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Abstract 
Cloud computing promises to transform applications and services on the web into elastic and fault-tolerant software. 
To aid at this target, various research prototypes and products have been already proposed. However, especially with 
respect to the design phase of cloud-based applications, such prototypes do not enable the appropriate composition of 
cloud services at different levels to realise not only the functionality but also the underlying infrastructure support for 
such applications. Moreover, most existing prototypes and products lack the appropriate semantics to guarantee that 
the respective design product is the most suitable and accurate one according to the various types of user 
requirements posed. To this end, this article proposes a semantic cloud application management framework that 
addresses the aforementioned issues by relying on ontologies to semantically describe cloud service capabilities and 
application requirements, on semantic cloud service matchmakers considering both functional and non-functional 
aspects as well as on a novel cloud service composition approach which is able to perform concurrently service 
concretisation and deployment plan reasoning, thus catering for the different levels involved in a cloud environment 
and their respective dependencies by also satisfying all types of user requirements posed. The service composition 
approach is experimentally evaluated deriving quite promising results indicating that the state-of-the-art is advanced.  
Keywords:  [cloud, service, composition, semantic, ontology, QoS, constraint programming, requirements] 
__________________________________________________________________________________________________________________ 
1. INTRODUCTION 

Cloud computing has revolutionized the deployment and 
provisioning of applications by promising an infinite 
amount of underlying and cheap resources to enable 
applications to scale at any type of demand. To this end, 
many major software, application and business process 
vendors have migrated their business to the cloud. 
Moreover, various research prototypes and commercial 
products have been proposed which enable application 
designers to discover the most suitable cloud services and 
assist in the cloud-based application deployment. 

 The services offered in cloud computing lie in different 
levels. There exist software services (SaaS), platform 
services (PaaS) and infrastructure services (IaaS). Different 
levels can provide support to different phases in the 
application life-cycle. The design of an application can rely 
on SaaS in order to have the means to realise the application 
functionality, while the application deployment can rely on 
PaaS and IaaS services. Moreover, for an application which 
exploits cloud services at different levels, its quality of 
service (QoS) depends on the respective quality and 
characteristics at lower-levels of abstraction. Thus, there are 
actually dependencies between the different levels which 
should be taken into account in an integrated and non-
isolated manner. 

However, the existing prototypes and products, which 
focus on the design and/or deployment phases, not only fail 
to consider such dependencies but also do not produce a 
design and deployment solution which is accurate and 
optimised according to the application requirements. The 
latter problem is mainly due to the lack of semantics in the 
description of the cloud services and requirements which 

then maps to their non-accurate discovery before they are 
actually composed.  

To remedy the above issues, this article presents a 
semantic framework for the management of cloud-based 
applications. This framework relies on novel ontology-based 
language to describe application requirements at different 
levels, a semantic matchmaker able to discover services 
which accurate fulfill both the functional and non-functional 
requirements of the application and a cloud service 
composition component which solves a combined design 
and deployment optimisation problem by considering all 
possible cloud levels. The rest of the lifecycle phases are 
covered via components which attempt to enable the 
adaptive deployment and provisioning of the cloud 
application by building on existing research work and open-
source software.    

The cloud service composition component advances the 
state-of-the-art as, apart from composing cloud services at 
different levels, it exhibits the following features: (a) it 
considers unary and binary component placement 
constraints indicating one component's location or the 
relative location between two components either at the same 
VM or cloud, respectively; (b) it considers high- and low-
level security requirements in terms of security controls and 
Service Level Objectives (SLOs), respectively; (c) it 
exploits non-linear functions able to map high- to low-level 
quality capabilities; (d) it even takes decisions on whether to 
use in-house software components or external SaaS for a 
particular application task; (e) it is able to address multiple 
objectives which span quality, cost and security metrics.  

The cloud service composition component has been 
experimentally evaluated against baseline cloud deployment 
approaches. The evaluation results show that this 
component produces in a faster way suitable cloud service 
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composition solutions which optimally satisfy the 
application requirements compared to the solution quality 
and performance of the baseline approaches.  

The rest of the article is structured as follows. Section 2 
introduces a use case to appropriately motivate the proposed 
work. Section 3 presents the semantic cloud application 
management framework. Section 4 introduces a novel 
application requirement language. Section 5 analyzes the 
cloud service composition approach. Section 6 discusses the 
main results of the experimental evaluation. Section 7 
reviews the related work. Finally, Section 8 concludes the 
article and draws directions for further research.    

 
2. USE CASE 

 
This case concerns the design of a real-world traffic 

management application [Baryannis et al. 2013] that 
regulates traffic at particular areas of a city. This application 
comprises the following three main tasks: 
• Monitoring Task (MT). It monitors traffic conditions in 

a particular city area as well as air pollution and noise 
levels. 

• Analysis Task (AT). It analyzes all monitored 
information and produces traffic regulation plans that 
optimally address the current traffic situation. 

• Traffic Configuration Task (TCT). It enforces the traffic 
regulation plans derived by AT. This can involve 
changing traffic lights frequency, informing drivers 
about congested places and emergency personnel about 
accident placement and the particular actions to follow. 

 
Table 1 . The components mapping to application 
tasks 

Task Component 
Name 

Component 
Description 

MT, AT, TCT Con It hosts the three main 
servlets of the 
application 

MT MC 
(choice) 

It realises MT's 
functionality 

AT  AC It realises AT's 
functionality 

AT DC A DB storing the 
information used for the 
analysis 

TCT TCC It realises TCT's 
functionality 

 WO 
(choice) 

It orchestrates the 
application workflow 

 
Various software components/services have been 

developed or are required to realize this application, where 
either one or more map to a particular task. Moreover, a 

service oriented architecture (SOA) is chosen to realize the 
application tasks, so some components have to be hosted on 
servlet containers. Table 1 clearly shows the respective task-
to-component mapping.  

For some components, there is a choice of either 
selecting an existing realization (developed in house by the 
end-user or purchased/downloaded) or exploiting an 
external service. This choice is indicated in parenthesis after 
the respective component's name. 

Concerning service performance and cost, Table 2 
indicates the respective offerings along with information on 
which cloud provider offers them if they are external. The 
performance of internal services was determined via 
benchmarking which also lead to their eventual VM 
requirements (given later in this section). In addition, these 
services' cost is zero as it maps to an already purchased 
hosting infrastructure. The symbols used in this table have 
the following meaning: RT maps to response time, Av to 
availability and Thr to throughput. Cost information is per 
month based on the providers' cost model. 

 
Table 2. The QoS and cost features of the services 

Comp.  
Name 

Service  
Name 

QoS/cost chars Provider 
Name 

MC MonService RT ≤ 4 sec, Av ≥ 99.99%,  
Thr ≥ 10 reqs/sec, cost = 

10$ 

CP1 

MC TraffService RT ≤ 8 sec, Av ≥ 99%,       
Thr ≥ 5 reqs/sec, cost = 5$ 

CP2 

MC MC-Internal RT ≤ 8 sec, Av ≥ 99.99%,  
Thr ≥ 6 reqs/sec, cost = 0$ 

 

AC AC-Internal RT ≤ 1.5 min, Av ≥ 99.99%, 
Thr ≥ 6 reqs/sec, cost = 0$ 

 

TCC TCC-
Internal 

RT ≤ 0.5 min, Av ≥ 
99.999%, Thr ≥ 12 reqs/sec, 
cost = 0$ 

 

WO Orchestrator Av ≥ 99.99%, Thr ≥ 12 
reqs/sec, cost = 19$ 

CP1 

WO WFEngine Av ≥ 99%, Thr ≥ 8 reqs/sec, 
cost = 15$ 

CP2 

WO WO-Internal Av ≥ 99.99%, Thr ≥ 8 
reqs/sec, cost = 0$ 

 

 
The end-user also requires the satisfaction of the 

following types of application requirements: 
• Deployment Requirements: 

o There is a communication requirement from 
WO to all application servlets, i.e., MC, AC, 
and TCC, and from AC to DC. 

o MC, AC and TTC should be deployed on Con. 
These components will be hosted at the same 
instance of Con only when it is decided that 
they will be collocated. 

o AC and DC require a "high" VM, WO and MC 
a "medium" VM while TCC a "small" VM. 
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o AC and DC should be co-located while AC 
should not be co-located with any other 
component (apart from Con that hosts it). 

• Cost requirements: Application cost must be no more 
than 380 $ per month. 

• Quality requirements: 
o Application duration should not be longer than 

2.5 minutes. 
o MC, AC and TCC should have throughput 

greater than or equal to 10, 6 and 5 reqs/sec, 
respectively. 

o MC and AC should have availability of 
99.99% while TCC of 99.999%. 

• Security requirements: 
o The security controls 

(https://cloudsecurityalliance.org/research/cc
m) to be supported for the application must be: 
AAC-02 (independent reviews and assessment 
of provider at least annually), DSI-01 (data \& 
service classification), DSI-05 (data leakage 
prevention), TVM-02 (timely vulnerability 
detection) and SEF-05 (monitoring \& 
quantification of security incident type, 
volume and cost). 

o Meantime between incidents [Pannetrat 2013] 
should be 6 months (mti > 6) 

 
Table 3. The offerings of the four cloud providers 

 

 
 
 
 
Let us now consider four cloud providers, namely CP1, 

CP2, CP3 and CP4 which offer particular cloud 
services/VMs and realize a certain set of security controls. 
Σφάλμα! Το αρχείο προέλευσης της αναφοράς δεν 
βρέθηκε. shows the VMs satisfying the end-user 
requirements offered by these providers (along with cost 
information), a subset of security controls supported by 
these providers and the security SLOs promised.  

Real values for VM characteristics and cost were 
considered by collecting them from cloud provider web 
pages. So, we are as realistic as possible, provided that 
cloud providers do not usually advertize SLO and security 
information. Thus, we have opted for an idealized use case 
matching the real world in the near future, when cloud 
providers decide to advertize the latter information due to 
the main benefits that this will provide to them. 

By considering all above information, a common cloud 
service composition approach would not consider the 
alternative design choices and end-user's security 
requirements. As such, we can assume that the end-user 
would not specify that his/her components can be realized 
via external services. Thus, in the end, the respective 
approach would solve a simple optimization problem to 
produce a concrete IaaS composition. The outcome of such 
an approach would be a solution mapping application 
components to the following VMs (i) AC + DC → CP3 (C), 
(ii) MC → CP3 (B) and (iii) HO + TCC → CP3 (B), where 
CPi (X) means the X offering of Cloud provider i. Co-
location of HO and TTC in CP3 VM of type (B), while not 
imposed by any direct constraint, is proposed as TCC does 
not demand strict VM requirements so that it can be 
supported via a VM with better characteristics that suit the 
HO's resource requirements. 

 
Table 4. Cost, QoS and security features of the 
solutions 

Solution Cost Availability Duration Security 
1 130$ 99.99% 128 sec no 
2 286$ 99.99% 128 sec yes 
3 129.8$ 99.99% 124 sec no 

 
Table 4 summarizes the QoS, cost and security features 

of three solutions. The first solution maps to the common 
cloud service composition approach. The second solution, 
produced by our approach, is the best one as it considers all 
possible information and user requirements, including the 
security ones. It maps to selecting the external services 
offered by CP1 for all choices, the CP1 (C) VM for AC + 
DC and the CP2 (B) offering for TCC. To enable a more fair 
comparison, we also consider the third solution produced 

Provider Offered VM Security  
Control 

Security SLO 

CP1 (A) 2 core, 7.5GB, 
32GB →0.140$ 

(B) 4 core, 15GB, 
80GB →0.280$ 

(C) 4 core, 7.5GB, 
80GB →0.210$ 

(A) AAC-02 
(B) AAC-03 
(C) DSI-01 
(D) DSI-05 
(E) EKM-03 
(F) TVM-02 
(G) SEF-05 

(A) mti ≥ 8 
(B) ir (99%) ≤ 3 

CP2 (A) 2 core, 2GB, 
10GB →0.06$ 

(B) 2 core, 4GB, 
50GB →0.12$ 

(C) 4 core, 8GB, 
130GB →0.24$ 

(A) AAC-02 
(B) AAC-03 
(C) DSI-01 
(D) DSI-05 
(E) EKM-03 
(F) TVM-02 
(G) SEF-05 

(A) mti ≥ 6 
(B) ir (99%) ≤ 2 

CP3 (A) 1 core, 2GB, 
10GB →0.02$ 

(B) 2 core, 4GB, 
20GB →0.04$ 

(C) 4 core, 4GB, 
40GB →0.1$ 

(A) AAC-02 
(B) AAC-03 
(C) DSI-05 
(D) EKM-03 
(E) TVM-02 

(A) mti ≥ 6 
(B) ir (99%) ≤ 4 

CP4 (A) 1 core, 2 GB, 
20GB→0.2$ 

(A) AAC-02 
(B) DSI-01 
(C) DSI-05 
(D) TVM-02 
(E) SEF-05 

(A) mti ≥ 4 
(B) ir (99%) ≤ 4 
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via our approach by not considering security requirements, 
which is identical to the solution of the common service 
composition approach with the sole exception that MC and 
HO are not mapped to SaaS services. Please note that we 
assume that the common composition approach (as in the 
case of our approach) will produce the best possible solution 
based on the input provided to it as it will use a solving 
technique guaranteeing optimality (see Section 7). 

The third solution, while not considering security 
requirements, is still more optimal than the first. The 
comparison between the second and third solution indicates 
the trade-off between security and cost that must be 
considered to produce the best possible solution based on 
user requirements. 

The last two solutions propose a multi-cloud application 
design product spanning over two cloud providers (CP1 and 
CP2 for the second and CP1 and CP3 for the third). The 
second solution has filtered the remaining cloud providers 
as they do not satisfy the user security constraints: CP4 
violates the SLO for mean time between incidents while 
CP3 does not support DSI-01 and SEF-05 security controls. 

3. SEMANTIC CLOUD APPLICATION 
MANAGEMENT FRAMEWORK 

The architecture of the semantic cloud application 
management framework can be seen in Figure 1. This 
framework spans both the design as well as the adaptive 
deployment and provisioning of a cloud application. It 
comprises the following components:  

 

 
Figure 1. The architecture of the semantic cloud 
application management framework 

 
• The Requirements Editor is a User Interface (UI) 

component which interacts with users to obtain their 
requirements. Users, through this component, are 
guided in providing different types of requirements 
at different levels. These requirements are then 

transformed into a requirement model described via 
the semantic requirement language analyzed in 
Section 4. 

• The Semantic Matchmaker attempts to match the 
user requirements against semantic cloud service 
descriptions. It then enriches the user's requirement 
model through indicating which requirements are 
met by which cloud service alternatives, thus 
producing an enhanced requirement model. The 
SaaS matchmaking exploits particular techniques 
for both functional and non-functional aspects. 
Functional SaaS matchmaking relies on semantic 
input/output (IO) matching [Klusch et al. 2006]. 
Non-functional SaaS matchmaking, performed after 
the functional one, exploits particular matching 
metrics and respective constraint solving techniques 
[Kritikos & Plexousakis 2014] (see Section 7.2.1). 
IaaS matchmaking uses the same techniques as in 
non-functional SaaS matchmaking as IaaS offerings 
can be regarded comprising sets of constraints on 
VM features.   

• The Cloud Service Composer obtains the enhanced 
user requirement model and transforms it into a 
constraint optimisation problem. This problem is 
then solved based on particular constraint solving 
techniques. In the end, the solution is transformed 
into a deployment plan specified in CAMEL 
[Rossini et al. 2014]. Section 5 provides a detailed 
analysis about this component. 

• The Cloud Deployment Engine retrieves the 
deployment plan produced by the Cloud Service 
Composer and executes it. The Cloudiator 
framework [Domaschka et al. 2015a] has been used 
to realise its functionality. This framework not only 
abstracts away from the technical peculiarities of 
different clouds but is also capable of deploying 
applications in multiple clouds. In fact, in our 
opinion and also shown by the use case in Section 2, 
multi-cloud application deployment should be the 
way to go forward due to the following reasons: (a) 
leads to a more optimal satisfaction of application 
requirements as the most suitable alternative cloud 
services are selected with the best functional and 
quality capabilities; (b) the hurdle of vendor lock-in 
is surpassed enabling applications to be deployed in 
multiple and across different clouds.  

• The Semantic Knowledgebase (SKB) contains 
information that spans the lifecycle of a cloud 
application as well as the main capabilities offered 
by different cloud providers. The SKB also includes 
the description of semantic rules operating over its 
content which can drive the adaptation behavior of 
an application by reacting on incoming application 
measurement and contextual information. An 
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existing triple store (Virtuoso1) with a reasoner on 
top of it (Pellet2) has been used to realise the SKB. 

• The Monitoring Engine is responsible for 
monitoring the cloud-based application in each and 
across all clouds in which it has been deployed. The 
MetricsCollector component [Domaschka et al. 
2015b] has been used to realise its functionality. 
This component has been enhanced in order to 
operate over the semantic description of metrics 
defined in OWL-Q [Kritikos & Plexousakis 2006].  

• The Adaptation Engine is responsible for adapting 
the cloud-based application when critical situations 
occur. Such situations are detected based on the 
findings of the Monitoring Engine and the content 
of the adaptation rules. The latter indicate which 
pattern of events represent these situations and what 
are the adaptation actions required to resolve them. 
The description of adaptation rules relies on SRL 
[Kritikos et al. 2014] while the Adaptation Engine 
was realised based on the work in [Zeginis et al. 
2015]. It should be noted that when a current critical 
situation cannot be any more coped by the existing 
adaptation rules, the Adaptation Engine informs the 
Cloud Service Composer to propose a new cloud 
solution for the application at hand which should be 
able to overcome this situation.     

 
This framework, as can be easily understood, exhibits 

various features that enable it to be distinguished from other 
research prototypes and products. More importantly, it is 
able to deal with multiple cloud levels as well as address the 
whole lifecycle of a cloud-based application, going from its 
design and deployment until its adaptive provisioning. 
Moreover, the different components involved in this 
framework can well be exploited by other prototypes and 
products in order to enable the latter to function at different 
cloud levels. For instance, the Requirements Editor, the 
Semantic Matchmaker and the Cloud Service Composer 
could be exploited by a product for the derivation of 
concrete deployment plans based on the initial user 
requirements. Then, such a product could employ its own 
components for the actual deployment and adaptive 
provisioning of an application.  

4. APPLICATION REQUIREMENTS 
ONTOLOGY LANGUAGE 

  In order to express different types of application 
requirements at different levels, a particular semantic 
language has been developed based on OWL, the de-facto 
standard in ontology description. This language relies on 
OWL-S [Sycara et al. 2003] for the functional description of 
                                                             
1 http://virtuoso.openlinksw.com/ 
2 https://github.com/complexible/pellet 

the SaaS services and OWL-Q [Kritikos & Plexousakis 
2006] for the non-functional and cost description of any 
kind of cloud service. We should note here that we consider 
that an application, being a composition of cloud services in 
the end, is also considered as a SaaS service. The class 
diagram in Figure 2 shows the main classes and their 
respective relationships for this language.  

The main class for describing an application or a SaaS 
service is Service in OWL-S for which the process model 
part (cf. ProcessModel class) can be used to indicate the 
domain classes to which its I/O maps for matchmaking 
purposes.  Concering the service composition description, 
we have semantically-enhanced the part of the component 
meta-model in [Zeginis et al. 2015] dedicated to the 
modelling of composite services. In that meta-model, a 
service can be distinguished into a CompositeService or a 
SingleService. A CompositeService is associated to a data 
flow and a control flow, where the former indicates the data 
bindings between the inputs and outputs of the composite 
services' components while the control flow explicates the 
order of execution between the component services 
according to particular composition patterns. As such, 
through the re-use of this meta-model part, the application 
structure at the highest level can be provided. Obviously, in 
case users do not require to provide such a flow as they are 
not modelling a pure service and workflow-based 
application, they can just indicate via exploiting the 
proposed ontology the components that their application 
consists of.    

Each Service is associated to a non-functional profile 
named as QoSDemand in OWL-Q. This profile maps to a 
logical combination of quality constraints indicating the set 
of conditions on particular quality metrics that are required 
for this service. Through using OWL-S and OWL-Q and by 
assuming that the SaaS services offered by cloud providers 
are described in an equivalent way, we enable the semantic 
matchmaker to combine the existing functional and non-
function service matchmaking techniques in order to cover 
service discovery at the SaaS level. 

The remaining types of requirements not covered by 
OWL-Q and OWL-Q are encapsulated as sub-classes of the 
Requirement class which is directly associated to a Service.  
This class comprises the DeploymentRequirement and 
SecurityControlRequirement sub-classes which represent 
deployment and security control requirements, respectively. 
A deployment requirement is further distinguished into 
service deployment, component deployment, 
communication and placement requirements.  

 
 

http://virtuoso.openlinksw.com/
https://github.com/complexible/pellet
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Figure 2. The class diagram of the requirements 

language 
 
A service deployment requirement indicates whether a 

particular service component of the application will be 
realised via an external SaaS or an internal software 
component which has been either developed in house or has 
been purchased. Such a requirement can also leave both 
options open such that the proposed framework can 
decidesthe one that best satisfies the user requirements.  

In case of external SaaS realisation, either the external 
SaaS service is fixed by pointing to its actual description or 
SaaS matchmaking will be performed to discover SaaS 
external services realising the respective service 
component's functionality.  

In case of a software component realisation (or of both 
options), a pointer to the description of the software 
component has to be provided. To this end, the 
SoftwareComponent class has been modelled which has a 
name and short description as attributes. It is related to 
Configuration information which maps to the handling of its 
lifecycle by indicating how the code of the component can 
be downloaded, configured, installed, executed and stopped. 
A software component may also have particular ports 
through which it can communicate with other components.  

As it can be understood, this requirement specification is 
quite flexible. It can either rely on the framework to address 
the mapping of an application component to any kind of 
internal or external software or on the user to determine a 
concrete external SaaS and/or software component to 
address this mapping.  
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A component deployment requirement indicates the VM 
requirements for the IaaS service which will be used to host 
a software component which realises the functionality of an 
application component. The requirements for a VM span 
constraints over its main characteristics which are the 
amount of cores, the CPU frequency, the size of the main 
memory and the size of the hard disk, and are modelled via 
the VMRequirement class. The collection of a set of 
different constraints into a single class enables the re-use of 
VM requirements across different component deployment 
requirements. 

A communication requirement actually connects two 
components indicating that they should communicate to 
each other. By also explicating the ports exposed by these 
components which will be used for their communication, the 
deployment of the application can be configured correctly 
such that there are no errors in the establishment of the 
communication links between these pair of components.  

A placement constraint can indicate a particular physical 
(e.g., Europe) or virtual location (e.g., Amazon eu-west-1) 
in which a component can be placed or pair-wise placement 
constraints between components. As such, we can cater for 
cases where conformance to laws and regulations should be 
guaranteed as well as for cases where we desire to guarantee 
that the communication requirements between a pair of 
components are met. Pair-wise placement constraints can be 
of the following type: (a) SAME_VM: the same VM should 
be used to host the pair of components; (b) SAME_CLOUD: 
the same cloud should be used for the deployment of these 
two components; (c) DIFFERENT_VM: these two 
components should be placed in different VMs; (d) 
DIFFERENT_CLOUD: these two components should be 
placed in different clouds. 

A SecurityControlRequirement actually maps an 
application component or the application itself to a set of 
security controls which have to be supported by the cloud 
provider(s) of the respective cloud service(s) selected to 
realise the application component(s) functionality. As can 
be easily understood, such a cloud service can be either an 
external SaaS or a IaaS used to host the internal software 
component realising the current application component's 
functionality. Each SecurityControl is described via a 
domain, a sub-domain, its id and a particular textual 
description. The set of security controls which is currently 
supported has been derived from the Cloud Control Matrix 
(CCM) of Cloud Security Alliance (SCA)3.          

We should highlight here that VM requirements should 
be matched with VM capabilities. To this end, we have 
created another ontology-based semantic provider language, 
which is used to describe VM capabilities as well as the 
respective cloud providers that offer them. The VM 
capabilities are described in an equivalent, symmetric 
manner with respect to the respective requirements. The 
                                                             
3 https://cloudsecurityalliance.org/group/cloud-controls-
matrix/ 

matching of them relies on a simple constraint problem 
derivation which is similar to the one used for non-
functional SaaS matching. In this way, there is a uniform 
way in which non-functional and VM requirements are 
handled. 

The semantic provider languge also connects a cloud 
service provider to the SaaS services that it offers as well as 
to the set of security controls that it supports. In this way, 
we also enable the filtering of the cloud provider space 
according to the high-level security requirements posed. 

The whole requirement model which can be expressed 
by our proposed ontology language can then be enhanced by 
the Semantic Matchmaker by indicating which application 
components can be realized by which cloud services. In this 
respect, the requirement model is updated with pointers to 
the descriptions of the respective cloud services in service 
deployment and component deployment requirements. The 
service deployment requirements will point to the external 
SaaS that can be used to realise an application component's 
functionality, while the component requirements will point 
to those IaaS that can be used to host the respective software 
component of a certain application component.  

To summarize, the proposed requirement ontology 
language is quite flexible and expressive to specify any kind 
of cloud-based application requirement. It is also 
complemented with a cloud capability language to enable 
the appropriate matching of requirements to respective 
cloud service offerings. The final product derived through 
the modelling and matchmaking of requirements is an 
enhanced requirement model which drives the cloud service 
composition and the respective deployment plan production 
which will be dealt with in the next section.  

5. CLOUD SERVICE COMPOSITION APPROACH 
All possible design choice alternatives incarnated into 

the enhanced requirement model are transformed into a 
particular optimization problem by the Cloud Service 
Composer which, when solved, can discover the most 
optimal cloud service solution satisfying all user 
requirements posed irrespectively of their type. The 
approach followed was inspired by the service 
concretization work in [Ferreira et al. 2009]. In the 
following, we analyze the way the constraint problem is 
modelled in a step-wise manner, starting from optimization 
objectives and going down to the formulation of the high- 
and low-level constraints mapping to user requirements. 
Then, we check the complexity and possible constraint 
solving technologies for this problem.  

5.1 CLOUD SERVICE COMPOSITION PROBLEM 

FORMULATION 
To formulate the optimization objective of the problem, 

we rely on the Analytical Hierarchy Process (AHP) [Saati 
1980] to derive the relative importance of the quality 

https://cloudsecurityalliance.org/group/cloud-controls-matrix/
https://cloudsecurityalliance.org/group/cloud-controls-matrix/
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parameters and cost to the user. The result of this process is 
an assignment of weights to all these parameters, indicating 
their relative importance, whose sum should equal to one. 
We also follow Simple Additive Weighting (SAW) 
technique [Hwang & Yoon 1981] which maps the 
optimization of all criteria considered to a single 
optimization objective which is equal to the weighted sum 
of the application of the global value derived for each 
parameter (QoS and cost) on its utility function posed. More 
formally, the objective is formulated as follows: 
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The utility function of each parameter is formulated 
based on the formulas in [Ferreira et al. 2009] which cater 
for slightly violating some problem constraints to address 
over-constrained user requirements. The following 
combined expression represents these formulas in which the 
first two cases depend on the monotonicity of the respective 
parameter (i.e., the first for negatively monotonic 
parameters like cost and the second for positively 
monotonic parameters like availability), where m  is the 
max function, max

qv  and min
qv  are the maximum and 

minimum values requested by the end-user for the 
parameter q and qa  is a real number in [0.0,1.0] used to 
regulate the percentage of values allowed outside the user-
requested range. 
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The value vq that a parameter q can take depends on the 
type of this parameter and its derivation can be application-
specific by depending on the application's structure 
[Ardagna & Pernici 2007]. To this end, in the general case, 
we consider that a particular application-specific function is 
provided taking as input the respective parameter values of 
the application components. In other terms: 

( )q
q q ival f val=  where q

ival is the parameter value for 

application component i. The use of a function covers all 
possible cases in parameter value derivation. In this way, by 

considering the running example, the application availability 
equals the product of availabilities of the three main 
components (i.e., MC, AC and TCC), while application cost 
is equal to the cost of all components (thus mapping to the 
respective cost of the infrastructure-as-a-service (IaaS) or 
SaaS exploited).  

Before specifying the problem constraints, we introduce 
the main decision variables mapping to three variable 
arrays: 

• yi indicating whether the internal software component 
or the external SaaS services will be used to realize 
(application) component i 

• xijk which indicates whether for the internal software of 
an application component i, the IaaS offering k of the 
cloud provider j has been selected (internal service 
selection case) to host it. 

• zil indicating whether SaaS service l has been selected 
to realise the functionality of application component i. 

We differentiate between IaaS and SaaS services as they 
map to different formulas indicating how their parameter 
values can be mapped to the respective values at the 
(application) component level. While it could be argued that 
there is no need for explicating which IaaS offerings are 
provided by which cloud provider, we need to make this 
differentiation to be able to specify pair-wise placement 
constraints. 

It is apparent that two exclusive cases exist for each 
application component: (a) there is no choice for realizing 
but just for deploying it and (b) there is indeed a realization 
choice. In the first case, it is enough to enforce that only one 
cloud provider and respective offering can be selected. In 
the second case, we need to indicate that only one external 
SaaS must be selected for realizing the component. Both 
cases lead to requiring the satisfaction of the following 
constraint:  

1ijk il
j k l

x z+ =∑∑ ∑  

Apart from the above constraints, we need to go down to 
the level of application components and indicate how their 
parameter values are derived from those of the offerings 
selected for them. We first assume that an application 
component's parameter value either maps to a one-to-one 
manner to the respective software component value which is 
computed as a function over the resources exploited 
(memory, CPU and storage), or is computed from the 
respective parameter value of the external SaaS realizing it. 
More formally:  
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where q
if  is the function over the resources for parameter q 

of (application) component i while q
ilval  is the parameter 

value for the l external SaaS of component i.  

In case of internal software component deployment in 
the cloud the above (left part of the) computation is valid as 
the usual way of deriving high- from low-level requirements 
is either via benchmarking, simulation, or performance 
model learning [Xiong et al. 2013] such that we can map 
different service levels of application components to 
different resource levels.  

Thus, we regard that the end-user has exploited one of 
the three possible approaches to produce the respective 
functions for those quality parameters of interest. We also 
envisage a step-wise approach to performance modelling. 
First, performance models for components are generated 
and then we go up to the level of the application. In this 
way, the component performance models will be more 
precise and will also lead to more accurate application 
performance models rather than attempting to map 
immediately the application performance to the underlying 
resources. 

In this sense, we only need now to specify how the low-
level resource values are produced for a particular 
component4. This maps to the following three formulas: 
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where corei, memi, and storei are the variables mapping to 
the component's i number of cores, main memory size and 
storage size, respectively, while corejk, memjk, and storejk are 
the corresponding but fixed resource values for the concrete 
VM offering k of provider j. 

The cost of each component is calculated by considering 
the next formula: 

                                                             
4  Please note that in the case of internal software 
deployment, we use the term component from now on to 
indicate both the application component and the software 
used to realise it as there is a one-to-one mapping between 
their respective parameters.  

* * (1 )* *i i ijk jk i il il
jk l

cost y x cost y z cost= + −∑ ∑
where costjk is the cost of IaaS offering k of provider j and 
costil is the cost of SaaS l. Thus, a component's cost equals 
the cost of the IaaS or SaaS it exploits. 

The unary location constraints can regard either a 
physical or a virtual location. The latter maps to a specific 
cloud so this means that the enhanced requirement model 
will be already filtered according to such locations. There 
can be two types of physical locations, either countries or 
continents, where the former can obviously be included in 
the latter. By relying on the Food  and  Agriculture 
Organisation of United Nations (FAO) physical location 
ontology5, we have covered all continents and countries by 
also modelling all their respective inclusion relationships. In 
this way, functions operating on the respective location 
elements can be employed in order to enforce the following 
two location constraints on IaaS and SaaS services, 
respectively. 

( )
( )

 equalOrIn ,  == true 

 equalOrIn ,  == true 
jk i

il i

loc loc

loc loc
   

where equalOrIn is a function indicating whether the first 
location equals or is included in the second location, locjk is 
the location of the k VM offering of provider j, locil is the 
location of service l for component i and loci is the required 
location of component i. We should note here that we do not 
cover the case that the location of a cloud service includes 
the required location of the component as it is not certain 
that the cloud provider will be able to offer the respective 
service in the required country of the supported continent. 
Such a provider might support some but not all of the 
countries inside that particular continent.   

We provide a specific formulation for pair-wise 
placement constraints depending on their type. A 
SAME_VM pair-wise placement constraint is formulated as 
follows: 

'ijk i jk
x x=  

where i and i' are the two components for which the co-
location constraint is posed. This constraint indicates that 
the decision for both components should coincide. Thus all 
values for respective array parts in which i and i' are fixed 
should be equal. 

                                                             
5 Available at: 
http://www.fao.org/countryprofiles/geoinfo/geopolitical/res
ource/ 

http://www.fao.org/countryprofiles/geoinfo/geopolitical/resource/
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A DIFFERENT_VM placement constraint is expressed 
as follows: 

( ) '1 0ijk i jk
if x x== ⇒ =  

indicating that if a particular offering k of a cloud provider j 
is selected for component i, then this provider's offering 
cannot be selected for component i'. 

The SAME_CLOUD pair-wise placement constraint is 
formulated as follows: 

'ijk i jk
k k

x x=∑ ∑  

where i and i' are the two components for which the pair-
wise placement constraint has been posed. This constraint 
indicates that for both components the same cloud has been 
selected which maps to requiring that the sum of values of 
the decision variables (mapping to the provider's offerings) 
for each cloud provider to be equal for these components. 

The DIFFERENT_CLOUD placement constraint can be 
expressed as follows: 

'1 0ijk i jk
k k

if x x == ⇒ = 
 
∑ ∑  

indicating that if any offering of cloud provider j is selected 
for component i, then no offering from this provider can be 
selected for component i'. 

To conclude formulating the problem, we need to cater 
for the user security requirements which can be separated 
into high-level in terms of security controls and low-level in 
terms of SLOs. In the first case, we introduce set variables 
and enforce set operations to address the respective 
requirements. In particular, we enforce that if a particular 
cloud provider has been selected, then this provider should 
have realized all security controls required by the end-user. 
This is translated to the following complex constraint: 
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where cc is a fixed set variable mapping to all required 
security controls, ccpj is a fixed set variable mapping to the 
security controls supported by provider j, and .ilz provider  is 
the index of provider which offers SaaS l for component i. 
We consider that the security control requirements should 
hold for any provider whose service is selected. In case such 

requirements are posed at the component level, the above 
formula can be remodelled by replacing cc with cci mapping 
to the fixed set variable for component i equal to the 
security controls to be realized by the provider whose 
service is used to realize or support this component. 

In case of low-level security requirements, a similar 
constraint is posed: 
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where seqp is the low required threshold for security 
property p while p

jseq  is the respective property value 
promised by provider j. This formula is meaningful for 
positively monotonic security properties. The opposite case 
can be easily derived but due to space limitations is not 
shown. If the user provides both low and upper thresholds, 
the constraints introduced for both security property types 
must be enforced. 

5.2 COMPLEXITY & SOLVING TECHNIQUES 
The common cloud service composition problem is NP-

Hard [Jula et al. 2014]. While we use additional sets of 
constraints, especially non-linear ones, and variables, the 
general problem formulation showed in previous sub-
section is still NP-Hard. 

Due to the nature of this problem, Mixed-Integer 
Programming (MIP) techniques cannot be actually used. 
Thus, non-linear constraint solving techniques must be 
checked, from which we have selected the Constraint 
Solving Optimization Problem (CSOP) ones, as they seem 
the perfect candidate for our case. These techniques can 
address not only non-linear constraints but can also cater for 
the use of different variables, such as boolean, integer, and 
set variables. However, real variables are not natively 
supported. To this end, the current workaround that seems to 
work well in many circumstances is to combine the use of 
CSOP with either MIP or Constraint Programming 
techniques focusing on interval arithmetic. In fact, many 
hard and real-world problems are now solved through the 
combined use of these techniques [Timpe 2002; Milano 
2003]. 

In our current implementation, we have used a well-
known and free CSOP solver called Choco (choco-
solver.org) which is also supported by a very active 
community, while performs well and even competes with 
proprietary solvers. Apart from supporting all types of 
variables required, Choco has implemented well-known 
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state-of-the-art constraint types (e.g., all different) and 
various search strategies. Choco also includes an 
explanation engine indicating in case of over-constrained 
requirements which user constraints are hard to satisfy. 

To address real variables, Choco exploits the Ibex 
constraint programming engine (www.ibex-lib.org). Ibex has 
been realized as a C++ library, relies on both interval and 
affine arithmetic, and is able to address non-linear 
constraints, handle roundoff errors, and declaratively build 
strategies via the contractor programming paradigm. 

6. EXPERIMENTAL EVALUATION 
We have conducted a preliminary experimental 

evaluation of our approach performance which aimed at 
assessing the effect of an increasing number of cloud 
provider offerings and placement constraints. To this end, 
two separate experiments were performed evaluating the 
effect that each different factor has. Three CSOP approaches 
were actually evaluated: (a) RESOURCE mapping to the 
common IaaS composition method used as a baseline where 
only resource constraints are considered and just one 
optimization parameter (cost), (b) RESOURCE_SEC which 
is same as previous method but enriched with security and 
placement constraints and (c) FULL which is the actual 
proposed approach.  

The evaluation metric was the average solving time 
whose value was generated over 30 runs in order to 
minimize various interference types in the measurements, 
such as those attributed to the running OS. The computer on 
which the experiments were performed had the following 
characteristics: 1.7 GHz CPU, 2GB of main memory and 
500 GB of disk. 

The input given to the three approaches was randomly 
generated but only realistic values were considered. For 
instance, the core number was given values from 1 to 8 
while main memory from 512 to 8192 for a particular cloud 
provider IaaS. Security capabilities were formed by 
randomly assigning a specific percentage of all possible 
security controls for each cloud provider, while a respective 
smaller percentage was used as the application requirement. 
Placement constraints were formed by randomly picking up 
their type and component pair on which they should hold. 
Then, each approach exploited this input, created the 
respective CSOP problem and solved it. In the CSOP 
formulation, a linear function from resources to QoS 
attributes was utilized for each component. It was also 
assumed that the composition of values for execution time 
& cost, throughput and availability at the global application 
level exploited additive, minimum or multiplicative 
functions, respectively. 

The initial values for the experiment configuration 
parameters were: application component number → 5, cloud 
provider number → 10, IaaS/SaaS number per provider → 5 

and placement constraint number → 5. In the first 
experiment, we increased the value of the IaaS/SaaS 
offerings per provider in units of 5 until the value of 25. In 
this way, we simulate the case where either an increased 
number of offerings is supplied by each provider or an 
increased number of providers occurs. The evaluation 
results are shown in Figure 3. As it can be seen, due to the 
nature of the problem, all approaches exhibited an 
exponential behavior. However, our approach had a better 
performance than the others. This can be certainly justified 
by the fact that while slightly increasing the variable 
number, the constraint number is also increased. As such, 
the constraint solving algorithm more deeply cuts the search 
space to find the most optimal solution. The same holds 
when comparing RESOURCE_SEC and RESOURCE where 
again the increased number of constraints leads to a better 
performance. We have posed a limit of 3 minutes to the 
solving time so as to be acceptable by an application 
designer which justifies the first approach behavior. 

The second experiment focused on examining the effect 
on increasing the placement constraint number from 1 to 5 
(but not greater due to the small number of application 
components). Figure 4 shows the respective evaluation 
results only for the last two approaches that are indeed 
capable of considering such constraints. The same linear 
decreasing behavior is observed for both approaches. This is 
expected as placement constraints reduce the offering space 
to be explored. Again, FULL had a better performance than 
RESOURCE_SEC as it considers also high-level constraints. 

 

 
Figure 3. Average solving time per offer number 
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Figure 4. Average solving time per placement 
constraint number 

7. RELATED WORK 

7.1 SERVICE MODELLING 

7.1.1 SOFTWARE SERVICE MODELLING 
WSDL [Christensen et al. 2001] is the de-facto standard 

for the description of the interface for web-services. 
However, it is a structural language and does not cover other 
information aspects, such as the service functionality and its 
non-functional capabilities. 

USDL was a semi-formal language used for the 
description of business and software services. Recently, it 
has been transformed to a Linked-Data counterpart 
[Pedrinaci et al. 2014] in order to become more formal. 
USDL is capable of covering SLA, quality, security, cost 
and legal aspects. There was also an approach [Cardoso et 
al. 2013] focusing on the integration of USDL with TOSCA 
[Palma and Spatzier 2013] to link service selection with 
deployment such that the cloud application lifecycle is 
better supported.    

OWL-S is a W3C recommendation for the semantic 
description of web services. It mainly focus on functional 
aspects, covering the semantic description of the service I/O 
and its abstract interface. It also proposes a particular 
grounding mechanism in WSDL. However, OWL-S does 
not cover the non-functional aspects and is not able to 
describe service orchestrations.  

WS-BPEL [Alves et al. 2007] is a service orchestration 
language which has been widely adopted. It is relies on 
WSDL for the description of the component services of the 
orchestration but there have been research-based extensions 
which have relied on WSMO [de Bruijn et al. 2005], 
another semantic service description language with 
equivalent capabilities to OWL-S. WS-BPEL also comes 
with additional extensions towards covering service 
choreographies and human tasks. However, this language 
does not cover non-functional aspects.  

SoaML [Amsden et al. 2012] is a UML-based language 
for specifying Service-Oriented Architectures (SOAs) able 
to define components and their inter-relationships at the 
business and  service levels. However, SoaML cannot 
actually describe service orchestrations and to this end, it 
needs to be complemented by a service orchestration 
language, like WS-BPEL. Moreover, it does not cover non-
functional aspects. 

Concerning the non-functional description of services, 
various approaches have been proposed which can be 
distinguished according to their performance on various 
comparison criteria, such as their expressiveness, 
complexity, formality and extensiveness [Kritikos et al. 
2013]. Among these approaches, OWL-Q can be considered 
as the one which has the best performance across all these 
criteria. OWL-Q is semantic, extensible and very 
expressive, covering all major aspects in service quality 
description, including quality attributes, metrics, units, and 
measurement formulas. It is able to specify both service 
quality models that can be used for populating SLAs as well 
as quality-based service descriptions covering the non-
functional profiles of services. Finally, OWL-Q can be 
connected to any functional service description language to 
enable the complete description of web services. 

7.1.2 CLOUD SERVICE/APPLICATION MODELLING 
TOSCA is considered as a de-facto standard for the 

deployment description of applications and seems to be 
widely used in research prototypes. However, it has 
particular shortcomings related to the non-coverage of the 
instance level which is required for dealing with runtime 
aspects, the lack of domain/cloud-specific constructs and the 
incomplete coverage of the non-functional aspects. 

CAMEL is a multi-purpose DSL developed in the 
context of the PaaSage European project. It is able to cover 
many aspects related to the lifecycle management of cloud 
applications, such as the deployment, monitoring, 
scalability, organisation, security and cloud service ones. In 
terms of deployment, it relies on CloudML [Ferry et al. 
2013] which follows the template-instance pattern and 
caters for runtime aspects through a models@runtime 
approach [Aßmann et al. 2011]. However, the latter DSL 
does not cover all types of placement constraints and is 
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mainly oriented towards IaaS services. The description of 
cloud services relies on the Saloon framework's [Quinton et 
al. 2013] generic DSL able to cover any possible cloud 
service offering. The main drawback of CAMEL as a whole 
is that it is semi-formal as it is Ecore-based. Thus, it does 
not have the formality level and reasoning capabilities of an 
ontology-based modelling approach.  

The language in [Nguyen et al. 2011] is able to support 
the semi-formal description of Blueprint Templates which 
cover cloud-offerings at multiple abstraction levels and 
capture service capability, virtual topology and QoS & 
policy aspects. Apart from being a semi-formal language, it 
does not capture all lifecycle aspects as covered, e.g., in 
CAMEL. In addition, it is not capable of defining the 
quality terms required for specifying the quality capabilities 
of the respective service offerings.   

A cloud meta-model is proposed in [Galán et al. 2009] 
which extends OVF 6 towards covering self-configuration, 
elasticity and performance monitoring. This meta-model is 
not capable of specifying placement constraints, component 
dependencies and quality capabilities and requirements.  

Another OVF extension called service manifest has been 
proposed in [Rumpl et al. 2010] which covers placement 
and allocation constraints, security requirements and 
performance profiles according to the properties of trust, 
reputation, eco-efficiency and cost. This service manifest, 
however, stays mainly at the IaaS level and is not capable of 
describing component dependencies while does not cover 
additional quality attributes related, e.g., to performance.  

The mOSAIC ontology [Moscato et al. 2011] has been 
developed in OWL and can be used for the semantic 
annotation of semi-formal cloud service descriptions. It is 
rich enough to cover various aspects, including cloud 
service requirements and resources, metrics, SLAs, 
components and policies.        

7.2 SERVICE MATCHMAKING    

7.2.1 SOFTWARE SERVICE MATCHMAKING 
The functional matchmaking of software services has 

mainly relied on the service I/O. The approaches proposed 
rely on employing either Information Retrieval [Dong et al. 
2004] or ontology-based [Paolucci et al. 2002] or both types 
of techniques [Plebani & Pernici 2009]. While the latter two 
types of approaches seem to cater for better accuracy, they 
do not consider the service behavior. As such, the results 
produced will never be as accurate as possible. To remedy 
for this, few approaches [Sycara et al. 2002] have employed 
behavior-based service matching by relying on full input-
output-precondition-effects (IOPE) service profiles. While 

                                                             
6 https://www.dmtf.org/standards/ovf 

these approaches reach even higher matchmaking accuracy 
levels have the main drawback that full IOPE service 
profiles do not exist in reality and require additional 
modelling effort by the cloud service provider.  

Non-functional software service matching approaches 
can be separated into constraint-based, ontology-based or 
mixed. Constraint-based approaches [Cortés et al. 2005] 
express the quality description of service requirements and 
capabilities as a constraint model and then employ 
constraint solving techniques and particular matching 
metrics (e.g., subsumption [Cortés et al. 2005])  in order to 
perform the service matchmaking. These approaches assume 
that the quality-based service specification comprise terms 
which have been defined in a common quality term 
repository. Ontology-based approaches [Zhou et al. 2004] 
provide ontology languages for enabling the service quality 
description and exploit subsumption reasoning to infer 
whether service quality capabilities match the respective 
requirements posed. Such approaches have the drawback 
that can only involve the processing of unary quality-based 
service specifications which comprise one quality term per 
constraint. Finally, mixed approaches [Kritikos & 
Plexousakis 2014] combine the best from both worlds with 
respect to the previous approach types. They rely on 
ontologies to enable the service quality description, they 
then align the descriptions according to the quality terms 
and finally transform the aligned descriptions into constraint 
problems in order to use the techniques in the first approach 
type to perform the actual service matchmaking. The latter 
types of approaches exhibit better accuracy than the other 
types and are also able to cope with n-ary quality service 
specifications.    

7.2.2 CLOUD SERVICE MATCHMAKING 
Ruiz-Alvarez & Humphrey [2011] have proposed an 

approach which is able to discover cloud storage services 
that match the respective application requirements posed. 
Cloud storage requirements and capabilities are expressed 
via a semi-formal language. The framework in [Garg et al. ] 
ranks cloud services according to their quality performance 
and weights given to each quality term according to the 
AHP process. Zeng et al. [2009] follow a Wordnet-based 
approach to measure the similarity of concepts in the I/O of 
cloud service specifications. The federated cloud 
environment in [Buyya et al. 2010] is able to match user 
quality requirements to cloud services. D' Andria et al. 
[2012] propose a PaaS matchmaking and selection 
framework which filters PaaS according to user 
requirements and ranks the remaining PaaS based on the 
number of user preferences satisfied. The approach in 
[García-Gómez et al. 2012] addresses blueprint (see Sub-
section 7.1.2) matchmaking and is able to produce a 
composite blueprint document which comprises the cloud 
services that can be used for realising or supporting a cloud 
application. It does not propose though a concrete cloud 

https://www.dmtf.org/standards/ovf
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service composition but just set of alternatives for different 
application elements at different levels of abstraction.    

7.3 SERVICE COMPOSITION 

7.3.1 SOFTWARE SERVICE COMPOSITION 
The successful SOA paradigm has led to a proliferation 

of available services. Such services can then be optimally 
combined to produce added-value functionality incarnated 
into respective applications. To this end, various service 
composition approaches have been proposed which usually 
focus either on the functional or QoS aspect. Most of the 
QoS-based work follows either a statistical [Canfora et al. 
2005] or path-based approach [Ardagna & Pernici 2007] 
leading to an over-simplification or a pessimistic view of the 
problem. Some approaches employ a heuristic [Yu et al. 
2007] or a QoS decomposition [Alrifai et al. 2009] approach 
to cater for better performance but sacrificing optimality. In 
addition, all these approaches regard QoS service offerings 
as simple QoS parameter values which is quite unrealistic if 
we also regard that many services run in quite dynamic 
environments. Moreover, these approaches fail to produce 
any result for over-constrained end-user requirements. One 
promising approach resolving most of the above issues was 
proposed in [Ferreira et al. 2009]. Some key aspects of this 
approach were exploited in our cloud service composition 
work.  

7.3.2 CLOUD SERVICE COMPOSITION 
The cloud service composition problem is harder than 

that of service selection as it involves composing different 
types of services with different characteristics and the 
synthesis is performed in different but inter-dependent 
levels such that the solution at one level impacts the solution 
at other levels. However, the cloud service composition 
approaches proposed usually focus on just one cloud service 
type. Even when they consider additional types, they either 
solve a limited case of the actual problem or a slightly 
different problem by also neglecting all possible user 
requirement types. 

Concerning SaaS composition, the respective 
approaches can be separated into those which: (a) consider 
semantics [Zeng et al. 2009], (b) use heuristics to solve the 
respective optimization problem [Kofler et al. 2010], (c) 
address multi-tenant SaaS [He et al. 2012], (d) exploit 
feature models and multi-criteria decision making [Wittern  
et al. 2012] to find the most optimal SaaS compositions and 
(e) consider some other aspects, such as the network latency 
and the multiple instances that a particular SaaS service can 
have [Klein et al. 2012]. Although not clearly addressing 
IaaS services, the latter approach seems interesting and 
could be used for further extending our proposed work 
towards selecting only the appropriate instances for each 
SaaS selected. 

The self-organizing agent-based cloud service 
composition method in [Gutierrez-Garcia et al. 2013] 
exploits distributed problem solving techniques, by also 
relying on the contract-net protocol, and is able to produce 
vertical, horizontal, one-time and persistent service 
compositions. Both SaaS and IaaS type of services are 
handled. However, this approach seems to cater only for 
functional and cost requirements. 

In [Karim et al. 2013], an hierarchical quality model is 
proposed going from user requirements down to the QoS 
capabilities of IaaS services. This quality model is then used 
for ranking the service candidates across the different cloud 
levels. However, the ranking algorithm proposed seems to 
work on a different problem type where the end-user 
requires one or more SaaS services and then the providers of 
these services have to find suitable IaaS offerings for 
hosting their services. In addition, this algorithm does not 
consider placement constraints, while only low-level 
security requirements are taken into account. Finally, the 
algorithm seems to work only for sequential application 
workflow specifications. 

8. CONCLUSIONS & FUTURE WORK   
This article has presented a semantic cloud service 

composition framework which is able to address the whole 
lifecycle of an application in a multi-cloud environment. 
The genuine features of this framework is that it relies on 
semantics and constraint optimisation techniques which 
guarantee the quality of the cloud service composition 
derived. It is able to consider different types of requirements 
and different types of design choices across different levels 
for which their dependencies are accounted for. This 
framework is also able to dynamically adapt the application 
at runtime via exploiting adaptation rules as well as re-
configuration opportunities provided by the Cloud Service 
Composer when quite critical situations occurs which 
cannot be addressed by such rules. 

The framework's Cloud Service Composer advances the 
state-of-the-art as apart from considering a variety of 
different types of quite meaningful and critical application 
requirements, it is able to concurrently consider different 
cloud levels in order to produce the final cloud service 
composition product. Moreover, it does not sacrifice 
accuracy through the use of any kind of heuristics. This 
guarantees the optimality of the composition product and 
reduces the probability that such product has to be adapted 
at runtime. In addition, as shown from the experimental 
evaluation, it leads to a reduction in the composition 
execution time compared to common IaaS composition 
approaches, thus making the composition algorithm suitable 
for use even at runtime.  

The following research directions are planned. First, a 
complete evaluation of the whole framework has to take 
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place. Second, the exploitation of PaaS services needs to be 
considered in order to make the solution even more 
complete with respect to the types of cloud services that can 
be exploited. Third, a complete UI spanning all the 
application lifecycle phases will be produced enabling 
application developers not only to pose requirements but 
also see the deployment progress and runtime performance 
of their applications and possibly interfere by e.g., enforcing 
adaptation actions or changing requirement models or plans. 
Fourth, it is planned to extend the functionality of the 
framework in order to deal with an additional level on the 
top mapping to the handling of business processes in order 
to realise the vision of BPaaS [Woitsch & Utz 2015].  
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