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Abstract. Service-orientation has revolutionized the way applications
are constructed and provisioned. To this end, a proliferation of web ser-
vices is being increasingly available. To exploit such services, an accurate
service discovery process is required with a suitable performance focusing
both on functional and quality of service (QoS) aspects. In fact, QoS is
the main distinguishing factor for the plethora of functionally-equivalent
services available in the internet. Accuracy in service discovery comes
via exploiting formal techniques and ontologies in particular. Satisfac-
tory performance levels can be reached via using smart methods that
intelligently organise the service advertisement space. In this paper, we
propose smart ontology-based QoS-aware service discovery algorithms
that exploit ontology subsumption as a means of matching QoS requests
and offers. These algorithms exploit a variety of methods to structure
the service advertisement space. Based on the empirical evaluation con-
ducted, our proposed algorithms outperform the state-of-the-art in cer-
tain circumstances. To this end, ontology-based subsumption is indeed
a promising technique to realise QoS-based service matchmaking.
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1 Introduction

Service-orientation has revolutionalized the way web applications and processes
are constructed, provisioned and evolved. With the advent of cloud computing,
which delivers extra advantages, a proliferation of available services has been
achieved covering various types of functional capabilities. To exploit such services
and rapidly build added-value functionality, there is a need for accurate and fast
service discovery algorithms focusing both on functional and quality-of-service
(QoS) aspects. The state-of-the-art in functional service discovery exploits either
ontology-based [9], information retrieval [2] or a mixture of such techniques [7]
to perform service matching. It has been proven that only when ontology-based
techniques are involved [7], higher accuracy levels can be attained.

However, functional service discovery alone cannot enable the service de-
signer to discover those services satisfying all requirement aspects. On the con-
trary, QoS has been deemed as the aspect enabling the differentiation between
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the plethora of functionally-equivalent services currently available. In fact, QoS
can play a significant role in all phases of the service lifecycle [3]. To this end,
various types of QoS-based service discovery approaches have been proposed.
To increase the accuracy in the service discovery results, some of these types
do exploit either ontology-based techniques [11] alone or constraint solving tech-
niques as well [5]. Those approaches exploiting solely ontology-based techniques
use ontology-based subsumption to perform the matching but have relied on
wrong ontology constructs to specify QoS-based service specifications. As such,
their applicability is quite limited. On the other hand, mixed-based approaches
have a wider applicability and have been shown to exhibit much better perfor-
mance.

In this paper, we propose a pure ontology-based approach which exploits on-
tologies in a correct way via more suitable constructs enhancing the respective
applicability. In addition, we propose smart algorithms which intelligently or-
ganise the service offer space so as to perform service matchmaking via ontology
subsumption on a subset of all offers. By considering the two main disadvantages
of a mixed-based approach which are the ontology to constraint specification
transformation and the solving of multiple constraint models to infer the match-
ing between a pair of a service QoS offer and demand, our empirical evaluation
shows that our proposed algorithms outperform mixed-based state-of-the-art
ones in certain circumstances. This is a proof that ontology subsumption alone
can be considered as a promising technique for QoS-based service matchmaking.

The rest of the paper is structured as follows. Section 2 reviews the related
work. Section 3 provides background knowledge enabling to better understand
the paper propositions. Section 4 analyses the proposed approach and the al-
gorithms realising it. Section 5 discusses the experimental evaluation results.
Finally, Section 6 concludes the paper and draws futher research directions.

2 Related work

2.1 QoS-based service description

A plethora of languages have been proposed for describing QoS-based offers and
requests. According to the survey in [3], these languages can be distinguished ac-
cording to their formality, expressiveness and complexity. From these languages,
OWL-Q [4], a modular and semantic-based service description language, seems
to be the most promising, especially in terms of expressiveness as it covers in
a rich manner all possible aspects of QoS-based service description. Based on
OWL-Q, a mid-level ontology is available which provides a common vocabulary
of QoS terms which can be used to populate QoS-based service specifications,
such as domain-independent QoS attributes and metrics (e.g., response time).
Due to the above unique advantages, the approach proposed in this paper ex-
ploits OWL-Q along with its mid-level ontology.
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2.2 QoS-based service discovery

Various QoS-based service matchmaking approaches have been proposed that
can be categorised in three main types. Ontology-based approaches [11] rely on
ontology subsumption to perform the service specification matching. These ap-
proaches are able to support only unary-based service specifications, i.e., involv-
ing one QoS term per constraint (QoS capability or requirement). Constraint-
based approaches [1] assume the existence of a common QoS term vocabulary
through which constraint models can be specified mapping to the actual service
QoS offers and requests. Then, they exploit constraint solving techniques and
specific matchmaking metrics to perform the matching of the constraint models.
In comparison to ontology-based approaches, constraint-based ones operate over
n-ary specifications and have a much better performance. Finally, mixed based
approaches [5] attempt to exploit the best of both worlds. This means that they
operate over semantic QoS specifications by first aligning them according to
their QoS terms and then transforming them into constraint models which can
then be matched based on the second type of approaches. In comparison to the
former two types, this type can operate on n-ary specifications, it exhibits better
accuracy levels due to the alignment of the specifications that goes beyond using
subsumption reasoning and exhibits almost equivalent performance levels with
respect to the constraint-based approach type.

Apart from the above approach categorisation, recently some new mixed
approaches [6] have been proposed able to speed up the service matching time
by cleverly organising the QoS service offer space. These approaches create a
QoS offers subsumption hierarchy. As such, when a QoS request subsumes a
hierarchy node, it subsumes all its descendants. Thus, these descendants do not
have to be matched with the QoS request and matching time gets reduced.

The approach proposed in this paper belongs to the first type. As such, it
suffers from the disadvantage of handling only unary constraints. However, this
disadvantage is not crucial as most, if not all, of existing QoS service specifica-
tions in the real world are unary. Moreover, to speed up the matchmaking time,
we propose different algorithms which attempt to similarly organise the offer
space as in the recent approaches. In this way, we do not only reduce the match-
making time but are able to outperform these recent approaches in certain cases
for the following two reasons: (a) our approach does not require transforming
ontology-based QoS specifications to a different form and (b) ontology subsump-
tion can be faster than constraint-based matching even for a pair of a QoS offer
and demand due to the way constraint matching metrics are realised. Thus, the
use of pure ontology-based approaches in QoS-based service matching is not only
feasible but also quite practical in certain cases. We believe that the prospective
practitioners will benefit from the proposal and findings of this paper.

3 Background

In this section, we first explain why the current realisation of the pure ontology-
based approach type is not appropriate and what is our proposal for solving
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using QoS;

quarantees{
AvgRtTime>=2and

AvgRtTime<=10;
ATHR>=100 and ATHR<=120
}

(A) Offer in QRL

Advert= QoSProfile
n (10responseTime.AVGRespTMetric)
n (22responseTime.AVGRespTMetric)
n (2100througput. AVGThrMetric)

n (< 120throughput. AVGThrMetric)

(B) Offer in DAML-QoS

Advert = Specification and (hasTerm
some

(MeanResponseTime and (value some
int[>="2"Aint, <= "10"int]))) and
(hasTerm some

(MeanThroughput and (value some
int[>="100"AAint, <= "120"Mint])))

(c) offer in OWL-Q

Advert = Specification and (hasTerm
some

(MeanResponseTime and (value some
int[<=“-2"Anint, >= “-10"Mint]))) and
(hasTerm some
(MeanThroughput and (value some
int[>="100"AAint, <= "120"Mint])))

(D) Offer in OWL-Q (with negate)

Fig. 1: The example QoS offer in different forms

this issue. Then, we highlight what is the process for adding and matching QoS
offers for both ontology-based approach types as this paper focuses on their
comparison.

3.1 Realisation Issues

Suppose we have the example QoS offer in Figure 1.A in QRL [1]-like syntax in-
dicating that average response time will be less or equal to 10 and greater than
2 seconds while average throughput will be between 100 and 120 requests per
second inclusive. In the pure ontology-based approach type, the two metrics will
originate from a mid-level ontology specifying domain-independent QoS terms.
Indeed, this is the case of the approach in [11] which maps both metrics to sub-
classes of CompositeMetric, thus connecting the upper-level ontology proposed
to the mid-level one. However, the latter approach will then rely on a misuse
of OWL cardinality constraints to specify the constraints of the specifications
as indicated in Figure 1.B. In particular, it will indicate that the cardinality of
the value-based properties (e.g., responseTime) of these metrics will be in ac-
cordance to the ranges in Figure 1.A. This wrong QoS constraint modelling has
two main disadvantages: (a) only a specific type of QoS terms can be addressed
mapping to non-negative integers — as such, terms like availability cannot be
catered as their value types map to real numbers; (b) this modelling can also
lead to an error that is at maximum one-half of the QoS term unit. Apart from
the wrong modelling, the respective QoS ontology language exploited is quite
limited with respect to the capabilities and richness of OWL-Q.

The above modelling issue is solved via the rationale in Figure 1.C. While
there are again terms mapping to a composite metric class, we actually restrict
the range of the value datatype property for them based on the desired limits. As
such, we can model different value types for these terms; either concrete XSD!
types (e.g., integer) or specialisations of them (e.g., constrained integers). By also
exploiting OWL-Q, our QoS modelling is correct, richer and more extensive.

! http://www.w3.org/TR/xmlschemall-1/
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using QoS;

quarantees{
AvgRtTime>=1and

AvgExTime<=12;
ATHR>=80 and ATHR<=140
}

(A) Demand in QRL

Advert = Specification and (hasTerm
some

(MeanResponseTime and (value some
int[<="-1"Anint, >= “-12"AAint]))) and
(hasTerm some

(MeanThroughput and (value some
int[>=“80"Mint, <= "140"Mint])))

(B) Demand in OWL-Q (with negate)

using QoS;
quarantees{

X;>=2 and X, <=10;
X,>=100 and X,<=120;
X;<1

}

(€) 1% Constraint Problem

using QoS;

quarantees{

X,>=2 and X, <=10;
X,>=100 and X, <=120;
X;>12

}

(D) 2" Constraint Problem

using QoS;

quarantees{

X;>=2 and X, <=10;
X,>=100 and X,<=120;
X,<80

}

(E) 3¢ Constraint Problem

using QoS;

quarantees{

X,>=2 and X,<=10;
X,>=100 and X,<=120;
X,> 140

}

(F) 4* Constraint Problem

Fig.2: The QoS demand and the 4 matchmaking problems

However, there is still a specific issue. Subsumption reasoning caters mainly
for positively monotonic QoS terms. This can be understood from the example
QoS demand in Figure 2.B which needs to be matched with the aforementioned
QoS offer. While it is apparent that the QoS offer is more specific than the
QoS demand and there is a match, the average response time is a negatively
monotonic metric. As such, any ontology reasoner will never infer that the QoS
offer is subsumed by the QoS demand.

The solution to this problem is to negate the constraints on negatively mono-
tonic metrics. This is equivalent to considering a new, positively monotonic term
equal to the negation of the original term. In this way, both the QoS offer and
demand will be expressed as in Figure 1.D and 2.B and their matching will be
derived through an ontology reasoner, like Pellet? [8]. This treatment of QoS
specifications has the following alternative concequences: (a) either the mod-
eller should specify the QoS constraints as well as the QoS terms in the newly
prescribed way taking special case on negatively monotonic terms or (b) the
respective tools enabling the editing of the QoS specifications should be realised
to transform internally the modeller constraints in the appropriate format or
pre-processing of QoS specification via transformation tools is performed before
the actual registration or matching of the specification is performed.

3.2 Ontology-based QoS Specification Management Process

In a pure ontology-based approach, the QoS offer management process is quite
simple. The existence of a semantic repository is assumed where the support for
a specific ontology language like OWL is offered. Obviously, on top of OWL, a
QoS-based service description language like OWL-Q lies via which the offers are
actually specified. As indicated in [6], a mixed-based approach requires a QoS
term (needed for their alignment) and a constraint model repository. As such,
extra storage requirements are imposed.

2 https://github.com/Complexible/pellet/
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QoS Offer Registration. In an ontology-based approach, QoS offers to be
registered are first loaded in order to check whether they are consistent. This
maps to creating a small knowledge base (KB) out of this offer and checking
with this KB is consistent by evaluating whether any concept is subsumed by
OWL Nothing. In a mixed-based approach, apart from consistency checking, the
ontology needs first to be realised and validated and then to be transformed into
a constraint model. Thus, it is expected that the offer registration time is faster
in an ontology-based approach.

By considering the previous sub-section’s example, the mixed-based approach
will map the QoS offer in Figure 1.B into a constraint model similar to that of
Figure 1.A where each unique QoS term will be mapped to a specific variable.

QoS Request Matching. A QoS request passes the same sub-process when
issued as it must be checked for consistency. Then, it must be matched with
all the QoS offers stored in the respective repository. In the pure ontology-based
approach, the QoS request is entered into the existing KB and then classification
is performed such that all subsumption relations are discovered between this
request and all QoS specifications. As such, the QoS request is matched with all
QoS offers that it subsumes. Please note that matchmaking as conformance or
subsumption is the main matching metric in all approach types.

For the rest of the approach types, there is a matching of two constraint
models mapping to the QoS request and offer when the solution space of the
latter is included in the solution space of the former. This is translated in solving
one or more constraint problems depending on the constraint arity of the QoS
specifications. In case of unary constraints, specification conformance maps to
checking M (mapping to the offer’s number of constraints) constraint problems
constructed by the offer’s constraint model and a negation of each demand’s
constraint. If all problems are infeasible, then there is a match between the
QoS offer and request. In case of n-ary constraints, only one constraint problem
needs to be solved constructed from the QoS offer and the negation of the QoS
demand. A match is inferred if the latter problem is infeasible. In the first case,
more steps must be performed with respect to the pure ontology-based approach
whose timing depends on the number of constraints involved. In the second case,
one complicated step is performed but has no counterpart in the pure ontology-
based approach as the latter can address unary constraints only.

In a mixed-based approach, the QoS request of the previous subsection will
be first mapped to the constraint model in Figure 2.D. Then, four constraint
problems need to be solved as depicted in Figures 2.C and 2.F.

4 Proposed Approach

4.1 Architecture

Figure 3 depicts the proposed approach architecture by visualising both the
respective components and their interactions. There are five main components
involved. The Semantic Repository is an ontology-based repository able to store
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Non-Functional Service Matchmaking System

Negative monotonic metrics handling

Validation, Pair-wise
Comparison

Matcher

Reasoner
Validation, Pair-wise
Comparison, Full-Content
subsumption

Semantic
Repository

Fig. 3: Non-Functional Service Matchmaking System Architecture

all QoS offers. The Matcher is a web service (WS) taking as input a QoS request
which is then matched with all QoS offers stored. This WS internally realises one
or more matching algorithms so it can be configured to operate based on one of
them. The Publisher is also a WS enabling service providers to publish their QoS
offers in the semantic QoS-based matchmaking system. Similarly to Matcher, it
can be configured to operate a specific (de-)publication algorithm mapping to
the approach followed for matchmaking. Both the Publisher and Matcher exploit
two other components: (a) the Transformer which loads the specification and
then transforms the constraints for negatively-monotonic terms, when users do
not model them as expected; (b) the Reasoner which performs different types of
tasks: (a) ontology-based specification validation, (b) pair-wise specification com-
parison and (c) (incremental) subsumption over full repository content. Invalid
specifications are returned back to their issuers with a suitable error message.
The semantic QoS-based matchmaking system currently operates solely on
OWL-Q based specifications. In the future, it will include extra transformation
functionality to support original specifications in different QoS-based service
specification languages which will be injected in the Transformer’s existing ca-
pabilities. Distribution of content will also be examined to cater for better scal-
ability levels. Due to the nature of the proposed algorithms, such distribution is
quite easy and natural to realise without any implication on algorithm accuracy.

4.2 Algorithms

In the following, we are going to analyse the four main algorithms that we have
realised and are included in the capabilities of the Matcher component. We focus
on the two main processes supported: QoS offer registration and QoS request
matching. For each algorithm, the presentation starts with the main rationale,
it then explicates the way the offer space is organised, next the algorithm core
is analyzed and finally its complexity analysis is supplied.



8 Kritikos & Plexousakis

Naive Rationale. The main rationale of the algorithm, also justifying its name,
is to load all offers on memory when a specific matching request is issued. This
facilitates an offer’s registration as once its consistency is checked, it is just
stored in the repository. However, it is expected that matching time will not be
appropriate as it has been proven that subsumption reasoning does not scale
well, especially if done in a centralised manner. In fact, as OWL-Q along with
its mid-level lies in the SROIQ(D) family of ontologies, any reasoning task is
decidable but NExpTime-Hard.

Offer Space Organisation. There is no special offer space organisation. Only
one specific hash set is employed to account for the URIs of the offers stored
such that they can be immediately located and loaded during request matching.

Algorithm Core. The algorithm’s core does not differ with respect to that
sketched in Section 3. Initially, a KB is constructed out of all QoS offers and the
QoS request and then classification is performed. Finally, a query on the KB is
performed to obtain all offers subsumed by the request.

Complexity Analysis. Suppose that a specification usually has 4-5 QoS terms
and 4-5 constraints on them, all wrapped into a single class definition. As such,
we expect that the specification loading time will be more or less constant and
equal to Lgpec. Thus, the time needed to check the request’s consistency (sim-
ilar as loading) as well as construct a KB out of N offers and 1 QoS request
will be O (Lgpec * (N + 2)). If we further assume that the time to classify N +1
specifications is Sy 41, such that the classification depends on the specification
number, the overall matching time would be O (Lgpec * (N + 1)) + Sni1. We
expect that usually O (Sn41) takes much longer than O (Lgpee * (N + 2)), es-
pecially when the specification number becomes bigger, so we will have a final
complexity of O (Sy41) for matchmaking. Offer registration, on the other hand,
takes O (N # Lgpe.) time as each offer is just loaded and checked for consistency.

Incremental Rationale. The naive approach does not incrementally build the
KB but constructs it on demand. As such, as incremental classifiers are avail-
able, it might be better to employ incremental classification to save time when
classifying a temporal extension of the KB encompassing the request.

Offer Space Organisation. The previous algorithm’s hash set is preserved
to account for the offers already stored. KB is the other organisation medium
constantly updated. The classification tree constructed contains all possible sub-
sumption connections between the specifications involved.

Algorithm Core. During offer registration we discovered that it is a little bit
costly to run classification each time an offer must be registered. As such, we
run classification only every X offers, where X is a configuration parameter for
the algorithm. In each registration, the offer is loaded, checked for consistency
and then stored in the KB.

For request matching, after consistency checking, we temporarily include the
request in the KB and then we perform incremental classification. We then query
the KB to find the offers subsumed by the request.
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Complezity Analysis. Suppose that S}? is the incremental classification time
when X specifications are added to the KB and Y specifications are already

N
loaded. Then, the offer registration time for N offers will be O (Lspec * N+> %, S%*X) .

On the other hand, the request matching time will take at most O (Lspec + SN )
as we will have to check the request consistency and incrementally classify only
the temporal addition of the request in the existing KB.

Subsumes Rationale. As a naive approach does not scale well in practice and
driven by the fact that even the incremental algorithm might also exhibit similar
performance problems, we decided to rely on the method in the SubMIPMM
algorithm [6] and create our own subsumes offer hierarchy to be matched against
any issuing request. In such hierarchy, if the request subsumes a node, then it
also subsumes its descendants so some comparisons are avoided.

Offer Space Organisation. We do not construct a complete subsumes hierar-
chy as this requires connecting a new offer to all parents that subsume it and the
registration time would be highly increased. The main trick as followed in [6] is
to connect the offer to the first tree in the hierarchy forest in which it is matched.

Algorithm Core. The registration process is simple. We first match the new
offer with all hierarchy’s top offers. In case of a match, we check subsumption
direction. If the new offer subsumes one or more top nodes, it becomes a top
node itself and the matched nodes its children. If the offer is subsumed by one
or more top nodes, we take the first one and check where to place the new offer
in its own tree. So, the same matching procedure is followed until either the new
offer subsumes some nodes in the selected tree or becomes this tree’s leaf.

Concerning request matching, we match the request with all top-nodes in the
subsumption hierarchy. In case the request subsumes a top-most node, we add
this node along with its descendants in the matching offers set. Otherwise, we
need to go down a top-most node’s subtree similarly to the way top-matching
is performed to find matching offers. The latter is due to the fact even if the
request does not match the top-node, as we descend the tree, the offers becomes
stricter with a smaller solution space and thus the probability that they finally
match the request becomes higher.

For both processes, if pair-wise subsumption reasoning takes less than pair-
wise constraint-based matching, this algorithm will be faster than SubMIPMM.

Complezity Analysis. Concerning offer registration, we need first to check
offer consistency. Then, different cases can occur. In the best case, the offer is
equivalent to the first top-most node so we do not need to check anything else.
The time complexity will then become: O (Lgpec + S2). In the worst case, the
hierarchy maps to a tree and we have to put the new offer as a child of the
rightmost leaf node. This means that we will have to compare the new offer with
all offers stored. In this case, the time complexity is O (Lspec + N * S3) which
can be reduced to O (N # Sz). In the average case, B trees more or less balanced

will exist and the time complexity will become: O (Lspec 4 N+B? 5’2) which

2xB
can be reduced to O (NJFB2 * Sg>.

2xB



10 Kritikos & Plexousakis

Different cases map to request matching. The best one occurs when the hi-
erarchy maps to a tree and the request subsumes the root node. The time com-
plexity will be: O (Lgpec + S2). The worst case occurs when the request must
be compared with all tree nodes (as it does not subsume any offer or just the
rightmost leaf one). The time complexity will be: O (Lgpec + N * S2) which can
be reduced to O (N % .S3). In the average case, we assume that P offers will be
subsumed and that there will be at least a two-level hierarchy between the sub-
sumed offers. As such, the time complexity will be O (Lspec + N % (1 - g) * Sz))
which is reduced to O (N * (1 — £) x S)).

SubsumesFrag Rationale. The previous algorithm constructed the hierarchy in
an incremental manner and used ontology-based reasoning only when pair-wise
comparisons of specifications were performed. As many pair-wise comparisons
may have to be made, the current algorithm’s rationale is to construct a bigger
KB involving C specifications and not just 2 as we expect that this will take less
time than having to reason over C' — 1 KBs of size 2 (if we assume that always
the first specification is constant, i.e., the request). Moreover, we use incremental
classification to construct the offer hierarchy as this might be deemed better than
having to construct this hierarchy in a pair-wise manner. As such, we expect that
this algorithm will be faster than the previous one.

Algorithm Core. In offer registration, for each X offers stored, we perform
incremental classification over the KB and store the classification hierarchy in
main memory. Rationale is again that it is better to incrementally do this every
time a specific number of incoming offers is issued rather than running incre-
mental classification on-demand for each incoming offer to be registered.

Matchmaking follows a similar rationale as in the previous algorithm. The
sole exception lies on the fact that now the classification is more complete but
also contains new offers (less than X) that have not yet been classified and are
considered top-nodes. Due to the classification completeness, we also need to
keep track of the nodes visited so as not to revisit them again. The matching
process starts by matching the top-nodes in the classification hierarchy in chunks
of C nodes each time (see Rationale paragraph). If a top-node is subsumed, we
do not follow its descendants but just add them in the matching offers set. We
also mark this node and its descendants as visited. Otherwise, we need to go
down the top-node’s tree to find matches again similarly to top-node matching.

Complexity Analysis. Offer registration is equivalent to the case of the incre-

N
mental classification algorithm. Thus, its time complexity is: O (LspeC * N4> % S}?*X).

Request matching has 3 cases. In the best case, the request matches a left top-
node in the 1st subsumption chunk taking: O (Lspec + S¢). In the worst case, we
must match the request with all nodes. This takes O (Lgpec + & * Sc), further
reduced to O (% * Sc). In the average case, we make the same assumptions as in

«(1-F
previous algorithm. The time complexity is: O <L5peC + w * SC), further

reduced to O (JW(lc_};) * SC).
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5 Experimental Evaluation

The experimental evaluation aims at comparing the proposed algorithms with
the subMIPMM mixed-based one to identify cases that these algorithms pre-
vail. This evaluation relied on the experimental framework in [6]. It also ex-
ploits the second real dataset from WS-Dream collection [10] and one randomly
constructed in a controlled manner. The main comparison metric is average ex-
ecution time for both registration and matchmaking. Accuracy has not been
considered as all algorithms are perfect in this aspect [6] by completely realising
the matchmaking metric of specification conformance [1]. In the following, we
first shortly explain the way experiments have been performed and then present
each experiment’s results along with their respective analysis.

Please note that Pellet was used for ontology subsumption in the algorithms
while the Ibex constraint solving framework (www.ibex-1ib.org/) was exploited
for constraint matching in SubMIPMM.

5.1 Experiment Set-Up

All experiments were performed in a laptop with a 64bit OS, a 6GB main mem-
ory and a multicore CPU of 2.4GHz frequency. For each experiment, we have
conducted a series of steps to produce the respective average measurements of
the algorithms considered. Each step maps to specific fixed or dynamic values
of the control parameters and a series of 30 runs from which the average was
calculated in order to alleviate for interferences at the OS level.

Real or randomised input was used in the experiments. In case of WS-Dream
dataset, depending on the offer number (given as a control parameter value), we
randomly selected an equal number of measurements from around 4500 avail-
able ones which were transformed into respective ontology-based offers mapping
to the two main terms exploited, i.e., response time and throughput. The cor-
responding request was randomly selected again from the 4500 measurements.
In case of the randomised dataset, the offers were randomly created based on
current values of the control parameters. More details about this can be found
in [6]. The respective randomised request was constructed again based on the
control parameter values so as to match a specific percentage of offers.

5.2 1st Experiment

In this experiment, we exploited the randomised dataset and considered that half
of the offers will be matched by each request issued. The number of offers was
linearly increasing from 40 to 640 with a step of 100. The respective experiment
results are visualised in Figs. 4a and 4b.

Concerning matching time, it is clear that SubMIPMM algorithm is the best,
followed by Subsumes. SubsumesFrag comes next while in the end we have In-
cremental and Naive. These matchmaking results were not expected especially
between the two ontology-based subsumes algorithms while SubMIPMM pre-
vailance possibly indicates that there is a bound in the variable number always
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Fig.4: Fig. (a) shows matching time results for 1st experiment while Fig. (b)
shows registration time results for 1st experiment

leading to constraint-based matchmaking being faster than ontology subsump-
tion. Please note that there is a speedup with respect to incremental reasoning
which is not great as the removal of a previous request and the addition of a
new one (based on the way the experiment was conducted) in the existing KB
requires performing subsumption over a great number of offers.

Concerning registration time, it was obvious that Naive will be the best
while subMIPMM the last. However, the second expectation was not realised as
there is a specific breakpoint in SubsumesFrag performance because incremental
reasoning is not efficient due to the nature of specifications and subsumption’s
exponential complexity. The order change between Subsumes and SubMIPMM
is due to the fact that the latter performs two (complex) constraint solvings
per comparison in registration in contrast to just one for matchmaking while
obviously the former performs just one classification per comparison constantly.

5.3 2nd Experiment

In this experiment, we exploited again the randomised dataset with almost sim-
ilar control parameter values but: (a) the offer number is now constant (300)
and (b) we linearly increase the QoS term number in the specifications from 10
to 60 with a step of 10. Our main goal is to show that as the QoS term num-
ber increases, the constraint number in each QoS specification also increases;
as such the number of constraint problems to be solved by subMIPMM also
increases. In this sense, we expect that there will be a specific bound on the
QoS term number beyond which subsumption reasoning will be quicker than
pair-wise constraint-based matching. Fig. 5 shows the experiment results.
Concerning matching time, the results are in accordance to the previous ex-
periment ones for the same initial variable number. However, as soon as the
variable number goes to 20, we clearly see that SubMIPMM’s performance gets
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Fig.5: Fig. (a) shows matching time results for 2nd experiment while Fig. (b)
shows registration time results for 2nd experiment

worse and less than that of the ontology-based subsumes algorithms whose per-
formance order is not altered throughout the experiment. The order between
Naive and Incremental is also not altered with respect to the previous experi-
ment, something quite expected.

Concerning registration time, it is clear that SubMIPMM is the worst algo-
rithm as it has to increasingly solve a much higher number of constraint prob-
lems per offer registration when the number of QoS variables and respective
constraints increases. The order between the two ontology-based subsumes al-
gorithms is almost the same which is evident also by the theoretical complexity
analysis. As in the previous experiment, the order and performance of the rest
of the ontology-based algorithms is not modified.

5.4 3rd Experiment

In this experiment, we exploit the real dataset and increase the offer number from
100 to 600. So, similar settings as in 1st experiment apply with two exceptions:
(a) the QoS term number is 2 and not 10; (b) it is expected that the QoS offer
number to be matched is small and thus much more work is expected for all
subsumes-based algorithms. The main goal is to stress-test the algorithms in
real situations and inspect whether the last algorithm can outperform the rest
as it will have to perform less subsumption checking pieces of work. Figs. 6a and
6b visualise the respective results.

Concerning matching time, the results validate the complexity analysis as
all subsumes algorithms exhibit a linear behaviour while the rest an exponential
one. We also see a difference with respect to the 1st experiment results as a much
better algorithm performance is exhibited. This can be possibly due to the fact
that the variable number is less so each matchmaking piece of work takes less
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Fig.6: Fig. (a) shows matching time results for 3rd experiment while Fig. (b)
shows registration time results for 3rd experiment

time. In addition, we now see that SubMIPMM is worse than the ontology-based
approaches from which Subsumes is still the best.

Concerning registration time, the results are expected based on our assump-
tions as SubsumesFrag is the best among all subsumes algorithms followed by
Subsumes and then SubMIPMM. The behaviour of SubsumesFrag and Incre-
mental coincides, as expected. Obviously, the Naive algorithm has constantly
the best performance in all experiments according to this aspect.

Two main derivations must be highlighted from the above results: (a) a smart
ontology-based approach can outperform a constraint-based one under real cir-
cumstances and (b) Subsumes seems to be the best algorithm in the long run
for both registration and matchmaking — this can be seen from the breakpoint
at 500 in the x-axis for registration beyond which this algorithm is better than
SubsumesFrag. The latter also reveals the main weakness of even an incremental
reasoner due to the nature of the specifications that it has to address and the
exponential complexity in subsumption.

6 Conclusions

This paper has presented a pure ontology-based approach in QoS-based service
matchmaking. This approach is realised by a naive and two clever algorithms
which intelligently organise the service advertisement space. The latter two al-
gorithms significantly outperfom the naive one in matching time and even com-
pete with recent state-of-the-art QoS-based service matching algorithms. This is
clearly shown in the randomised and realistic experimental evaluation where the
cases in which our novel algorithms prevail are detected. Based on our propo-
sitions and findings, we showcase that a pure ontology-based approach when
assorted with smart algorithms and techniques can really compete with other
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QoS-based service matching approach types. So, we provide guidance to practi-
tioners under which circumstances an ontology-based approach can be exploited.

Concerning future work, the following directions are planned. First, further
investigation of new algorithms which more cleverly organise the advertisement
space. Second, checking the modification of the normal subsumption reasoning
process in order to cater for: (a) not requiring the modification of negatively
monotonic QoS terms to positive ones and (b) for more cleverly matching QoS-
based service specifications. Third, performing a more thorough evaluation with
the state-of-the-art to detect additional cases where a pure ontology-based ap-
proach should be recommended. Fourth, coupling the novel approach proposed
with a semantic functional matchmaker in order to realise a complete ontology-
based service discovery system. Such coupling could also lead to cleverly and
concurrently organising and matching the offer space according to both specifi-
cation aspects to further speed up the overall matchmaking time.
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