
Services Transactions on Cloud Computing (ISSN 2326-7550) Vol. 3, No. 3, July-September 2015

TOWARDS SEMANTIC-BASED CLOUD APPLICATION MANAGEMENT
Kyriakos Kritikos and Dimitris Plexousakis

ICS-FORTH
{kritikos,dp}@ics.forth.gr

Abstract
Cloud computing promises to transform applications and services on the web into elastic and fault-tolerant software.
To aid at this target, various research prototypes and products have been already proposed. However, especially with
respect to the design phase of cloud-based applications, such prototypes do not enable the appropriate composition of
cloud services at different levels to realise not only the functionality but also the underlying infrastructure support for
such applications. Moreover, most existing prototypes and products lack the appropriate semantics to guarantee that
the respective design product is the most suitable and accurate one according to the various types of user
requirements posed. To this end, this article proposes a semantic cloud application management framework that
addresses the aforementioned issues by relying on ontologies to semantically describe cloud service capabilities and
application requirements, on semantic cloud service matchmakers considering both functional and non-functional
aspects as well as on a novel cloud service composition approach which is able to perform concurrently service
concretisation and deployment plan reasoning, thus catering for the different levels involved in a cloud environment
and their respective dependencies by also satisfying all types of user requirements posed. The service composition
approach is experimentally evaluated deriving quite promising results indicating that the state-of-the-art is advanced.
Keywords: [cloud, service, composition, semantic, ontology, QoS, constraint programming, requirements]
__
1. INTRODUCTION

Cloud computing has revolutionized the deployment and
provisioning of applications by promising an infinite
amount of underlying and cheap resources to enable
applications to scale at any type of demand. To this end,
many major software, application and business process
vendors have migrated their business to the cloud.
Moreover, various research prototypes and commercial
products have been proposed which enable application
designers to discover the most suitable cloud services and
assist in the cloud-based application deployment.

 The services offered in cloud computing lie in different
levels. There exist software services (SaaS), platform
services (PaaS) and infrastructure services (IaaS). Different
levels can provide support to different phases in the
application life-cycle. The design of an application can rely
on SaaS in order to have the means to realise the application
functionality, while the application deployment can rely on
PaaS and IaaS services. Moreover, for an application which
exploits cloud services at different levels, its quality of
service (QoS) depends on the respective quality and
characteristics at lower-levels of abstraction. Thus, there are
actually dependencies between the different levels which
should be taken into account in an integrated and non-
isolated manner.

However, the existing prototypes and products, which
focus on the design and/or deployment phases, not only fail
to consider such dependencies but also do not produce a
design and deployment solution which is accurate and
optimised according to the application requirements. The
latter problem is mainly due to the lack of semantics in the
description of the cloud services and requirements which

then maps to their non-accurate discovery before they are
actually composed.

To remedy the above issues, this article presents a
semantic framework for the management of cloud-based
applications. This framework relies on novel ontology-based
language to describe application requirements at different
levels, a semantic matchmaker able to discover services
which accurate fulfill both the functional and non-functional
requirements of the application and a cloud service
composition component which solves a combined design
and deployment optimisation problem by considering all
possible cloud levels. The rest of the lifecycle phases are
covered via components which attempt to enable the
adaptive deployment and provisioning of the cloud
application by building on existing research work and open-
source software.

The cloud service composition component advances the
state-of-the-art as, apart from composing cloud services at
different levels, it exhibits the following features: (a) it
considers unary and binary component placement
constraints indicating one component's location or the
relative location between two components either at the same
VM or cloud, respectively; (b) it considers high- and low-
level security requirements in terms of security controls and
Service Level Objectives (SLOs), respectively; (c) it
exploits non-linear functions able to map high- to low-level
quality capabilities; (d) it even takes decisions on whether to
use in-house software components or external SaaS for a
particular application task; (e) it is able to address multiple
objectives which span quality, cost and security metrics.

The cloud service composition component has been
experimentally evaluated against baseline cloud deployment
approaches. The evaluation results show that this
component produces in a faster way suitable cloud service

Services Transactions on Cloud Computing (ISSN 2326-7550) Vol. 3, No. 3, July-September 2015

composition solutions which optimally satisfy the
application requirements compared to the solution quality
and performance of the baseline approaches.

The rest of the article is structured as follows. Section 2
introduces a use case to appropriately motivate the proposed
work. Section 3 presents the semantic cloud application
management framework. Section 4 introduces a novel
application requirement language. Section 5 analyzes the
cloud service composition approach. Section 6 discusses the
main results of the experimental evaluation. Section 7
reviews the related work. Finally, Section 8 concludes the
article and draws directions for further research.

2. USE CASE

This case concerns the design of a real-world traffic

management application [Baryannis et al. 2013] that
regulates traffic at particular areas of a city. This application
comprises the following three main tasks:
• Monitoring Task (MT). It monitors traffic conditions in

a particular city area as well as air pollution and noise
levels.

• Analysis Task (AT). It analyzes all monitored
information and produces traffic regulation plans that
optimally address the current traffic situation.

• Traffic Configuration Task (TCT). It enforces the traffic
regulation plans derived by AT. This can involve
changing traffic lights frequency, informing drivers
about congested places and emergency personnel about
accident placement and the particular actions to follow.

Table 1 . The components mapping to application
tasks

Task Component
Name

Component
Description

MT, AT, TCT Con It hosts the three main
servlets of the
application

MT MC
(choice)

It realises MT's
functionality

AT AC It realises AT's
functionality

AT DC A DB storing the
information used for the
analysis

TCT TCC It realises TCT's
functionality

 WO
(choice)

It orchestrates the
application workflow

Various software components/services have been

developed or are required to realize this application, where
either one or more map to a particular task. Moreover, a

service oriented architecture (SOA) is chosen to realize the
application tasks, so some components have to be hosted on
servlet containers. Table 1 clearly shows the respective task-
to-component mapping.

For some components, there is a choice of either
selecting an existing realization (developed in house by the
end-user or purchased/downloaded) or exploiting an
external service. This choice is indicated in parenthesis after
the respective component's name.

Concerning service performance and cost, Table 2
indicates the respective offerings along with information on
which cloud provider offers them if they are external. The
performance of internal services was determined via
benchmarking which also lead to their eventual VM
requirements (given later in this section). In addition, these
services' cost is zero as it maps to an already purchased
hosting infrastructure. The symbols used in this table have
the following meaning: RT maps to response time, Av to
availability and Thr to throughput. Cost information is per
month based on the providers' cost model.

Table 2. The QoS and cost features of the services

Comp.
Name

Service
Name

QoS/cost chars Provider
Name

MC MonService RT ≤ 4 sec, Av ≥ 99.99%,
Thr ≥ 10 reqs/sec, cost =

10$

CP1

MC TraffService RT ≤ 8 sec, Av ≥ 99%,
Thr ≥ 5 reqs/sec, cost = 5$

CP2

MC MC-Internal RT ≤ 8 sec, Av ≥ 99.99%,
Thr ≥ 6 reqs/sec, cost = 0$

AC AC-Internal RT ≤ 1.5 min, Av ≥ 99.99%,
Thr ≥ 6 reqs/sec, cost = 0$

TCC TCC-
Internal

RT ≤ 0.5 min, Av ≥
99.999%, Thr ≥ 12 reqs/sec,
cost = 0$

WO Orchestrator Av ≥ 99.99%, Thr ≥ 12
reqs/sec, cost = 19$

CP1

WO WFEngine Av ≥ 99%, Thr ≥ 8 reqs/sec,
cost = 15$

CP2

WO WO-Internal Av ≥ 99.99%, Thr ≥ 8
reqs/sec, cost = 0$

The end-user also requires the satisfaction of the

following types of application requirements:
• Deployment Requirements:

o There is a communication requirement from
WO to all application servlets, i.e., MC, AC,
and TCC, and from AC to DC.

o MC, AC and TTC should be deployed on Con.
These components will be hosted at the same
instance of Con only when it is decided that
they will be collocated.

o AC and DC require a "high" VM, WO and MC
a "medium" VM while TCC a "small" VM.

Services Transactions on Cloud Computing (ISSN 2326-7550) Vol. 3, No. 3, July-September 2015

o AC and DC should be co-located while AC
should not be co-located with any other
component (apart from Con that hosts it).

• Cost requirements: Application cost must be no more
than 380 $ per month.

• Quality requirements:
o Application duration should not be longer than

2.5 minutes.
o MC, AC and TCC should have throughput

greater than or equal to 10, 6 and 5 reqs/sec,
respectively.

o MC and AC should have availability of
99.99% while TCC of 99.999%.

• Security requirements:
o The security controls

(https://cloudsecurityalliance.org/research/cc
m) to be supported for the application must be:
AAC-02 (independent reviews and assessment
of provider at least annually), DSI-01 (data \&
service classification), DSI-05 (data leakage
prevention), TVM-02 (timely vulnerability
detection) and SEF-05 (monitoring \&
quantification of security incident type,
volume and cost).

o Meantime between incidents [Pannetrat 2013]
should be 6 months (mti > 6)

Table 3. The offerings of the four cloud providers

Let us now consider four cloud providers, namely CP1,

CP2, CP3 and CP4 which offer particular cloud
services/VMs and realize a certain set of security controls.
Σφάλμα! Το αρχείο προέλευσης της αναφοράς δεν
βρέθηκε. shows the VMs satisfying the end-user
requirements offered by these providers (along with cost
information), a subset of security controls supported by
these providers and the security SLOs promised.

Real values for VM characteristics and cost were
considered by collecting them from cloud provider web
pages. So, we are as realistic as possible, provided that
cloud providers do not usually advertize SLO and security
information. Thus, we have opted for an idealized use case
matching the real world in the near future, when cloud
providers decide to advertize the latter information due to
the main benefits that this will provide to them.

By considering all above information, a common cloud
service composition approach would not consider the
alternative design choices and end-user's security
requirements. As such, we can assume that the end-user
would not specify that his/her components can be realized
via external services. Thus, in the end, the respective
approach would solve a simple optimization problem to
produce a concrete IaaS composition. The outcome of such
an approach would be a solution mapping application
components to the following VMs (i) AC + DC → CP3 (C),
(ii) MC → CP3 (B) and (iii) HO + TCC → CP3 (B), where
CPi (X) means the X offering of Cloud provider i. Co-
location of HO and TTC in CP3 VM of type (B), while not
imposed by any direct constraint, is proposed as TCC does
not demand strict VM requirements so that it can be
supported via a VM with better characteristics that suit the
HO's resource requirements.

Table 4. Cost, QoS and security features of the
solutions

Solution Cost Availability Duration Security
1 130$ 99.99% 128 sec no
2 286$ 99.99% 128 sec yes
3 129.8$ 99.99% 124 sec no

Table 4 summarizes the QoS, cost and security features

of three solutions. The first solution maps to the common
cloud service composition approach. The second solution,
produced by our approach, is the best one as it considers all
possible information and user requirements, including the
security ones. It maps to selecting the external services
offered by CP1 for all choices, the CP1 (C) VM for AC +
DC and the CP2 (B) offering for TCC. To enable a more fair
comparison, we also consider the third solution produced

Provider Offered VM Security
Control

Security SLO

CP1 (A) 2 core, 7.5GB,
32GB →0.140$

(B) 4 core, 15GB,
80GB →0.280$

(C) 4 core, 7.5GB,
80GB →0.210$

(A) AAC-02
(B) AAC-03
(C) DSI-01
(D) DSI-05
(E) EKM-03
(F) TVM-02
(G) SEF-05

(A) mti ≥ 8
(B) ir (99%) ≤ 3

CP2 (A) 2 core, 2GB,
10GB →0.06$

(B) 2 core, 4GB,
50GB →0.12$

(C) 4 core, 8GB,
130GB →0.24$

(A) AAC-02
(B) AAC-03
(C) DSI-01
(D) DSI-05
(E) EKM-03
(F) TVM-02
(G) SEF-05

(A) mti ≥ 6
(B) ir (99%) ≤ 2

CP3 (A) 1 core, 2GB,
10GB →0.02$

(B) 2 core, 4GB,
20GB →0.04$

(C) 4 core, 4GB,
40GB →0.1$

(A) AAC-02
(B) AAC-03
(C) DSI-05
(D) EKM-03
(E) TVM-02

(A) mti ≥ 6
(B) ir (99%) ≤ 4

CP4 (A) 1 core, 2 GB,
20GB→0.2$

(A) AAC-02
(B) DSI-01
(C) DSI-05
(D) TVM-02
(E) SEF-05

(A) mti ≥ 4
(B) ir (99%) ≤ 4

Services Transactions on Cloud Computing (ISSN 2326-7550) Vol. 3, No. 3, July-September 2015

via our approach by not considering security requirements,
which is identical to the solution of the common service
composition approach with the sole exception that MC and
HO are not mapped to SaaS services. Please note that we
assume that the common composition approach (as in the
case of our approach) will produce the best possible solution
based on the input provided to it as it will use a solving
technique guaranteeing optimality (see Section 7).

The third solution, while not considering security
requirements, is still more optimal than the first. The
comparison between the second and third solution indicates
the trade-off between security and cost that must be
considered to produce the best possible solution based on
user requirements.

The last two solutions propose a multi-cloud application
design product spanning over two cloud providers (CP1 and
CP2 for the second and CP1 and CP3 for the third). The
second solution has filtered the remaining cloud providers
as they do not satisfy the user security constraints: CP4
violates the SLO for mean time between incidents while
CP3 does not support DSI-01 and SEF-05 security controls.

3. SEMANTIC CLOUD APPLICATION
MANAGEMENT FRAMEWORK

The architecture of the semantic cloud application
management framework can be seen in Figure 1. This
framework spans both the design as well as the adaptive
deployment and provisioning of a cloud application. It
comprises the following components:

Figure 1. The architecture of the semantic cloud
application management framework

• The Requirements Editor is a User Interface (UI)

component which interacts with users to obtain their
requirements. Users, through this component, are
guided in providing different types of requirements
at different levels. These requirements are then

transformed into a requirement model described via
the semantic requirement language analyzed in
Section 4.

• The Semantic Matchmaker attempts to match the
user requirements against semantic cloud service
descriptions. It then enriches the user's requirement
model through indicating which requirements are
met by which cloud service alternatives, thus
producing an enhanced requirement model. The
SaaS matchmaking exploits particular techniques
for both functional and non-functional aspects.
Functional SaaS matchmaking relies on semantic
input/output (IO) matching [Klusch et al. 2006].
Non-functional SaaS matchmaking, performed after
the functional one, exploits particular matching
metrics and respective constraint solving techniques
[Kritikos & Plexousakis 2014] (see Section 7.2.1).
IaaS matchmaking uses the same techniques as in
non-functional SaaS matchmaking as IaaS offerings
can be regarded comprising sets of constraints on
VM features.

• The Cloud Service Composer obtains the enhanced
user requirement model and transforms it into a
constraint optimisation problem. This problem is
then solved based on particular constraint solving
techniques. In the end, the solution is transformed
into a deployment plan specified in CAMEL
[Rossini et al. 2014]. Section 5 provides a detailed
analysis about this component.

• The Cloud Deployment Engine retrieves the
deployment plan produced by the Cloud Service
Composer and executes it. The Cloudiator
framework [Domaschka et al. 2015a] has been used
to realise its functionality. This framework not only
abstracts away from the technical peculiarities of
different clouds but is also capable of deploying
applications in multiple clouds. In fact, in our
opinion and also shown by the use case in Section 2,
multi-cloud application deployment should be the
way to go forward due to the following reasons: (a)
leads to a more optimal satisfaction of application
requirements as the most suitable alternative cloud
services are selected with the best functional and
quality capabilities; (b) the hurdle of vendor lock-in
is surpassed enabling applications to be deployed in
multiple and across different clouds.

• The Semantic Knowledgebase (SKB) contains
information that spans the lifecycle of a cloud
application as well as the main capabilities offered
by different cloud providers. The SKB also includes
the description of semantic rules operating over its
content which can drive the adaptation behavior of
an application by reacting on incoming application
measurement and contextual information. An

Services Transactions on Cloud Computing (ISSN 2326-7550) Vol. 3, No. 3, July-September 2015

existing triple store (Virtuoso1) with a reasoner on
top of it (Pellet2) has been used to realise the SKB.

• The Monitoring Engine is responsible for
monitoring the cloud-based application in each and
across all clouds in which it has been deployed. The
MetricsCollector component [Domaschka et al.
2015b] has been used to realise its functionality.
This component has been enhanced in order to
operate over the semantic description of metrics
defined in OWL-Q [Kritikos & Plexousakis 2006].

• The Adaptation Engine is responsible for adapting
the cloud-based application when critical situations
occur. Such situations are detected based on the
findings of the Monitoring Engine and the content
of the adaptation rules. The latter indicate which
pattern of events represent these situations and what
are the adaptation actions required to resolve them.
The description of adaptation rules relies on SRL
[Kritikos et al. 2014] while the Adaptation Engine
was realised based on the work in [Zeginis et al.
2015]. It should be noted that when a current critical
situation cannot be any more coped by the existing
adaptation rules, the Adaptation Engine informs the
Cloud Service Composer to propose a new cloud
solution for the application at hand which should be
able to overcome this situation.

This framework, as can be easily understood, exhibits

various features that enable it to be distinguished from other
research prototypes and products. More importantly, it is
able to deal with multiple cloud levels as well as address the
whole lifecycle of a cloud-based application, going from its
design and deployment until its adaptive provisioning.
Moreover, the different components involved in this
framework can well be exploited by other prototypes and
products in order to enable the latter to function at different
cloud levels. For instance, the Requirements Editor, the
Semantic Matchmaker and the Cloud Service Composer
could be exploited by a product for the derivation of
concrete deployment plans based on the initial user
requirements. Then, such a product could employ its own
components for the actual deployment and adaptive
provisioning of an application.

4. APPLICATION REQUIREMENTS
ONTOLOGY LANGUAGE

 In order to express different types of application
requirements at different levels, a particular semantic
language has been developed based on OWL, the de-facto
standard in ontology description. This language relies on
OWL-S [Sycara et al. 2003] for the functional description of

1 http://virtuoso.openlinksw.com/
2 https://github.com/complexible/pellet

the SaaS services and OWL-Q [Kritikos & Plexousakis
2006] for the non-functional and cost description of any
kind of cloud service. We should note here that we consider
that an application, being a composition of cloud services in
the end, is also considered as a SaaS service. The class
diagram in Figure 2 shows the main classes and their
respective relationships for this language.

The main class for describing an application or a SaaS
service is Service in OWL-S for which the process model
part (cf. ProcessModel class) can be used to indicate the
domain classes to which its I/O maps for matchmaking
purposes. Concering the service composition description,
we have semantically-enhanced the part of the component
meta-model in [Zeginis et al. 2015] dedicated to the
modelling of composite services. In that meta-model, a
service can be distinguished into a CompositeService or a
SingleService. A CompositeService is associated to a data
flow and a control flow, where the former indicates the data
bindings between the inputs and outputs of the composite
services' components while the control flow explicates the
order of execution between the component services
according to particular composition patterns. As such,
through the re-use of this meta-model part, the application
structure at the highest level can be provided. Obviously, in
case users do not require to provide such a flow as they are
not modelling a pure service and workflow-based
application, they can just indicate via exploiting the
proposed ontology the components that their application
consists of.

Each Service is associated to a non-functional profile
named as QoSDemand in OWL-Q. This profile maps to a
logical combination of quality constraints indicating the set
of conditions on particular quality metrics that are required
for this service. Through using OWL-S and OWL-Q and by
assuming that the SaaS services offered by cloud providers
are described in an equivalent way, we enable the semantic
matchmaker to combine the existing functional and non-
function service matchmaking techniques in order to cover
service discovery at the SaaS level.

The remaining types of requirements not covered by
OWL-Q and OWL-Q are encapsulated as sub-classes of the
Requirement class which is directly associated to a Service.
This class comprises the DeploymentRequirement and
SecurityControlRequirement sub-classes which represent
deployment and security control requirements, respectively.
A deployment requirement is further distinguished into
service deployment, component deployment,
communication and placement requirements.

http://virtuoso.openlinksw.com/
https://github.com/complexible/pellet

Services Transactions on Cloud Computing (ISSN 2326-7550) Vol. 3, No. 3, July-September 2015

Figure 2. The class diagram of the requirements

language

A service deployment requirement indicates whether a

particular service component of the application will be
realised via an external SaaS or an internal software
component which has been either developed in house or has
been purchased. Such a requirement can also leave both
options open such that the proposed framework can
decidesthe one that best satisfies the user requirements.

In case of external SaaS realisation, either the external
SaaS service is fixed by pointing to its actual description or
SaaS matchmaking will be performed to discover SaaS
external services realising the respective service
component's functionality.

In case of a software component realisation (or of both
options), a pointer to the description of the software
component has to be provided. To this end, the
SoftwareComponent class has been modelled which has a
name and short description as attributes. It is related to
Configuration information which maps to the handling of its
lifecycle by indicating how the code of the component can
be downloaded, configured, installed, executed and stopped.
A software component may also have particular ports
through which it can communicate with other components.

As it can be understood, this requirement specification is
quite flexible. It can either rely on the framework to address
the mapping of an application component to any kind of
internal or external software or on the user to determine a
concrete external SaaS and/or software component to
address this mapping.

Services Transactions on Cloud Computing (ISSN 2326-7550) Vol. 3, No. 3, July-September 2015

A component deployment requirement indicates the VM
requirements for the IaaS service which will be used to host
a software component which realises the functionality of an
application component. The requirements for a VM span
constraints over its main characteristics which are the
amount of cores, the CPU frequency, the size of the main
memory and the size of the hard disk, and are modelled via
the VMRequirement class. The collection of a set of
different constraints into a single class enables the re-use of
VM requirements across different component deployment
requirements.

A communication requirement actually connects two
components indicating that they should communicate to
each other. By also explicating the ports exposed by these
components which will be used for their communication, the
deployment of the application can be configured correctly
such that there are no errors in the establishment of the
communication links between these pair of components.

A placement constraint can indicate a particular physical
(e.g., Europe) or virtual location (e.g., Amazon eu-west-1)
in which a component can be placed or pair-wise placement
constraints between components. As such, we can cater for
cases where conformance to laws and regulations should be
guaranteed as well as for cases where we desire to guarantee
that the communication requirements between a pair of
components are met. Pair-wise placement constraints can be
of the following type: (a) SAME_VM: the same VM should
be used to host the pair of components; (b) SAME_CLOUD:
the same cloud should be used for the deployment of these
two components; (c) DIFFERENT_VM: these two
components should be placed in different VMs; (d)
DIFFERENT_CLOUD: these two components should be
placed in different clouds.

A SecurityControlRequirement actually maps an
application component or the application itself to a set of
security controls which have to be supported by the cloud
provider(s) of the respective cloud service(s) selected to
realise the application component(s) functionality. As can
be easily understood, such a cloud service can be either an
external SaaS or a IaaS used to host the internal software
component realising the current application component's
functionality. Each SecurityControl is described via a
domain, a sub-domain, its id and a particular textual
description. The set of security controls which is currently
supported has been derived from the Cloud Control Matrix
(CCM) of Cloud Security Alliance (SCA)3.

We should highlight here that VM requirements should
be matched with VM capabilities. To this end, we have
created another ontology-based semantic provider language,
which is used to describe VM capabilities as well as the
respective cloud providers that offer them. The VM
capabilities are described in an equivalent, symmetric
manner with respect to the respective requirements. The

3 https://cloudsecurityalliance.org/group/cloud-controls-
matrix/

matching of them relies on a simple constraint problem
derivation which is similar to the one used for non-
functional SaaS matching. In this way, there is a uniform
way in which non-functional and VM requirements are
handled.

The semantic provider languge also connects a cloud
service provider to the SaaS services that it offers as well as
to the set of security controls that it supports. In this way,
we also enable the filtering of the cloud provider space
according to the high-level security requirements posed.

The whole requirement model which can be expressed
by our proposed ontology language can then be enhanced by
the Semantic Matchmaker by indicating which application
components can be realized by which cloud services. In this
respect, the requirement model is updated with pointers to
the descriptions of the respective cloud services in service
deployment and component deployment requirements. The
service deployment requirements will point to the external
SaaS that can be used to realise an application component's
functionality, while the component requirements will point
to those IaaS that can be used to host the respective software
component of a certain application component.

To summarize, the proposed requirement ontology
language is quite flexible and expressive to specify any kind
of cloud-based application requirement. It is also
complemented with a cloud capability language to enable
the appropriate matching of requirements to respective
cloud service offerings. The final product derived through
the modelling and matchmaking of requirements is an
enhanced requirement model which drives the cloud service
composition and the respective deployment plan production
which will be dealt with in the next section.

5. CLOUD SERVICE COMPOSITION APPROACH
All possible design choice alternatives incarnated into

the enhanced requirement model are transformed into a
particular optimization problem by the Cloud Service
Composer which, when solved, can discover the most
optimal cloud service solution satisfying all user
requirements posed irrespectively of their type. The
approach followed was inspired by the service
concretization work in [Ferreira et al. 2009]. In the
following, we analyze the way the constraint problem is
modelled in a step-wise manner, starting from optimization
objectives and going down to the formulation of the high-
and low-level constraints mapping to user requirements.
Then, we check the complexity and possible constraint
solving technologies for this problem.

5.1 CLOUD SERVICE COMPOSITION PROBLEM

FORMULATION
To formulate the optimization objective of the problem,

we rely on the Analytical Hierarchy Process (AHP) [Saati
1980] to derive the relative importance of the quality

https://cloudsecurityalliance.org/group/cloud-controls-matrix/
https://cloudsecurityalliance.org/group/cloud-controls-matrix/

Services Transactions on Cloud Computing (ISSN 2326-7550) Vol. 3, No. 3, July-September 2015

parameters and cost to the user. The result of this process is
an assignment of weights to all these parameters, indicating
their relative importance, whose sum should equal to one.
We also follow Simple Additive Weighting (SAW)
technique [Hwang & Yoon 1981] which maps the
optimization of all criteria considered to a single
optimization objective which is equal to the weighted sum
of the application of the global value derived for each
parameter (QoS and cost) on its utility function posed. More
formally, the objective is formulated as follows:

 ()
1

*
Q

q q q
q

maximize w uf val
=

∑

The utility function of each parameter is formulated
based on the formulas in [Ferreira et al. 2009] which cater
for slightly violating some problem constraints to address
over-constrained user requirements. The following
combined expression represents these formulas in which the
first two cases depend on the monotonicity of the respective
parameter (i.e., the first for negatively monotonic
parameters like cost and the second for positively
monotonic parameters like availability), where m is the
max function, max

qv and min
qv are the maximum and

minimum values requested by the end-user for the
parameter q and qa is a real number in [0.0,1.0] used to
regulate the percentage of values allowed outside the user-
requested range.

()

()

()

()

()

? ,

? ,

m ? ,0 ,

m ? ,0 ,

max
q min max

q q q qmax min
q q

min
q min max

q q q qmax min
q q

q min
q min

q q qmax min
q q

max
q max

q q qmax min
q q

v x
a a v x v

v v

x v
a a v x v

v v
uf x

v x
a a x v

v v

x v
a a x v

v v

x

x

 −
+ − ≤ ≤

−
 − + − ≤ ≤
 −= − − − < −
 −
 − − > −

∧ ↓

∧ ↑

The value vq that a parameter q can take depends on the
type of this parameter and its derivation can be application-
specific by depending on the application's structure
[Ardagna & Pernici 2007]. To this end, in the general case,
we consider that a particular application-specific function is
provided taking as input the respective parameter values of
the application components. In other terms:

()q
q q ival f val= where q

ival is the parameter value for

application component i. The use of a function covers all
possible cases in parameter value derivation. In this way, by

considering the running example, the application availability
equals the product of availabilities of the three main
components (i.e., MC, AC and TCC), while application cost
is equal to the cost of all components (thus mapping to the
respective cost of the infrastructure-as-a-service (IaaS) or
SaaS exploited).

Before specifying the problem constraints, we introduce
the main decision variables mapping to three variable
arrays:

• yi indicating whether the internal software component
or the external SaaS services will be used to realize
(application) component i

• xijk which indicates whether for the internal software of
an application component i, the IaaS offering k of the
cloud provider j has been selected (internal service
selection case) to host it.

• zil indicating whether SaaS service l has been selected
to realise the functionality of application component i.

We differentiate between IaaS and SaaS services as they
map to different formulas indicating how their parameter
values can be mapped to the respective values at the
(application) component level. While it could be argued that
there is no need for explicating which IaaS offerings are
provided by which cloud provider, we need to make this
differentiation to be able to specify pair-wise placement
constraints.

It is apparent that two exclusive cases exist for each
application component: (a) there is no choice for realizing
but just for deploying it and (b) there is indeed a realization
choice. In the first case, it is enough to enforce that only one
cloud provider and respective offering can be selected. In
the second case, we need to indicate that only one external
SaaS must be selected for realizing the component. Both
cases lead to requiring the satisfaction of the following
constraint:

1ijk il
j k l

x z+ =∑∑ ∑

Apart from the above constraints, we need to go down to
the level of application components and indicate how their
parameter values are derived from those of the offerings
selected for them. We first assume that an application
component's parameter value either maps to a one-to-one
manner to the respective software component value which is
computed as a function over the resources exploited
(memory, CPU and storage), or is computed from the
respective parameter value of the external SaaS realizing it.
More formally:

Services Transactions on Cloud Computing (ISSN 2326-7550) Vol. 3, No. 3, July-September 2015

()* , , (1)* *q q q
i i i i i i i il il

l
val y f core mem store y z val = + −

∑

where q
if is the function over the resources for parameter q

of (application) component i while q
ilval is the parameter

value for the l external SaaS of component i.

In case of internal software component deployment in
the cloud the above (left part of the) computation is valid as
the usual way of deriving high- from low-level requirements
is either via benchmarking, simulation, or performance
model learning [Xiong et al. 2013] such that we can map
different service levels of application components to
different resource levels.

Thus, we regard that the end-user has exploited one of
the three possible approaches to produce the respective
functions for those quality parameters of interest. We also
envisage a step-wise approach to performance modelling.
First, performance models for components are generated
and then we go up to the level of the application. In this
way, the component performance models will be more
precise and will also lead to more accurate application
performance models rather than attempting to map
immediately the application performance to the underlying
resources.

In this sense, we only need now to specify how the low-
level resource values are produced for a particular
component4. This maps to the following three formulas:

*

*

*

i ijk jk
jk

i ijk jk
jk

i ijk jk
jk

core x core

mem x mem

store x store

=

=

=

∑

∑

∑

where corei, memi, and storei are the variables mapping to
the component's i number of cores, main memory size and
storage size, respectively, while corejk, memjk, and storejk are
the corresponding but fixed resource values for the concrete
VM offering k of provider j.

The cost of each component is calculated by considering
the next formula:

4 Please note that in the case of internal software
deployment, we use the term component from now on to
indicate both the application component and the software
used to realise it as there is a one-to-one mapping between
their respective parameters.

* * (1)* *i i ijk jk i il il
jk l

cost y x cost y z cost= + −∑ ∑
where costjk is the cost of IaaS offering k of provider j and
costil is the cost of SaaS l. Thus, a component's cost equals
the cost of the IaaS or SaaS it exploits.

The unary location constraints can regard either a
physical or a virtual location. The latter maps to a specific
cloud so this means that the enhanced requirement model
will be already filtered according to such locations. There
can be two types of physical locations, either countries or
continents, where the former can obviously be included in
the latter. By relying on the Food and Agriculture
Organisation of United Nations (FAO) physical location
ontology5, we have covered all continents and countries by
also modelling all their respective inclusion relationships. In
this way, functions operating on the respective location
elements can be employed in order to enforce the following
two location constraints on IaaS and SaaS services,
respectively.

()
()

 equalOrIn , == true

 equalOrIn , == true
jk i

il i

loc loc

loc loc

where equalOrIn is a function indicating whether the first
location equals or is included in the second location, locjk is
the location of the k VM offering of provider j, locil is the
location of service l for component i and loci is the required
location of component i. We should note here that we do not
cover the case that the location of a cloud service includes
the required location of the component as it is not certain
that the cloud provider will be able to offer the respective
service in the required country of the supported continent.
Such a provider might support some but not all of the
countries inside that particular continent.

We provide a specific formulation for pair-wise
placement constraints depending on their type. A
SAME_VM pair-wise placement constraint is formulated as
follows:

'ijk i jk
x x=

where i and i' are the two components for which the co-
location constraint is posed. This constraint indicates that
the decision for both components should coincide. Thus all
values for respective array parts in which i and i' are fixed
should be equal.

5 Available at:
http://www.fao.org/countryprofiles/geoinfo/geopolitical/res
ource/

http://www.fao.org/countryprofiles/geoinfo/geopolitical/resource/
http://www.fao.org/countryprofiles/geoinfo/geopolitical/resource/

Services Transactions on Cloud Computing (ISSN 2326-7550) Vol. 3, No. 3, July-September 2015

A DIFFERENT_VM placement constraint is expressed
as follows:

() '1 0ijk i jk
if x x== ⇒ =

indicating that if a particular offering k of a cloud provider j
is selected for component i, then this provider's offering
cannot be selected for component i'.

The SAME_CLOUD pair-wise placement constraint is
formulated as follows:

'ijk i jk
k k

x x=∑ ∑

where i and i' are the two components for which the pair-
wise placement constraint has been posed. This constraint
indicates that for both components the same cloud has been
selected which maps to requiring that the sum of values of
the decision variables (mapping to the provider's offerings)
for each cloud provider to be equal for these components.

The DIFFERENT_CLOUD placement constraint can be
expressed as follows:

'1 0ijk i jk
k k

if x x == ⇒ =

∑ ∑

indicating that if any offering of cloud provider j is selected
for component i, then no offering from this provider can be
selected for component i'.

To conclude formulating the problem, we need to cater
for the user security requirements which can be separated
into high-level in terms of security controls and low-level in
terms of SLOs. In the first case, we introduce set variables
and enforce set operations to address the respective
requirements. In particular, we enforce that if a particular
cloud provider has been selected, then this provider should
have realized all security controls required by the end-user.
This is translated to the following complex constraint:

() .

if 1

else 1if
il

i ijk j
k

i il z provider

y x cc ccp

y z cc ccp

 ∧ == ⇒ − =∅

=

∧ −=¬ ⇒ =∅

∑

where cc is a fixed set variable mapping to all required
security controls, ccpj is a fixed set variable mapping to the
security controls supported by provider j, and .ilz provider is
the index of provider which offers SaaS l for component i.
We consider that the security control requirements should
hold for any provider whose service is selected. In case such

requirements are posed at the component level, the above
formula can be remodelled by replacing cc with cci mapping
to the fixed set variable for component i equal to the
security controls to be realized by the provider whose
service is used to realize or support this component.

In case of low-level security requirements, a similar
constraint is posed:

() .

if 1

elsei 1f
il

p p
i ijk j

k

p p
i il z provider

y x seq seq

y z seq sec

 ∧ == ⇒ ≥

¬ ∧ ⇒ ≥==

∑

where seqp is the low required threshold for security
property p while p

jseq is the respective property value
promised by provider j. This formula is meaningful for
positively monotonic security properties. The opposite case
can be easily derived but due to space limitations is not
shown. If the user provides both low and upper thresholds,
the constraints introduced for both security property types
must be enforced.

5.2 COMPLEXITY & SOLVING TECHNIQUES
The common cloud service composition problem is NP-

Hard [Jula et al. 2014]. While we use additional sets of
constraints, especially non-linear ones, and variables, the
general problem formulation showed in previous sub-
section is still NP-Hard.

Due to the nature of this problem, Mixed-Integer
Programming (MIP) techniques cannot be actually used.
Thus, non-linear constraint solving techniques must be
checked, from which we have selected the Constraint
Solving Optimization Problem (CSOP) ones, as they seem
the perfect candidate for our case. These techniques can
address not only non-linear constraints but can also cater for
the use of different variables, such as boolean, integer, and
set variables. However, real variables are not natively
supported. To this end, the current workaround that seems to
work well in many circumstances is to combine the use of
CSOP with either MIP or Constraint Programming
techniques focusing on interval arithmetic. In fact, many
hard and real-world problems are now solved through the
combined use of these techniques [Timpe 2002; Milano
2003].

In our current implementation, we have used a well-
known and free CSOP solver called Choco (choco-
solver.org) which is also supported by a very active
community, while performs well and even competes with
proprietary solvers. Apart from supporting all types of
variables required, Choco has implemented well-known

Services Transactions on Cloud Computing (ISSN 2326-7550) Vol. 3, No. 3, July-September 2015

state-of-the-art constraint types (e.g., all different) and
various search strategies. Choco also includes an
explanation engine indicating in case of over-constrained
requirements which user constraints are hard to satisfy.

To address real variables, Choco exploits the Ibex
constraint programming engine (www.ibex-lib.org). Ibex has
been realized as a C++ library, relies on both interval and
affine arithmetic, and is able to address non-linear
constraints, handle roundoff errors, and declaratively build
strategies via the contractor programming paradigm.

6. EXPERIMENTAL EVALUATION
We have conducted a preliminary experimental

evaluation of our approach performance which aimed at
assessing the effect of an increasing number of cloud
provider offerings and placement constraints. To this end,
two separate experiments were performed evaluating the
effect that each different factor has. Three CSOP approaches
were actually evaluated: (a) RESOURCE mapping to the
common IaaS composition method used as a baseline where
only resource constraints are considered and just one
optimization parameter (cost), (b) RESOURCE_SEC which
is same as previous method but enriched with security and
placement constraints and (c) FULL which is the actual
proposed approach.

The evaluation metric was the average solving time
whose value was generated over 30 runs in order to
minimize various interference types in the measurements,
such as those attributed to the running OS. The computer on
which the experiments were performed had the following
characteristics: 1.7 GHz CPU, 2GB of main memory and
500 GB of disk.

The input given to the three approaches was randomly
generated but only realistic values were considered. For
instance, the core number was given values from 1 to 8
while main memory from 512 to 8192 for a particular cloud
provider IaaS. Security capabilities were formed by
randomly assigning a specific percentage of all possible
security controls for each cloud provider, while a respective
smaller percentage was used as the application requirement.
Placement constraints were formed by randomly picking up
their type and component pair on which they should hold.
Then, each approach exploited this input, created the
respective CSOP problem and solved it. In the CSOP
formulation, a linear function from resources to QoS
attributes was utilized for each component. It was also
assumed that the composition of values for execution time
& cost, throughput and availability at the global application
level exploited additive, minimum or multiplicative
functions, respectively.

The initial values for the experiment configuration
parameters were: application component number → 5, cloud
provider number → 10, IaaS/SaaS number per provider → 5

and placement constraint number → 5. In the first
experiment, we increased the value of the IaaS/SaaS
offerings per provider in units of 5 until the value of 25. In
this way, we simulate the case where either an increased
number of offerings is supplied by each provider or an
increased number of providers occurs. The evaluation
results are shown in Figure 3. As it can be seen, due to the
nature of the problem, all approaches exhibited an
exponential behavior. However, our approach had a better
performance than the others. This can be certainly justified
by the fact that while slightly increasing the variable
number, the constraint number is also increased. As such,
the constraint solving algorithm more deeply cuts the search
space to find the most optimal solution. The same holds
when comparing RESOURCE_SEC and RESOURCE where
again the increased number of constraints leads to a better
performance. We have posed a limit of 3 minutes to the
solving time so as to be acceptable by an application
designer which justifies the first approach behavior.

The second experiment focused on examining the effect
on increasing the placement constraint number from 1 to 5
(but not greater due to the small number of application
components). Figure 4 shows the respective evaluation
results only for the last two approaches that are indeed
capable of considering such constraints. The same linear
decreasing behavior is observed for both approaches. This is
expected as placement constraints reduce the offering space
to be explored. Again, FULL had a better performance than
RESOURCE_SEC as it considers also high-level constraints.

Figure 3. Average solving time per offer number

Services Transactions on Cloud Computing (ISSN 2326-7550) Vol. 3, No. 3, July-September 2015

Figure 4. Average solving time per placement
constraint number

7. RELATED WORK

7.1 SERVICE MODELLING

7.1.1 SOFTWARE SERVICE MODELLING
WSDL [Christensen et al. 2001] is the de-facto standard

for the description of the interface for web-services.
However, it is a structural language and does not cover other
information aspects, such as the service functionality and its
non-functional capabilities.

USDL was a semi-formal language used for the
description of business and software services. Recently, it
has been transformed to a Linked-Data counterpart
[Pedrinaci et al. 2014] in order to become more formal.
USDL is capable of covering SLA, quality, security, cost
and legal aspects. There was also an approach [Cardoso et
al. 2013] focusing on the integration of USDL with TOSCA
[Palma and Spatzier 2013] to link service selection with
deployment such that the cloud application lifecycle is
better supported.

OWL-S is a W3C recommendation for the semantic
description of web services. It mainly focus on functional
aspects, covering the semantic description of the service I/O
and its abstract interface. It also proposes a particular
grounding mechanism in WSDL. However, OWL-S does
not cover the non-functional aspects and is not able to
describe service orchestrations.

WS-BPEL [Alves et al. 2007] is a service orchestration
language which has been widely adopted. It is relies on
WSDL for the description of the component services of the
orchestration but there have been research-based extensions
which have relied on WSMO [de Bruijn et al. 2005],
another semantic service description language with
equivalent capabilities to OWL-S. WS-BPEL also comes
with additional extensions towards covering service
choreographies and human tasks. However, this language
does not cover non-functional aspects.

SoaML [Amsden et al. 2012] is a UML-based language
for specifying Service-Oriented Architectures (SOAs) able
to define components and their inter-relationships at the
business and service levels. However, SoaML cannot
actually describe service orchestrations and to this end, it
needs to be complemented by a service orchestration
language, like WS-BPEL. Moreover, it does not cover non-
functional aspects.

Concerning the non-functional description of services,
various approaches have been proposed which can be
distinguished according to their performance on various
comparison criteria, such as their expressiveness,
complexity, formality and extensiveness [Kritikos et al.
2013]. Among these approaches, OWL-Q can be considered
as the one which has the best performance across all these
criteria. OWL-Q is semantic, extensible and very
expressive, covering all major aspects in service quality
description, including quality attributes, metrics, units, and
measurement formulas. It is able to specify both service
quality models that can be used for populating SLAs as well
as quality-based service descriptions covering the non-
functional profiles of services. Finally, OWL-Q can be
connected to any functional service description language to
enable the complete description of web services.

7.1.2 CLOUD SERVICE/APPLICATION MODELLING
TOSCA is considered as a de-facto standard for the

deployment description of applications and seems to be
widely used in research prototypes. However, it has
particular shortcomings related to the non-coverage of the
instance level which is required for dealing with runtime
aspects, the lack of domain/cloud-specific constructs and the
incomplete coverage of the non-functional aspects.

CAMEL is a multi-purpose DSL developed in the
context of the PaaSage European project. It is able to cover
many aspects related to the lifecycle management of cloud
applications, such as the deployment, monitoring,
scalability, organisation, security and cloud service ones. In
terms of deployment, it relies on CloudML [Ferry et al.
2013] which follows the template-instance pattern and
caters for runtime aspects through a models@runtime
approach [Aßmann et al. 2011]. However, the latter DSL
does not cover all types of placement constraints and is

Services Transactions on Cloud Computing (ISSN 2326-7550) Vol. 3, No. 3, July-September 2015

mainly oriented towards IaaS services. The description of
cloud services relies on the Saloon framework's [Quinton et
al. 2013] generic DSL able to cover any possible cloud
service offering. The main drawback of CAMEL as a whole
is that it is semi-formal as it is Ecore-based. Thus, it does
not have the formality level and reasoning capabilities of an
ontology-based modelling approach.

The language in [Nguyen et al. 2011] is able to support
the semi-formal description of Blueprint Templates which
cover cloud-offerings at multiple abstraction levels and
capture service capability, virtual topology and QoS &
policy aspects. Apart from being a semi-formal language, it
does not capture all lifecycle aspects as covered, e.g., in
CAMEL. In addition, it is not capable of defining the
quality terms required for specifying the quality capabilities
of the respective service offerings.

A cloud meta-model is proposed in [Galán et al. 2009]
which extends OVF 6 towards covering self-configuration,
elasticity and performance monitoring. This meta-model is
not capable of specifying placement constraints, component
dependencies and quality capabilities and requirements.

Another OVF extension called service manifest has been
proposed in [Rumpl et al. 2010] which covers placement
and allocation constraints, security requirements and
performance profiles according to the properties of trust,
reputation, eco-efficiency and cost. This service manifest,
however, stays mainly at the IaaS level and is not capable of
describing component dependencies while does not cover
additional quality attributes related, e.g., to performance.

The mOSAIC ontology [Moscato et al. 2011] has been
developed in OWL and can be used for the semantic
annotation of semi-formal cloud service descriptions. It is
rich enough to cover various aspects, including cloud
service requirements and resources, metrics, SLAs,
components and policies.

7.2 SERVICE MATCHMAKING

7.2.1 SOFTWARE SERVICE MATCHMAKING
The functional matchmaking of software services has

mainly relied on the service I/O. The approaches proposed
rely on employing either Information Retrieval [Dong et al.
2004] or ontology-based [Paolucci et al. 2002] or both types
of techniques [Plebani & Pernici 2009]. While the latter two
types of approaches seem to cater for better accuracy, they
do not consider the service behavior. As such, the results
produced will never be as accurate as possible. To remedy
for this, few approaches [Sycara et al. 2002] have employed
behavior-based service matching by relying on full input-
output-precondition-effects (IOPE) service profiles. While

6 https://www.dmtf.org/standards/ovf

these approaches reach even higher matchmaking accuracy
levels have the main drawback that full IOPE service
profiles do not exist in reality and require additional
modelling effort by the cloud service provider.

Non-functional software service matching approaches
can be separated into constraint-based, ontology-based or
mixed. Constraint-based approaches [Cortés et al. 2005]
express the quality description of service requirements and
capabilities as a constraint model and then employ
constraint solving techniques and particular matching
metrics (e.g., subsumption [Cortés et al. 2005]) in order to
perform the service matchmaking. These approaches assume
that the quality-based service specification comprise terms
which have been defined in a common quality term
repository. Ontology-based approaches [Zhou et al. 2004]
provide ontology languages for enabling the service quality
description and exploit subsumption reasoning to infer
whether service quality capabilities match the respective
requirements posed. Such approaches have the drawback
that can only involve the processing of unary quality-based
service specifications which comprise one quality term per
constraint. Finally, mixed approaches [Kritikos &
Plexousakis 2014] combine the best from both worlds with
respect to the previous approach types. They rely on
ontologies to enable the service quality description, they
then align the descriptions according to the quality terms
and finally transform the aligned descriptions into constraint
problems in order to use the techniques in the first approach
type to perform the actual service matchmaking. The latter
types of approaches exhibit better accuracy than the other
types and are also able to cope with n-ary quality service
specifications.

7.2.2 CLOUD SERVICE MATCHMAKING
Ruiz-Alvarez & Humphrey [2011] have proposed an

approach which is able to discover cloud storage services
that match the respective application requirements posed.
Cloud storage requirements and capabilities are expressed
via a semi-formal language. The framework in [Garg et al.]
ranks cloud services according to their quality performance
and weights given to each quality term according to the
AHP process. Zeng et al. [2009] follow a Wordnet-based
approach to measure the similarity of concepts in the I/O of
cloud service specifications. The federated cloud
environment in [Buyya et al. 2010] is able to match user
quality requirements to cloud services. D' Andria et al.
[2012] propose a PaaS matchmaking and selection
framework which filters PaaS according to user
requirements and ranks the remaining PaaS based on the
number of user preferences satisfied. The approach in
[García-Gómez et al. 2012] addresses blueprint (see Sub-
section 7.1.2) matchmaking and is able to produce a
composite blueprint document which comprises the cloud
services that can be used for realising or supporting a cloud
application. It does not propose though a concrete cloud

https://www.dmtf.org/standards/ovf

Services Transactions on Cloud Computing (ISSN 2326-7550) Vol. 3, No. 3, July-September 2015

service composition but just set of alternatives for different
application elements at different levels of abstraction.

7.3 SERVICE COMPOSITION

7.3.1 SOFTWARE SERVICE COMPOSITION
The successful SOA paradigm has led to a proliferation

of available services. Such services can then be optimally
combined to produce added-value functionality incarnated
into respective applications. To this end, various service
composition approaches have been proposed which usually
focus either on the functional or QoS aspect. Most of the
QoS-based work follows either a statistical [Canfora et al.
2005] or path-based approach [Ardagna & Pernici 2007]
leading to an over-simplification or a pessimistic view of the
problem. Some approaches employ a heuristic [Yu et al.
2007] or a QoS decomposition [Alrifai et al. 2009] approach
to cater for better performance but sacrificing optimality. In
addition, all these approaches regard QoS service offerings
as simple QoS parameter values which is quite unrealistic if
we also regard that many services run in quite dynamic
environments. Moreover, these approaches fail to produce
any result for over-constrained end-user requirements. One
promising approach resolving most of the above issues was
proposed in [Ferreira et al. 2009]. Some key aspects of this
approach were exploited in our cloud service composition
work.

7.3.2 CLOUD SERVICE COMPOSITION
The cloud service composition problem is harder than

that of service selection as it involves composing different
types of services with different characteristics and the
synthesis is performed in different but inter-dependent
levels such that the solution at one level impacts the solution
at other levels. However, the cloud service composition
approaches proposed usually focus on just one cloud service
type. Even when they consider additional types, they either
solve a limited case of the actual problem or a slightly
different problem by also neglecting all possible user
requirement types.

Concerning SaaS composition, the respective
approaches can be separated into those which: (a) consider
semantics [Zeng et al. 2009], (b) use heuristics to solve the
respective optimization problem [Kofler et al. 2010], (c)
address multi-tenant SaaS [He et al. 2012], (d) exploit
feature models and multi-criteria decision making [Wittern
et al. 2012] to find the most optimal SaaS compositions and
(e) consider some other aspects, such as the network latency
and the multiple instances that a particular SaaS service can
have [Klein et al. 2012]. Although not clearly addressing
IaaS services, the latter approach seems interesting and
could be used for further extending our proposed work
towards selecting only the appropriate instances for each
SaaS selected.

The self-organizing agent-based cloud service
composition method in [Gutierrez-Garcia et al. 2013]
exploits distributed problem solving techniques, by also
relying on the contract-net protocol, and is able to produce
vertical, horizontal, one-time and persistent service
compositions. Both SaaS and IaaS type of services are
handled. However, this approach seems to cater only for
functional and cost requirements.

In [Karim et al. 2013], an hierarchical quality model is
proposed going from user requirements down to the QoS
capabilities of IaaS services. This quality model is then used
for ranking the service candidates across the different cloud
levels. However, the ranking algorithm proposed seems to
work on a different problem type where the end-user
requires one or more SaaS services and then the providers of
these services have to find suitable IaaS offerings for
hosting their services. In addition, this algorithm does not
consider placement constraints, while only low-level
security requirements are taken into account. Finally, the
algorithm seems to work only for sequential application
workflow specifications.

8. CONCLUSIONS & FUTURE WORK
This article has presented a semantic cloud service

composition framework which is able to address the whole
lifecycle of an application in a multi-cloud environment.
The genuine features of this framework is that it relies on
semantics and constraint optimisation techniques which
guarantee the quality of the cloud service composition
derived. It is able to consider different types of requirements
and different types of design choices across different levels
for which their dependencies are accounted for. This
framework is also able to dynamically adapt the application
at runtime via exploiting adaptation rules as well as re-
configuration opportunities provided by the Cloud Service
Composer when quite critical situations occurs which
cannot be addressed by such rules.

The framework's Cloud Service Composer advances the
state-of-the-art as apart from considering a variety of
different types of quite meaningful and critical application
requirements, it is able to concurrently consider different
cloud levels in order to produce the final cloud service
composition product. Moreover, it does not sacrifice
accuracy through the use of any kind of heuristics. This
guarantees the optimality of the composition product and
reduces the probability that such product has to be adapted
at runtime. In addition, as shown from the experimental
evaluation, it leads to a reduction in the composition
execution time compared to common IaaS composition
approaches, thus making the composition algorithm suitable
for use even at runtime.

The following research directions are planned. First, a
complete evaluation of the whole framework has to take

Services Transactions on Cloud Computing (ISSN 2326-7550) Vol. 3, No. 3, July-September 2015

place. Second, the exploitation of PaaS services needs to be
considered in order to make the solution even more
complete with respect to the types of cloud services that can
be exploited. Third, a complete UI spanning all the
application lifecycle phases will be produced enabling
application developers not only to pose requirements but
also see the deployment progress and runtime performance
of their applications and possibly interfere by e.g., enforcing
adaptation actions or changing requirement models or plans.
Fourth, it is planned to extend the functionality of the
framework in order to deal with an additional level on the
top mapping to the handling of business processes in order
to realise the vision of BPaaS [Woitsch & Utz 2015].

9. ACKNOWLEDGMENT

The research leading to these results has received
funding from the European Community’s Seventh
Framework Programme (FP7/2007-2013) under grant
agreement number 317715 (PaaSage) and from the
European Community’s Framework Programme for
Research and Innovation HORIZON 2020 (ICT-07-2014)
under grant agreement number 644690 (CloudSocket).

10. REFERENCES
Alrifai, M., Risse, T. (2009). Combining Global Optimization with Local
Selection for Efficient QoS-Aware Service Composition. In WWW, 881–
890.

Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F., Ford,
M., Goland, Y., Guzar, A., Kartha, N., Kevin, C., Khalaf, R., Knig, D.,
Marin, M., Mehta, V., Thatte, S., van der Rijn, D., Yendluri, P., Yiu, A.
(2007). Web Services Business Process Execution Language. Technical
report, Organization for the Advancement of Structured Information
Standards (OASIS). Retrieved October 20, 2015 from http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

Amsden, J., Athanasopoulos, G., Badr, I., Bauer, B., Belaunde, M.,
Benguria, G., Berre, A. J., Butler, J., Casanave, C., Covington, B.,
Cummins, F., Desfray, P., Ditze, A., Estefan, J., Fischer, K., Hahn, C.,
ystein Haugen, Hinton, P., Kolk, H., Larrucea, X., Lenoir, J., Lonjon, A.,
Mansour, S., Miyazaki, H., Mukerji, J., Odell, J., Pantazoglou, M., Rivett,
P., Roman, D., Rosen, M., Roser, S., Shafiq, O., Seidewitz, E., Selic, B.,
Tsalgatidou, A., Hussey, K., Mervine, F. (2012). Service oriented
architecture Modeling Language (SoaML). Technical report, Object
Management Group (OMG). Retrieved October 20, 2015 from
http://www.omg.org/spec/SoaML/1.0.1/PDF

Ardagna, D., Pernici, B. (2007). Adaptive Service Composition in Flexible
Processes. IEEE Transactions on Software Engineering, 3(6), 369–384.

Aßmann, U., Bencome, N., Cheng, B. H. C., France, R. B. (2011).
Models@run.time (dagstuhl seminar 11481). Technical Report 11,
Dagstuhl Reports.

Baryannis, G., Garefalakis, P., Kritikos, K., Magoutis, K., Papaioannou,
A., Plexousakis, D., Zeginis, C. (2013). Lifecycle Management of Service-
based Applications on Multi-Clouds: A Research Roadmap. In
MultiCloud.

Buyya, R., Ranjan, R., Calheiros, R. N. (2010). InterCloud: Utility-
Oriented Federation of Cloud Computing Environments for Scaling of
Application Services. In ICA3PP, 13–31.

Canfora, G., Penta, M. D., Esposito, R., Villani, M. (2005). QoS-Aware
Replanning of Composite Web Services. In ICWS, 121–129.

Cardoso, J., Binz, T., Breitenbücher, U., Kopp, O., Leymann, F. (2013).
Cloud computing automation: Integrating USDL and TOSCA. In CAiSE,
1–16.

Christensen, E., Curbera, F., Meredith, G., Weerawarana, S. (2001). Web
Services Description Language (WSDL) 1.1. W3C,
http://www.w3.org/TR/wsdl.

Cortés, A. R., Martín-Díaz, O., Toro, A. D., Toro, M. (2005). Improving
the Automatic Procurement of Web Services Using Constraint
Programming. Int. J. Cooperative Inf. Syst., 14(4), 439–468.

D’Andria, F., Gorro ̃nogoitia Cruz, J., Ahtes, J., Bocconi, S., Zeginis, D.
(2012). Cloud4SOA: Multi-Cloud Application Management Across PaaS
Offerings. In MICAS.

de Bruijn, J., Bussler, C., Domingue, J., Fensel, D., Hepp, M., Keller, U.,
Kifer, M., Knig-Ries, B., Kopecky, J., Lara, R., Lausen, H., Oren, E.,
Polleres, A., Roman, D., Scicluna, J., Stollberg, M. (2005). Web Service
Modeling Language (WSMO). Technical report, World Wide Web
Consortium (W3C). Retrieved September 12, 2015 from
http://www.w3.org/Submission/WSMO/.

Domaschka, J., Baur, D., Seybold, D., Griesinger, F. (2015). Cloudiator: A
Cross-Cloud, Multi-Tenant Deployment and Runtime Engine. In 9th
Symposium and Summer School on Service-Oriented Computing.

Domaschka, J., Hoppe, D., Kritikos, K., Sheridan, C., Yaqub, E., Baur, D.,
Griesinger, F., Seybold, D., Balis, B., Krol, D., Malawski, M., Zarioh, A.
(2015). D5.1.2: Product Executionware. Paasage project deliverable.

Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J. (2004).
Similarity search for web services. In VLDB ’04: Proceedings of the
Thirtieth international conference on Very large data bases, 372–383.

Ferreira, A. M., Kritikos, K., Pernici, B. (2009). Energy-Aware Design of
Service-Based Applications. In ICSOC.

Ferry, N., Chauvel, F., Rossini, A., Morin, B., Solberg, A. (2013).
Managing multi-cloud systems with CloudMF. In Solberg, A., Babar, M.
A., Dumas, M., and Cuesta, C. E., editors, NordiCloud 2013: 2nd Nordic
Symposium on Cloud Computing and Internet Technologies, 38–45.

Galán, F., Vaquero, L. M., Clayman, S., Toffetti, G., Henriksson, D.
(2009). Deliverable D4.1, D4.2 and D4.3 – Scientific Report. Reservoir
project deliverable.

García-Gómez, S., Jiménez-Gañán, M., Taher, Y., Momm, C., Junker, F.,
Bíró, J., Menychtas, A., Andrikopoulos, V., Strauch, S. (2012). Challenges
for the comprehensive management of Cloud Services in a PaaS
framework. Scalable Computing: Practice and Experience, 13.

Garg, S. K., Versteeg, S., Buyya, R. (2011). SMICloud: A Framework for
Comparing and Ranking Cloud Services. In UCC.

Gutierrez-Garcia, J. O. Sim, K. (2013). Agent-based cloud service
composition. Applied Intelligence, 38, 436–464.

He, Q., Han, J., Yang, Y., Grundy, J., Jin, H. (2012). QoS-Driven Service
Selection for Multi-Tenant SaaS. In Cloud, 566–573.

Hwang, C., Yoon, K. (1981). Multiple Criteria Decision Making. Lect.
Notes Econ. Math.

Jula, A., Sundararajan, E., Othman, Z. (2014). Review: Cloud computing
service composition: A systematic literature review. Expert Syst. Appl.,
41(8), 3809–3824.

Karim, R., Ding, C., Miri, A. (2013). An end-to-end qos mapping
approach for cloud service selection. In SERVICES, 341–348.

Klein, A., Ishikawa, F., Honiden, S. (2012). Towards network-aware
service composition in the cloud. In WWW.

Klusch, M., Fries, B., Sycara, K. (2006). Automated semantic web service
discovery with OWLS-MX. In AAMAS, 915–922.

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://www.omg.org/spec/SoaML/1.0.1/PDF
http://www.w3.org/TR/wsdl
http://www.w3.org/Submission/WSMO/

Services Transactions on Cloud Computing (ISSN 2326-7550) Vol. 3, No. 3, July-September 2015

Kofler, K., Haq, I. U., Schikuta, E. (2010). User-centric, heuristic
optimization of service composition in clouds. In EuroPar, 405–417.

Kritikos, K., Domaschka, J., Rossini, A. (2014). SRL: A Scalability Rule
Language for Multi-cloud Environments. In CloudCom, 1-9.

Kritikos, K., Pernici, B., Plebani, P., Cappiello, C., Comuzzi, M.,
Benbernou, S., Brandic, I., Kertesz, A., Parkin, M., Carro, M. (2013). A
Survey on Service Quality Description. ACM Computing Surveys, 46(1).

Kritikos, K., Plexousakis, D. (2006). Semantic QoS Metric Matching. In
ECOWS, 265–274.

Kritikos, K. Plexousakis, D. (2014). Novel Optimal and Scalable
Nonfunctional Service Matchmaking Techniques. IEEE T. Services
Computing, 7(4), 614–627.

Milano, M. (2003). Constraint and Integer Programming: Toward a
Unified Methodology. Kluwer Academic Publishers, Norwell, MA, USA.

Moscato, F., Aversa, R., Martino, B. D., Fortis, T., Munteanu, V. I. (2011).
An Analysis of mOSAIC ontology for Cloud Resources annotation. In
Federated Conference on Computer Science and Information Systems -
FedCSIS, 973–980.

Nguyen, D. K., Lelli, F., Taher, Y., Parkin, M., Papazoglou, M. P., van den
Heuvel, W. (2011). Blueprint Template Support for Engineering Cloud-
Based Services. In ServiceWave, 26–37.

Palma, D., Spatzier, T. (2013). Topology and Orchestration Specification
for Cloud Applications (TOSCA). Technical report, Organization for the
Advancement of Structured Information Standards (OASIS). Retrieved
October 20, 2015 from http://docs.oasis-
open.org/tosca/TOSCA/v1.0/cos01/TOSCA-v1.0-cos01.pdf.

Pannetrat, A. (2013). D2.1: Security-aware SLA specification language
and cloud security dependency model. Cumulus project deliverable.

Paolucci, M., Kawamura, T., Payne, T. R., Sycara, K. P. (2002). Semantic
Matching of Web Services Capabilities. In ISWC ’02: Proceedings of the
First International Semantic Web Conference on the Semantic Web, 333–
347.

Pedrinaci, C., Cardoso, J., Leidig, T. (2014). Linked USDL: A vocabulary
for web-scale service trading. In ESWC, 68–82.

Plebani., P., Pernici, B. (2009). URBE: Web Service Retrieval Based on
Similarity Evaluation. IEEE Transactions on Knowledge and Data
Engineering, 21(11), 1629-1642.

Quinton, C., Romero, D., Duchien, L. (2013). Cardinality-based feature
models with constraints: a pragmatic approach. In Kishi, T., Jarzabek, S.,
and Gnesi, S., editors, SPLC 2013: 17th International Software Product
Line Conference, 162–166.

Rossi, F., van Beek, P., Walsh, T. (2006). Handbook of Constraint
Programming (Foundations of Artificial Intelligence). Elsevier Science
Inc., New York, NY, USA.

Rossini, A., Nikolov, N., Romero, D., Domaschka, J., Kritikos, K.,
Kirkham, T., Solberg, A. (2014). D2.1.2 – CloudML Implementation
Documentation (First version). PaaSage project deliverable.

Ruiz-Alvarez, A. Humphrey, M. (2011). An Automated Approach to Cloud
Storage Service Selection. In ScienceCloud.

Rumpl, A., Rasheed, H., Waeldrich, O., Ziegler, W. (2010). Service
Manifest: Scientific Report. Optimis project deliverable.

Saati, T. (1980). The Analytic Hierarchy Process. McGraw-Hill.

Sycara, K., Wido, S., Klusch, M., LU, J. (2002). Larks: Dynamic
matchmaking among heterogeneous software agents in cyberspace. J.
Auton. Agents and Multi-Agent Syst., 5, 173–203.

Sycara, K. et al. (2003). OWL-S 1.0 Release. OWL-S Coalition,
http://www.daml.org/services/owl-s/1.0/.

Timpe, C. (2002). Solving planning and scheduling problems with
combined integer and constraint programming. OR Spectrum, 24(4), 431–
448.

Wittern, E., Kuhlenkamp, J., Menzel, M. (2012). Cloud service selection
based on variability modeling. In ICSOC, 127–141.

Woitsch, R., Utz, W. (2015). Business Process as a Service - Model Based
Business and IT Cloud Alignment as a Cloud Offering. In ES.

Xiong, P., Pu, C., Zhu, X., Griffith, R. (2013). vperfguard: An automated
model-driven framework for application performance diagnosis in
consolidated cloud environments. In ICPE, 271–282.

Yu, T., Zhang, Y., Lin, K.-J. (2007). Efficient algorithms for web services
selection with end-to-end qos constraints. ACM Trans. Web, 1(1).

Zeginis, C., Kritikos, K., Plexousakis, D. (2015). Event Pattern Discovery
in Multi-Cloud Service-Based Applications. International Journal of
Systems and Service-Oriented Engineering, 5(4), 78-103.

Zeng, C., Guo, X., Ou, W., Han, D. (2009). Cloud computing service
composition and search based on semantic. In CloudCom, 290–300.

Zhou, C., Chia, L.-T., Lee, B.-S. (2004). DAML-QoS Ontology for Web
Services. In ICWS, 472– 479.

Authors

Kyriakos Kritikos received his B.Sc.,
M.Sc., and Ph.D degrees in Computer
Science from the University of Crete. He
was a Post-Doc Researcher at Politecnico
di Milano and CNR in Italy as well as
FNR in Luxembourg. He is currently a
Researcher at the Information Systems

Laboratory of the Institute of Computer Science, FORTH in
Greece. His research interests span the following areas:
Quality-aware service management; Cross-layer service
monitoring and adaptation; Cloud-based application
modelling and deployment; Ontology modeling and
reasoning; Constraint and Mathematical Programming;
Distributed (Information) Systems.

Dimitrios Plexousakis is a Professor
at the Computer Science Department,
University of Crete and a Researcher
as well as the head of the Information
Systems Laboratory of the Institute of
Computer Science, FORTH in
Greece. He received his B.Sc. degree

in Computer Science from University
of Crete and M.Sc. and Ph.D degrees in Computer Science
from the University of Toronto. His research interests span
the following areas: Knowledge Representation and
Knowledge Base Design; Formal knowledge representation
models and query languages for the Semantic Web; Formal
reasoning systems with focus on dynamic action theories
and belief revision; Business process and e-service
modeling, discovery and composition. He is a member of
ACM and IEEE.

http://docs.oasis-open.org/tosca/TOSCA/v1.0/cos01/TOSCA-v1.0-cos01.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cos01/TOSCA-v1.0-cos01.pdf
http://www.daml.org/services/owl-s/1.0/

	1. Introduction
	2. Use Case
	3. Semantic Cloud Application Management Framework
	4. Application Requirements Ontology Language
	5. cloud service composition approach
	1
	2
	3
	4
	5
	5.1 Cloud Service Composition Problem Formulation
	5.2 COMPLEXITY & SOLVING TECHNIQUES

	6. experimental evaluation
	7. related work
	6
	7
	7.1 Service Modelling
	7.1.1 Software Service Modelling
	7.1.2 Cloud Service/Application Modelling

	7.2 Service Matchmaking
	7.2.1 Software Service Matchmaking
	7.2.2 Cloud Service Matchmaking

	7.3 Service Composition
	7.3.1 SOftware Service Composition
	7.3.2 Cloud Service Composition

	8. conclusions & future work
	9. Acknowledgment
	10. References

