced.

B. Complexity & Solving Technologies

The common cloud service composition problem is NP-
Hard [8]. While we use additional sets of constraints, es-
pecially non-linear ones, and variables, the general problem
formulation showed in previous sub-section is still NP-Hard.

Due to the nature of this problem, Mixed-Integer Program-
ming (MIP) techniques cannot be actually used. Thus, non-
linear constraint solving techniques must be checked, from
which we have selected the Constraint Solving Optimization
Problem (CSOP) ones, as they seem the perfect candidate
for our case. These techniques can address not only non-
linear constraints but can also cater for the use of differ-
ent variables, such as boolean, integer, and set variables.
However, real variables are not natively supported. To this
end, the current workaround that seems to work well in
many circumstances is to combine the use of CSOP with
either MIP or Constraint Programming techniques focusing
on interval arithmetic. In fact, many hard and real-world
problems are now solved through the combined use of these
techniques [9], [10].

In our current implementation, we have used a well-
known and free CSOP solver called Choco (choco-solver.
org) which is also supported by a very active community,
while performs well and even competes with proprietary
solvers. Apart from supporting all types of variables re-
quired, Choco has implemented well-known state-of-the-
art constraint types (e.g., all different) and various search
strategies. Choco also includes an explanation engine that
can provide insight in case of over-constrained requirements
on which user constraints are hard to satisfy.

To address real variables, Choco exploits the Ibex con-
straint programming engine (www.ibex-lib.org). Ibex has
been realized as a C++ library, relies on both interval
and affine arithmetic, and is able to address non-linear
constraints, handle roundoff errors, and declaratively build
strategies via the contractor programming paradigm.

IV. EXPERIMENTAL EVALUATION

We have conducted a preliminary experimental evaluation
of our approach performance which aimed at assessing the

Figure 1: Avg. solving time per offer number

effect of an increasing number of cloud provider offerings
and placement constraints. To this end, two separate ex-
periments were performed evaluating the effect that each
different factor has. Three CSOP approaches were actually
evaluated: (a) RESOURCE mapping to the common IaaS
composition method used as a baseline where only resource
constraints are considered and just one optimization param-
eter (cost), (b) RESOURCE SEC which is same as previous
method but enriched with security and placement constraints
and (c) FULL which is the actual proposed approach.

The evaluation metric was the average solving time whose
value was generated over 30 runs in order to minimize
various types of interference in the measurement, such
as those attributed to the running OS. The computer on
which the experiments were performed had the following
characteristics: 1.7 GHz CPU, 2GB of main memory and
500 GB of disk.

The input given to the approaches was randomly gener-
ated but only realistic values were considered. For instance,
the core number was given values from 1 to 8 while main
memory from 512 to 8192 for a particular cloud provider
IaaS. Security capabilities were formed by randomly assign-
ing a specific percentage of all possible security controls for
each cloud provider, while a respective smaller percentage
was used as the application requirement. Placement con-
straints were formed by randomly picking up their type
and component pair on which they should hold. Then, each
approach exploited this input, created the respective CSOP
problem and solved it. In the CSOP formulation, a linear
function from resources to QoS attributes was utilized for
each component. It was also assumed that the composition of
values for execution time & cost, throughput and availability
at the global application level exploited additive, minimum
or multiplicative functions, respectively.

The initial values for the experiment configuration pa-
rameters were: application component number → 5, cloud
provider number → 10, IaaS/SaaS number per provider →



Figure 2: Avg. solving time per placement constraint number

5 and placement constraint number → 5. In the first experi-
ment, we increased the value of the IaaS/SaaS offerings per
provider in units of 5 until the value of 25. In this way, we
simulate the case where either an increased number of of-
ferings is supplied by each provider or an increased number
of providers occurs. The evaluation results are shown in Fig.
1. As it can be seen, due to the nature of the problem, all
approaches exhibited an exponential behavior. However, our
approach had a better performance than the others. This can
be certainly justified by the fact that while slightly increasing
the variable number, the constraint number is also increased.
As such, the constraint solving algorithm more deeply cuts
the search space to find the most optimal solution. The same
holds when comparing RESOURCE SEC and RESOURCE
where again the increased number of constraints leads to a
better performance. Please note that we have posed a limit
of 3 minutes to the solving time so as to be acceptable by
the designer which justifies the first approach behavior.

The second experiment focused on examining the effect
on increasing the placement constraint number from 1 to
5 (but not greater due to the small number of application
components). Fig. 2 shows the respective evaluation results
only for the last two approaches that are indeed capable
of considering such constraints. The same linear decreasing
behavior is observed for both approaches. This is expected
as placement constraints reduce the offering space to be
explored. Again, FULL had a better performance than RE-
SOURCE SEC as it considers high-level constraints.

V. RELATED WORK

Service Composition: The successful SOA paradigm
has led to a proliferation of available services. Such services
can then be optimally combined to produce added-value
functionality incarnated into respective applications. To this
end, various service composition approaches have been
proposed which usually focus either on the functional or
QoS aspect. Most of the QoS-based work follows either a

statistical [11] or path-based approach [12] leading to an
over-simplification or a pessimistic view of the problem.
Some approaches employ a heuristic [13] or a QoS de-
composition [14] approach to cater for better performance
but sacrificing optimality. In addition, all these approaches
regard QoS service offerings as simple QoS parameter values
which is quite unrealistic if we also regard that many
services run in quite dynamic environments. Moreover, these
approaches fail to produce any result for over-constrained
end-user requirements. One promising approach resolving
most of the above issues was proposed in [4]. Some key
aspects of this approach were exploited in our cloud service
composition work.

Cloud Service Composition: The cloud service com-
position problem is harder than that of service selection
as it involves composing different types of services with
different characteristics and the synthesis is performed in
different but inter-dependent levels such that the solution at
one level impacts the solution at the other level. However,
the cloud service composition approaches proposed usually
focus on just one cloud service type. Even when they
consider additional types, they either solve a limited case
of the actual problem or a slightly different problem by also
neglecting all possible end-user requirement types.

Concerning SaaS composition, the respective approaches
can be separated into those which: (a) consider semantics
[15], (b) use heuristics to solve the respective optimization
problem [16], (c) address multi-tenant SaaS [17], (d) exploit
feature models and multi-criteria decision making [18] to
find the most optimal SaaS compositions and (e) consider
some other aspects, such as the network latency and the
multiple instances that a particular SaaS service can have
[19]. Although not clearly addressing IaaS services, the latter
approach seems interesting and could be used for further
extending our proposed work towards selecting only the
appropriate instances for each SaaS selected.

The self-organizing agent-based cloud service composi-
tion method in [20] exploits distributed problem solving
techniques, by also relying on the contract-net protocol,
and is able to produce vertical, horizontal, one-time and
persistent service compositions. Both SaaS and IaaS type
of services are handled. However, this approach seems to
cater only for functional and cost requirements.

In [21], an hierarchical quality model is proposed going
from end-user requirements down to the QoS capabilities of
IaaS services. This quality model is then used for ranking the
service candidates across the different cloud levels. However,
the ranking algorithm proposed seems to work on a different
problem type where the end-user requires one or more SaaS
services and then the providers of these services have to find
suitable IaaS offerings for hosting their services. In addition,
this algorithm does not consider placement constraints, while
only low-level security requirements are taken into account.
Finally, the algorithm seems to work only for sequential



application workflow specifications.

VI. CONCLUSIONS

In this paper, we have presented and analyzed a con-
straint problem modelling approach aiming at completely
capturing and solving the cloud service composition problem
in cloud application design by considering all types of
requirements that may be posed by a specific end-user as
well as alternative design choices. Due to the features of
the constraint problem specification, we also justified the
need of combining the constraint solving forces of two main
techniques: CSOP and Constraint Programming with interval
arithmetics. Such a need was realized by exploiting a partic-
ular well-supported constraint solving engine called Choco
which exploits in the background another engine, called
Ibex, for solving constraint problems with real variables.

A particular use case validated our approach indicating
that is not only feasible but provides better results than
those offered by the state-of-the-art. The results of our
approach experimental evaluated also show that it has better
performance than state-of-the-art IaaS composition work.

Our work can be extended as follows. First, we need to
more thoroughly evaluate our approach in terms of perfor-
mance and scalability. Second, in case when performance
needs additional improvements, we have to explore other
alternatives, such as the use of heuristics to reduce the
complexity of the problem to be solved or techniques to
decompose the global quality and cost constraints of the
problem. Third, we have to explore other cost models
which might require either changing some of the problem
constraints or moving towards proposing different problem
variants catering for addressing different provider cost mod-
els. Fourth, we will explore integrating our solution with
a cloud service discovery solution in order to produce a
complete design framework for multi-cloud applications.
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