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Abstract—current PaaS platforms enable single or hybrid
cloud deployments. However, such deployment types cannot
best cover the user application requirements as they do not
consider the great variety of services offered by different
cloud providers and the effects of vendor lock-in. On the
other hand, multi-cloud deployment enables selecting the best
possible service among equivalent ones providing the best
trade-off between performance and cost. In addition, it avoids
cases of service level deterioration due to service under-
performance as main effects of vendor lock-in. While many
multi-cloud application deployment research prototypes have
been proposed, such prototypes do not examine the effect
that deployment decisions have on application performance.
As such, they blindly attempt to satisfy low-level hardware
requirements by neglecting the impact of allocation decisions on
higher-level requirements at the component or application level.
To this end, this paper proposes a new IaaS selection algorithm
which, apart from being able to satisfy both low and high level
requirements of different types, it also exploits deployment
knowledge offered via reasoning over previous application
execution histories to take the best possible allocation decisions.
The experimental evaluation clearly shows that by considering
this extra knowledge, more optimal deployment solutions are
derived, able to maintain the service levels requested by users,
in less solving time.

Keywords-IaaS, selection, knowledge base, rules, evaluation,
requirements, placement, location, security, performance, qual-
ity of service, deployment

I. INTRODUCTION

Cloud computing changes the way applications are de-
ployed by enabling an on-demand allocation and usage of
cheap resources. This has revolutionised application deploy-
ment as apart from cost savings, it enables a more dynamic
workload handling. Indeed, via following the on-demand
scheme, applications can control the amount of resources
reserved by demanding more resources when workload in-
creases and releasing resources when workload is decreased.

To assist in application deployment and adaptive provi-
sioning, the current platforms offer solutions focusing on
a single public or hybrid clouds. Deployment is performed
by first selecting those IaaS offerings of a cloud provider
that better satisfy the user hardware requirements for each
application component and then performing respective de-
ployment actions. Adaptation is mainly offered via speci-
fying and enforcing scalability rules which indicate when
to scale-out/in the user application. Such addressing type
is not adequate based on the following rationale. First,

scalability rules are provider-specific and tend to locally
solve the problem by not considering the whole application
context. In fact, a single scale-out of a component is not the
best possible panacea for all sorts of problems. Second, the
application is locked-in in a particular cloud provider. As
such, if the selected offerings of this provider change and
are not satisfactory any more, it is hard to migrate the user
application to a new cloud provider.

Recent research prototypes, mainly originating from Eu-
ropean research projects, address the aforementioned issues
via multi-cloud application deployment and provisioning.
The main rationale is that multi-cloud deployment has better
advantages than single-cloud deployment as: (a) the user
is not locked-in; (b) the user application can be deployed
on the best possible IaaS service combination coming from
different cloud providers which leads to a better satisfaction
of user requirements; (c) more diverse security requirements
at the application component level can be addressed by
resorting to different cloud providers able to satisfy them.

Most research prototypes follow a model-driven archi-
tecture promising to automate the various tasks involved
in multi-cloud application management. However, a similar
but inefficient approach to deployment and adaptation is
commonly followed. During IaaS selection only hardware
and cost requirements are considered while adaptation is
mainly performed via scalability rules. The PaaSage Euro-
pean project is one exception to the latter which employs
both a global and a local adaptation approach. The main
rationale is that scalability rules address the local level and
when local adaptation fails, then adaptation at the global
level is performed by reconfiguring the user application.

To address this reconfiguration by also considering high-
level user requirements, this paper proposes an IaaS selec-
tion approach advancing the state-of-the-art by: taking into
account all possible user requirements of different types
as well as allocation-to-performance mapping knowledge
to drive the selection of better allocation decisions rather
than following an almost blind approach. The types of
requirements covered concern security, placement, location,
cost and performance requirements. The mapping knowledge
comes mainly from derivations of added-value knowledge
drawn via a Knowledge Base operating over the execution
history of multi-cloud applications in the form of best
deployments of components or whole applications. This



information can enable a faster solution time as it leads
to a great reduction in the IaaS selection problem solution
space. By exploiting this knowledge type, the gap between
low and high-level requirements can be bridged while a more
informed selection can be performed by relying on the actual
performance exhibited for applications when being deployed
in certain clouds. As such, the best possible solution can
be guaranteed at almost each time point thus also catering
for reconfiguration as bad solutions that might have been
initially applied for applications are avoided in subsequent
reconfigurations of the same or equivalent applications.

The experimental evaluation conducted on a typical IaaS
selection algorithm indicates our approach superiority with
respect to the optimality of the results obtained as well as
to the speed up in solving time.

The rest of the paper is structured as follows. First, the
next section provides an overall architecture of the IaaS
selection system along with the analysis of the respective
components and their interactions. Section 3 analyses the
IaaS selection approach proposed. Section 4 explains the
way the experimental evaluation was conducted and dis-
cusses the results produced. Section 5 reviews related work.
The final section concludes the paper and draws directions
for further research.

II. SYSTEM ARCHITECTURE

Figure 1 shows an overview of the IaaS selection sys-
tem components (coloured in grey) in the context of the
PaaSage prototype platform architecture. This selection
system spans the PaaSage’s Upperware and Meta-Data
DataBase (MDDB) modules. The Upperware module trans-
forms a user request into a set of deployment actions to be
executed by the Executionware module. The Upperware and
especially its Adapter component produce these deployment
actions also in case of (global) application reconfiguration by
computing the difference between the initial application state
and the desired one. The Executionware, apart from execut-
ing respective deployment actions, monitors the application,
informs its execution history, and locally-adapts it based
on scalability rules. The Meta-Data DataBase is the main
communication medium between the components as well as
the storage place for different kinds of models, realised via
a Model Repository. Any kind of model is specified by the
CAMEL language, a multi-purpose DSL spanning different
aspects in multi-cloud application management, including
deployment, monitoring, requirements and security.

During a normal PaaSage flow in the context of a user
request session, the user non-functional and deployment
application requirements are sent to the Reasoner which
transforms them into a constraint model that is then solved to
produce a concrete multi-cloud application deployment plan.
Our system is the actual realisation of such a Reasoner com-
ponent. The concrete deployment plan produced is then used
by the Adapter to compute the set of deployment actions to

Figure 1. Architecture of PaaSage prototype including the components of
the proposed approach

be performed. In case of global adaptation, the Meta-Solver
component senses the respective need and coordinates the
production of a new deployment plan.

Our internal system architecture comprises 4 main com-
ponents. The IaaS Selector is responsible for delivering
the main system functionality (IaaS selection). It retrieves
information from the KnowledgeBase and the Model Repos-
itory mapping to the kind of extra knowledge needed to
support more clever allocation decisions as well as to normal
IaaS offerings advertised by different cloud providers. All
this information along with user requirements lead to the
construction of a constraint programming (CP) model which
includes an optimisation formula that is sent for solving to
the CP Engine. The respective solution is communicated
back to the IaaS Selector which relays it to the Adapter.

The KnowledgeBase encompasses a set of rules operat-
ing over the Model Repository content and attempting to
derive two main types of facts: (a) best deployments for
applications and (b) their components. To be able to exploit
information from equivalent applications or components, the
KnowledgeBase also includes application/component equiv-
alence derivation rules. Currently, this derivation mainly
relies on name and category matching. As soon as more
information is available for each application/component in
the Model Repository, a more rich and complete way to
match application/components will be developed focusing
on interface matching. The KnowledgeBase enforces the
rules according to a repetitive schedule of 1 hour. This
scheduling type avoids calling the KnowledgeBase for each
IaaS selection request, as rule firing usually takes time,
especially when operating over long execution histories.
Moreover, inside one hour, the changes that might have been
performed will not be so critical that could require, e.g., to
invalidate the facts obtained from previous KnowledgeBase
execution. As such, the IaaS Selector will just query the
KnowledgeBase to obtain already derived facts.

Concerning implementation, the Java programming lan-
guage has been used. The Drools Engine (www.drools.org)
was used to realise the KnowledgeBase, while the Choco CP
Engine (choco-solver.org) along with Ibex (www.ibex-lib.



org) for real-based constraints handling have been selected
as state-of-the-art open-source CP tools. The communication
with the Model Repository relied on CDOClient, offered
as an open-source component in the PaaSage prototype. In
case of the KnowledgeBase, its global java object inclusion
mechanism in rule firing has been exploited to enable its
communication with this repository by enabling the passing
of a CDOSession (i.e., an existing session between the
CDOClient and the Model Repository encapsulated by a
CDOServer – see for more details about CDO technology)
object. To also support the suitable modelling of facts,
domain code was developed to represent them such that they
can be passed into the results of KnowledgeBase queries.
The code was carefully designed to represent small pieces of
information that do not introduce communication delays in
KnowledgeBase query answering. In particular, information
already stored in the ModelRepository is not modelled but
just referenced via the use of CDOID identifiers. As such,
information that may be additionally needed for each infor-
mation piece can be retrieved from the Model Repository
via using these CDOIDs. For example, a best deployment
is represented by a specific model including references to
components and IaaS offerings which need to be fetched
by the IaaS Selector to properly represent the respective
information into the CP model to be generated.

III. APPROACH

A. Input

The main IaaS selection functionality is delivered by
generating and then solving a CP model so as to discover the
best possible solution to the current IaaS selection problem.
This generation relies on three kinds of information: (a) IaaS
offerings, (b) best deployment facts, and (c) user require-
ments. The user requirements are in the form of a cloud-
provider-independent deployment model as well as non-
functional constraints imposed on this deployment model.
Such non-functional constraints span high-level security
requirements in term of security controls, low-level security
requirements in terms of security SLOs, normal performance
SLOs, as well as location, placement and cost constraints.
All such constraints can be posed at the global application
level or at the local level of each application component.
Moreover, the user provides optimisation objectives indicat-
ing those non-functional parameters whose values need to be
optimised (e.g., minimise application response time). These
objectives are assorted with weights indicating the relative
importance that they have over each other. The Analytic
Hierarchy Process [1] is followed to product such weights.

B. Pre-Filtering

Before the constraint optimisation problem is generated,
a pre-filtering of the solution space is performed to reduce
the actual solving time via following three main steps which
are shortly analysed in the next three paragraphs.

The first pre-filtering step involves reducing the provider
space by considering high-level security requirements in
the form of security controls. Each cloud provider is able
to support a sub-set of all possible security controls from
standardised sets like the Cloud Control Matrix (CCM) one
proposed by the Cloud Security Alliance (CSA). This sub-
set should then be matched with the one required by the user
so as to guarantee that the high-level user security concerns
are met. For instance, the user might desire to know whether
the cloud provider has a consistent unified framework for
business continuity planning. This maps to the BCR-01
security control in CCM required to be supported by the
cloud provider. The security control capabilities of cloud
providers can be derived via the approach in [] which relies
on the answering of a self-assessment questionnaire called
CAIQ (developed again by CSA) which includes questions
whose answering can lead to deriving whether a specific
security control is supported by a cloud provider.

The second filtering step follows a constraint-based ap-
proach to filter the IaaS space according to hardware-related,
location and cost local requirements for each component.
As both hardware, location and cost capabilities and re-
quirements are expressed as constraints, a non-functional
matching approach can be employed. This is drawn from
the work in [2] exploiting smart structures to speed-up the
matching. In that work, the extremely fast and scalable
Unary algorithm can be exploited. As hardware and cost
requirements and capabilities map to numeric constraints, we
just need to explain the way location constraints are handled.
Location requirements and capabilities take the form of a set
which includes as members specific countries and continents
(e.g., {Ireland,Asia}. In this sense, the matching of such
requirements and capabilities maps to set matching, i.e., that
the requested location set is included in the location set
of the IaaS offering, after the respective location capability
set is enriched to include the continent per each individual
country stated. For instance, if the original set is {Irenand},
then it can be enriched into {Ireland,Europe} enabling it
to be matched with location requirements of the following
two forms: {Ireland} and {Europe}.

The third filtering step relies on the approach in [3] (see
more details there about the exact algorithm used). This
approach advocates that there are usually Pareto optimal so-
lutions per component which prevail and are solely selected
in an optimisation problem. This can be explained by the
fact that if one solution is better than the others in at least
one non-functional parameter and equivalent with respect
to the rest, then this solution will always be preferred from
the others. By considering only Pareto optimal solutions, the
solution space is significantly reduced. To support a more
meaningful filtering by using this approach, we consider
only the user high-level non-functional parameters. As cost
is always associated to an IaaS offering, the only missing
information is the mapping between the IaaS offering to the



respective component performance.
Such information can be provided in the form of a func-

tion via component profiling [4]. In particular, the respective
resources offered by a IaaS can be considered as input to
a set of functions which can be used to derive the value
of respective non-functional parameters for the application
components. Such functions can actually explicate the exact
points where the non-functional capabilities of a component
are modified. This means that such points represent resource
bounds over which such capabilities are either improved or
deteriorated. For instance, consider that the component i, if
2 cores and 1024 GB of RAM are offered, then its execution
time will be 10 seconds. However, if 4 cores and 2048
GB of RAM are offered instead, then the execution time
will be reduced to 7 seconds. Any offerings with respective
characteristics that lie between [2, 4) for the number of
cores and [1024, 2048) for the GB of RAM will map to
an execution time of 10 seconds.

C. Core IaaS Selection

Depending on the availability of added-value knowledge,
different IaaS selection problem forms can be solved. In the
case of a totally new application with components not match-
ing any other component (more usual in initial situations),
an extended constraint optimisation model called NORMAL
is produced. In case the application is not similar to already
existing ones but has components equivalent to existing ones,
a more limited constraint optimisation model called COM-
PONENT is solved for which the candidate deployments
for matched components are significantly filtered to contain
only the best ones derived. Finally, in case that applications
matching the current one exist and we have derived best
deployments for them, a simple optimisation model named
as APPLICATION is generated which attempts to select
the most optimal from the best application deployments
according to the user requirements posed.

By considering the weights provided by the user, a single
objective optimisation model formulation can be followed
which maps to maximising the weighted sum of the applica-
tion of (non-functional) parameter-specific utility functions
applied over the respective global parameter values for the
whole application. As such, multi-objective optimisation
is transformed into single-objective one enabling to both
satisfy the user preferences and avoid solving a more com-
plex optimisation problem. The single optimisation objective
considered is formulated as follows:

max

(
Q∑

q=1

wq ∗ ufq (vq)

)
where Q is the number of all non-functional parameters, q
is the index of the p-th parameter, ufq is the parameter’s
utility function and vq is the global value of the solution for
this parameter.

The utility functions format depends on the respective
parameter’s monotonicity. It has been selected according
to the approach in [5] which enables the catering of over-
constrained user requirements such that solutions are pro-
duced to minimise as much as possible the number of
user constraints violated. The utility functions are expressed
according to the following compact expression:

ufq (x)=



aq +
vmax
q −x

vmax
q −vmin

q
· (1− aq) , vmin

q ≤ x ≤ vmax
q ∧ q ↓

aq +
x−vmin

q

vmax
q −vmin

q
· (1− aq) , vmin

q ≤ x ≤ vmax
q ∧ q ↑(

aq −
vmin
q −x

vmax
q −vmin

q
· (1− aq) , 0

)
, x < vmin

q(
aq −

x−vmax
q

vmax
q −vmin

q
· (1− aq) , 0

)
, x > vmax

q

The expression indicates that the utility function returns a
utility from aq to 1.0 when the non-functional parameter
value is between the user bounds vmin

q and vmax
q , while

the utility drops from aq to 0.0 otherwise. aq represents
the elastic violation factor which can take different values
depending on the non-functional parameter such that for
more significant parameters we allow less violation degrees
and for less significant ones increased violation degrees.

The main decision variables take the form of xijk in-
dicating whether the offering k from provider j can be
used to deploy the application component i. This holds
for most of the optimisation model forms apart from the
APPLICATION one. In the latter case, the decision variables
take the form of xi indicating whether the best deployment
i is selected for the user application. Due to page restriction
reasons and as the problem format for APPLICATION is
quite simplified, from now on, the analysis concentrates on
the rest optimisation problem forms which can be expressed
in the same uniform way.

The core constraint set about the main decision variables
indicates that the sum of the values of these variables
should equal to 1 for each application component i. This
constraint is expressed as follows:

∑
j

∑
kxijk = 1. In

the case of REDUCED COMPONENT, the decisions are
actually fixed (equal to 0) for those offerings that do not
map to best component deployments. This means that less
cloud providers are eligible and less IaaS offers from these
providers can be selected.

The rest of the constraints in the optimisation problem
focus on satisfying all user constraint types and bridging
the gap between low and high-level requirements.

User placement requirements can take the following two
positive forms (while their negative form is also supported):
(a) IaaS co-location: two components should be placed in
the same VM/IaaS; (b) Cloud co-location: two components
should be placed in the same cloud.

IaaS co-location constraints can be expressed by the fol-
lowing constraint set: xijk = 1→ xi′ jk = 1. This indicates



that the same decision should be taken for two components
i and i

′
, i.e., the same cloud provider and offering should be

selected. The negative form of this requirement is expressed
by the following constraint set: xijk = 1→ xi′ jk! = 1.

Cloud co-location constraints can be expressed by
the following constraint set:

∑
j

∑
k xijk == 1 →∑

j

∑
k xi′ jk == 1. This indicates that if j cloud provider

is selected for component i, the same provider should be
selected for component i

′
. This requirement’s negative form

can be expressed similarly as follows:
∑

j

∑
k xijk == 1→∑

j

∑
k xi′ jk! = 1.

The global cost value for the whole application
is derived from the following constraint: vq =∑

i

∑
j

∑
k (xijk ∗ vqjk), where vqjk represents the

cost (indexed by parameter q) for the k IaaS offering of
provider j. This indicates that the sum of each component
cost equals the application cost, while each component’s
cost maps to the cost of the IaaS selected to host it.

While cost is additive, the remaining parameters, spanning
performance and security aspects, may not be. In general,
we expect that there is a parameter-specific function en-
abling us to map respective parameter requirements from the
component to the application level. As such, the respective
overall parameter value for the whole application can be
expressed as a function over this parameter’s values across
all application components as follows: vq = fq (vqi), where
fq is the function mapping to parameter q and vqi represents
this parameter’s value for component i.

As an example of such a function, consider the non-
functional parameter of availability. This parameter is mul-
tiplicative. This means that the function will map to the
product of availability of each application component as
follows: fq (vqi) =

∏
i vqi.

Function fq can always be determined. First, as for
many non-functional parameters, the function can be quite
obvious. Second, in case it is not, different techniques can be
applied. For example, the function can be derived from the
application’s workflow. In this case, parameter aggregation
patterns mapping to different workflow elements can be
recursively exploited to define a complex function to be used
for producing the overall parameter value. In case the ap-
plication is not workflow-based, the respective function can
be learned or derived by applying statistic-based techniques
[4]. The latter, as already stated, can also be used to bridge
the gap between the low-level hardware capabilities of IaaS
offerings and the component non-functional capabilities.

As such, the respective functions are piece-wise linear and
can be expressed via the following generic form:

vqi = fqi (Rjk) =


v1, Rjk ≤ r1

v2, r1 < Rjk ≤ r2

· · ·
vn, rn−1 < Rjk ≤ rn

Rjk represents the resources set provided by the selected
IaaS offering j of provider k for component i, vt with
1 ≤ t ≤ n are the distinct exact values the non-functional
parameter q will take when the selected IaaS resources are
bounded between the rt−1 and rt resource bounds / points.

By considering the example of execution time, the respec-
tive function could be expressed as:

vqi = fqi (Rjk) =

{
10, Rjk ≤ [2, 1024]

7, [2, 1024] < Rjk ≤ [4, 2048]

D. Discussion

The proposed IaaS selection approach can be guaranteed
to quickly produce optimal results as it significantly reduces
the solution space by including: (a) various pre-filtering steps
to filter both the IaaS and cloud provider space; (b) addi-
tional knowledge about best deployments for components
and applications. Fast solving time is also guaranteed as
the constraint optimisation model has much more constraints
than the number of variables. The proposed approach relies
on using CP techniques able to also deal with non-linear
functions. The use of such functions is essential to bridge the
gap between selected IaaS capabilities and non-functional
application component capabilities and between component
and application capabilities. This is a characteristic not
exhibited by other state-of-the-art approaches which attempt
to more or less blindly perform IaaS selection without
considering high-level user requirements.

IV. EVALUATION

The mail experimental evaluation goal was to assess the
proposed algorithms’ performance and accuracy. As such, a
typical application was considered that can run in the cloud
called SugarCRM (www.sugarcrm.com). This application
comprises 3 main components: (a) a component realising the
main business logic; (b) a container for hosting the business
logic component; (c) a relational database (MySQL). For this
application, certain hardware requirements are designated
for each component to guarantee its proper functioning.
We also employed application profiling to infer functions
mapping each hardware capabilities profile into different
component performance capabilities. Furthermore, we de-
ployed the application in the cloud by relying of a great
variety of deployment options that were enforced via the
PaaSage prototype system. This allowed us to produce the
application’s respective execution history.

We have relied on the 1 marketplace from which we
have drawn the respective offerings from a multitude of
public cloud providers. These offerings specification was re-
stricted to well-known hardware/VM characteristics (number
of cores, size of main memory and hard disk) along with the
respective cost.
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Based on the gathered offerings, a respective framework
was developed which controls both the number of providers
and of offerings per provider so as to perform the experimen-
tal evaluation in a controlled manner. This framework also
randomly produces the application requirements based how-
ever on practical ranges that have been derived according
to the application execution history. The evaluation metrics
supported are: (a) average solving time per algorithm and
(b) average accuracy per algorithm. The second metric is
calculated by dividing the overall utility of the solution
produced by the algorithm with the ideal utility. The latter
is produced via an exhaustive approach attempting to assess
the application performance under all possibilities.

An experiment comprises executing a series of steps
mapping to changing a specific control parameter’s value.
Each experiment step is performed 20 times to alleviate for
any kind of OS interference. This maps to producing 20
raw metric values per algorithm which are then averaged to
produce the algorithm’s metric value for the current step.
The experiments were performed in a laptop with: 1.8 GHz
dual core CPU, 500GB of storage and 6 GB of RAM.

The algorithms considered were the 3 ones proposed plus
a baseline mapping to a typical IaaS selection algorithm
(called RESOURCE) that considers only hardware require-
ments and capabilities by also attempting to minimise cost.
Due to the unavailability of respective code, no state-of-the-
art algorithms were considered in the evaluation.

A. Experiment Results

Due to space limitations, the results of just one experiment
are reported. This experiment involves evaluating the algo-
rithms’ performance and accuracy by increasing the number
of offerings per cloud provider, from 10 to 30 with 5 as step
of increase. Figures 2 and 3 depict the respective results.

For each aspect, the corresponding results are quite
expected. In particular, by considering solving time, the
NORMAL algorithm has the worst possible performance
which is very distant from the solving times of the other
algorithms. The performance between COMPONENT and
RESOURCE is close but RESOURCE is slightly worse as
it has a bigger candidate set for all application components.
Obviously, APPLICATION has the best performance as it
just needs to evaluate the overall utility of a small set of
solutions. In addition, it seems to be the most scalable
algorithm. The worst scalability is exhibited by NORMAL, as
expected, due to the exponential complexity of the respective
solving technique exploited.

Concerning accuracy, APPLICATION is the best algo-
rithm having average accuracy around 0.99, quite close to the
most optimal solution. The latter solution could be produced
only in case the application’s execution history was rich
enough to include all possible deployment options. This
cannot be expected to take place for a single user but for a

Figure 2. Experiment results on solving time

multitude of users in the same system with different applica-
tion requirements. By also considering the APPLICATION’s
solving time, we can deduce that the best possible trade-off
between performance and accuracy has been achieved. The
second best algorithm is COMPONENT. This is natural due
to the following reasons: (a) not all possible deployment
options are examined, so this algorithm will not have an
ideal accuracy; (b) by combining best deployments for
components, it is not certain that the respective application
deployment is the best. For instance, two components may
be derived to be deployed on the same IaaS offering.
However, by doing so, there will be interference between
them resulting in a degradation of the expected performance
leading to a non-optimal deployment. As such, only overall
meaningful combinations of component deployments can
lead to optimal application deployments.

The third best algorithm is NORMAL. This is due to the
fact that benchmarking information (or any kind of deploy-
ment knowledge) was not taken into account. As such, a set
of equivalent IaaS offerings with respect to their hardware
capabilities lead always to the same application component
performance based on the functions derived from application
profiling. However, as argued and proved by many research
approaches, equivalent IaaS offerings in different clouds
usually lead to variations in a component performance. Thus,
by neglecting deployment knowledge, such variations are
also neglected which leads to low accuracy results.

The worst algorithm with respect to accuracy is RE-
SOURCE. This is expected as this algorithm does not
consider the effect that a certain IaaS offering can have on
a component performance. On the contrary, it just considers
cost in order to perform the optimisation. This leads to also
neglecting the other non-functional application requirements,
including response time and throughput. Indeed, by inspect-



Figure 3. Experiment results on accuracy

ing the solutions produced by this algorithm, the other non-
functional application requirements are severely violated.

Concerning the accuracy behaviour, the inclusion of ad-
ditional deployment alternatives per component does not in-
fluence the APPLICATION and COMPONENT algorithms.
On the other hand, we can see an accuracy degradation for
the rest of the algorithms. For RESOURCE, this is quite
natural as more options mean more possibilities to reduce
overall cost by also neglecting the rest of the non-functional
requirements. This results in adopting quite cheap IaaS
offerings leading to quite worse component performance. As
NORMAL cannot discern between equivalent IaaS offerings
from different clouds, the same effect actually applies as
the more cheaper alternatives will always be preferred. In
addition, the great drop in that algorithm accuracy actually
reveals this effect impact, indicating that NORMAL’s accu-
racy tends to become equal to RESOURCE one.

B. Discussion

The empirical evaluation results produced reveal quite
interesting facts. First, the addition of execution history
knowledge does lead to a great increase in accuracy which
is also more robust to any kind of interference from the
IaaS offering space (e.g., increase in offers with same
hardware capabilities). Second, the clever exploitation of
such knowledge also leads to a great solving time reduction.
Better levels of scalability are also attained, especially with
respect to the APPLICATION algorithm. Third, any algo-
rithm that does consider hardware requirements and even
their cloud-independent mapping to application/component
performance cannot reach great accuracy levels. In fact, its
accuracy drops with the increase in the number of deploy-
ment alternatives. However, we believe that the benchmark-
oriented knowledge consideration can lead to increasing the

accuracy of such algorithms. This does not necessarily mean,
though, that solving time can be greatly decreased for a CP-
based algorithm. Based on the above analysis, we definitely
recommend designing IaaS selection algorithms that do
exploit both execution history and benchmarking knowledge
to increase their accuracy as well as reach better performance
levels. Such algorithms can be both used at design and
possibly runtime in order to (dynamically) produce the best
possible IaaS selection solution which is more robust to any
kind of contextual modification.

V. RELATED WORK

Many research approaches [6]–[8] focus on placing VMs
in a certain cloud with the ultimate goal to increase the
cloud provider gains. Some VM placement approaches are
even more sophisticated [9] by considering federated clouds
where one cloud can sub-contract part of its workload on a
different but partnering cloud. The VM placement problem is
similar to that of IaaS selection but not actually equivalent.
It also caters for satisfying the provider and not the user
view and respective requirements. However, some ideas
and techniques are certainly similar or equivalent and are
certainly re-used in the context of both problems.

In [10], a dynamic approach to application/service place-
ment is followed accounting for the dynamic nature for both
the demand and the IaaS service cost. This approach applies
control and game-theoretic models to dynamically find the
best application placement based on the hosting cost by con-
sidering fluctuations in application demand and IaaS price
plus the competition between application providers against a
specific set of resources. While this approach is dynamic and
considers additional information aspects with respect to our
work, it does not consider other optimisation criteria apart
from cost and does not exploit other added-value knowledge
forms that could enhance solution optimality. In addition, it
does not focus on reducing the application placement time.

In [11], there is an evaluation of application/service
placement approaches in dynamic pricing scenarios. This
evaluation highlights that exhaustive-based approaches re-
turn always the most optimal results but take quite long to
execute. On the other hand, greedy-based approaches deliver
surprisingly fast sub-optimal but satisfactory results so they
constitute the best compromise between solution quality and
execution time. The evaluation results produced by this work
are indeed valid. However, we believe that the suitability of
the algorithm also lies on the exact phase of the application
lifecycle on which it is applied. At design time, optimal
solutions are preferred with the main rationale that such
solutions are more robust when IaaS services are under-
performing. On the other hand, application re-configuration
should be fastly detected and performed such that the service
levels exhibited by the application are not deteriorated for
a long time leading to SLA violations and a decrease in
application provider gains. As such, exhaustive approaches



should be used at design time and greedy-based approaches
at runtime. Our approach can be considered as exhaustive
but is carefully applied such that the solution space becomes
quite limited. In this way, it can guarantee a faster solving
time, enabling its application at runtime.

[12] focuses mainly on the more accurate representation
of cloud provider cost models and proposes a cost-model
application placement approach over federated clouds com-
prising one private and many public clouds. This approach
relies on a brute-force algorithm examining the cost of
all possible application/service placements. As such, while
the approach can be more accurate in capturing an IaaS
service cost, it is not suitable to be applied even at design
time due to its huge solution space. However, the cost
model proposed by this work could be adopted by our IaaS
selection approach to become even more accurate.

The semantic approach in [13] deals with the optimised
selection of both virtual appliances and virtual machines
on which these appliances can be placed by consider-
ing deployment cost and time, the compatibility between
the different cloud services selected and the composition’s
global reliability in terms of the SLA confidence level
metric, evaluating cloud provider reliability with respect to
the SLA guarantees promised and the respective execution
history exhibited. The optimised selection addresses the
multi-objective optimisation problem by using evolutionary
techniques on the quest to find Pareto-optimal solutions. This
approach produces the formal user preferences indirectly by
applying fuzzy logic over linguistic terms expressing such
preferences. It also addresses an aspect not considered in
our work mapping to the compatibility of virtual appliances
to virtual machines. However, our approach can indirectly
address this aspect by imposing constraints on additional
characteristics of IaaS offerings. Our work also does not
consider the overall deployment time. We regard that this is
an important parameter that has to be optimised which needs
special addressing as: (a) the deployment time in different
clouds can vary so there should be the means to derive it
for all clouds; (b) this parameter’s value depends on the
deployment order between the application components – this
information must be derived by considering the communica-
tion requirements between these components in the overall
application deployment plan. Fortunately, CAMEL exhibits
the respective modelling capability needed.

Our work can address any kind of non-functional pa-
rameter and not just cost and reliability as in the above
approach. This enables our work to consider additional high-
level requirements that enable to perform IaaS selection
by accounting for the actual service level to be exhibited
by the application. In addition, it is exhaustive in nature,
thus able to provide optimal results in contrast to the sub-
optimal ones delivered by this approach due to the use of
evolutionary algorithms. Last but not least, the solutions
derived are optimal also based on the user preferences

while in a Pareto-optimal approach multiple solutions can be
considered optimal but only some will actually best satisfy
these preferences.

The learning-based algorithm in [14] is another IaaS
selection alternative in PaaSage. It relies on a combined
stochastic programming and learning approach to solve the
IaaS selection problem by considering that initial config-
uration solutions might be blindly selected by taking into
account only hardware and cost requirements but then as the
application execution goes on, bad solutions are recorded
and avoided in the future. As such, the application con-
figuration will gradually reach an optimum from which no
further reconfiguration can be performed unless respective
application context is modified (e.g., requirement change or
new IaaS offerings). This approach solves the IaaS selection
problem by also considering previous execution history
knowledge. However, its current problem is that it considers
cost as the main optimisation criterion and thus cannot
bridge the gap between the IaaS capabilities offered and the
high-level application requirements posed. Thus, it would be
interesting to see how this approach could evolve to bridge
this gap. This could enable evaluating both approaches to
see which one is the best possibly in different situations.

VI. CONCLUSIONS

This paper has proposed a novel IaaS selection approach
which attempts not to blindly select those IaaS services that
satisfy local hardware requirements such that the overall
cost user optimisation requirement is met. On the contrary,
this approach attempts to bridge the gap between the IaaS
capabilities selected and the overall non-functional capabil-
ities at the application level. As such, low-level and high-
level requirements are bridged allowing the user to express
additional optimisation objectives that can better account
for the usual trade-off between application performance
and cost. Apart from this, the proposed approach can deal
with a variety of different user requirements, spanning loca-
tion, component placement, security, cost and performance
requirements. This also makes the approach even more
appealing to users that do not desire to be restricted with
providing optimisation objectives on a certain subset of all
possible non-functional parameters but also place suitable
constraints that can impact the actual deployment solution.
The proposed approach is also quite fast in execution time
and accurate. This is mainly due to: (a) the advanced pre-
filtering of the solution space and (b) the exploitation of
knowledge assisting in selecting those solution parts that
have been deemed as best according to the execution history
of the current or equivalent applications.

The experimental evaluation conducted against typical
IaaS selection work highlights the main benefits of the
proposed approach: (a) it is much faster and (b) produces
results which are more optimal.



The following research directions are planned. First, a
thorough approach evaluation by also considering the effect
that some types of requirements have on solving time.
Second, connecting the deployment of an application with its
design in terms of SaaS selection. Third, applying the com-
bined SaaS and IaaS approach within the PaaSage prototype
and the respective use cases to validate and better highlight
the main approach benefits in terms of both application
deployment and reconfiguration in real circumstances.
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