
 

 
 
www.cloudsocket.eu   

 

 

 

 

BPAAS ALLOCATION AND 
EXECUTION ENVIRONMENT 

PROTOTYPES 
D3.4 

 

 

 

Editor Name Frank Griesinger (UULM) 

Submission Date December 31, 2016 

Version 1.0  

State FINAL 

Confidentially Level PU  

 

 

Co-funded by the Horizon 2020 

Framework Programme of the European Union 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 2 of 58 

EXECUTIVE SUMMARY 

The output of this deliverable are the research prototypes that were developed to be fed back to the stable branch 

of the Execution Environment and Allocation Environment, as soon as they reach the needed maturity. The 

development is based on a selection of the discussed and presented blueprints in Deliverable D3.3. The 

prototypes deal with interesting research problem that appear in the context of BPaaS management. They are 

covering the modelling of BPaaS bundles, the discovery and supportive mapping of services, the component 

orchestration at the PaaS level and the synergic cross-layer BPaaS monitoring and adaptation. 

This report: (1) provides a problem statement and a running example to exemplify the needs and solutions in the 

research related to the BPaaS Execution and Allocation Environments, (2) explains the BPaaS modelling 

approaches towards multi-level cloud support and BPaaS adaptation rule specification, (3) analyses the (BPaaS) 

allocation research towards smart service discovery and composition as well as a supportive deployment 

modelling based on DMN, and (4) explicates the run-time management support over BPaaS with respect to multi-

level deployment and provisioning as well as cross-layer monitoring and adaptation. 

The CAMEL cloud-domain language was enhanced to surpass the state-of-the-art and satisfy the requirements 

from the use cases of the project. To this end, it was extended with the capability to model PaaS services and to 

include them in the description of cross-layer (BPaaS / application) deployment plans as well as specify advanced 

adaptation rules with sophisticated composite adaptation plans / strategies. Furthermore, an extensive SLA 

support in terms of an OWL-Q extension has been realised. 

The Smart Service Discovery and Composition prototype enables precisely and semantically discovering services 

based on both the functional and non-functional aspects as well as to compose them according to global non-

functional user requirements (e.g., cost, QoS, and security). For service composition, a sophisticated service 

selection algorithm has been proposed which is able to cover simultaneously both the IaaS and SaaS level. The 

DMN-based CAMEL description approach aims at supporting the definition of mappings between the several 

levels of the BPaaS life cycle, such as business plan, workflow or executable workflow. 

The aforementioned CAMEL extensions are currently being realised in the prototypes for PaaS orchestration and 

cross-layer monitoring and adaptation and will be reflected in the Cloud Provider Engine and multiple other 

components of the Execution Environment, including the Monitoring and Adaptation Engine. 

The stable as well as the research version of the prototypes are partly available free for download from the 

CloudSocket webpage (cloudsocket.eu/download). The Cloudiator application is constantly merged with the 

stable branch to provide best possible stability but newly integrated features are in an experimental state. The 

other described prototypes will be released under the specified license of each partner. 

  

 

  



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 3 of 58 

PROJECT CONTEXT 

Workpackage WP3: Business Process as a Service Research 

Task T3.2: BPaaS Allocation and Execution Environment Research 

Dependencies Input to D3.5, T3.3 and WP4 

 

Contributors and Reviewers 

Contributors Reviewers 

Frank Griesinger, Daniel Seybold, Jörg Domaschka 
(UULM), Kyriakos Kritikos (FORTH), Chrysostomos 
Zeginis (FORTH), Román Sosa Gonzalez (ATOS) 

Andreea Popovic (YMENS) 

Knut Hinkelmann (FHNW) 

Antonio Gallo (FHOSTER) 

 

 

Approved by: Stefan Wesner (UULM) as WP 3 Leader 

 

Version History 

Version Date Authors Sections Affected 

0.1 November 22, 2016 Daniel Seybold (UULM) Initial version, TOC  

0.2 November 29, 2016 Frank Griesinger (UULM) All 

0.3 December 05, 2016 Roman Sosa (ATOS) PUL 

0.4 December 07, 2016 Kyriakos Kritikos (FORTH) All 

0.5 December 08, 2016 Daniel Seybold (UULM) DMN 

0.6 December 11, 2016 Frank Griesinger (UULM) All 

1.0 December 15, 2016 Frank Griesinger, Daniel 
Seybold (UULM) 

All, cleaning 

 

  



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 4 of 58 

Copyright Statement – Restricted Content 

This document does not represent the opinion of the European Community, and the European Community is not 

responsible for any use that might be made of its content. 

This is a restricted deliverable that is provided to the community under the license Attribution-No Derivative 

Works 3.0 Unported defined by creative commons http://creativecommons.org 

You are free: 

 

to share within the restricted community — to copy, distribute and transmit the work within the 
restricted community 

Under the following conditions: 

 

Attribution — You must attribute the work in the manner specified by the author or licensor (but not 
in any way that suggests that they endorse you or your use of the work). 

 
No Derivative Works — You may not alter, transform, or build upon this work. 

With the understanding that: 

Waiver — Any of the above conditions can be waived if you get permission from the copyright holder. 

Other Rights — In no way are any of the following rights affected by the license: 

o Your fair dealing or fair use rights; 

o The author's moral rights; 

o Rights other persons may have either in the work itself or in how the work is used, such as publicity or 
privacy rights. 

 
Notice — For any reuse or distribution, you must make clear to others the license terms of this work.  
This is a human-readable summary of the Legal Code available online at: 

http://creativecommons.org/licenses/by-nd/3.0/ 

  



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 5 of 58 

TABLE OF CONTENT 

1 Introduction and Problem Statement .............................................................................................................. 9 

1.1 Project Context and Blueprint selection ................................................................................................. 9 

1.2 Running example ................................................................................................................................. 10 

1.3 Structure .............................................................................................................................................. 11 

2 BPaaS modelling prototypes......................................................................................................................... 12 

2.1 PaaS/SaaS support of CAMEL ............................................................................................................ 12 

2.1.1 Example ........................................................................................................................................... 17 

2.2 SLA support of OWL-Q ........................................................................................................................ 18 

2.2.1 Features .......................................................................................................................................... 18 

2.2.2 Implementation ................................................................................................................................ 19 

2.2.3 Set-Up ............................................................................................................................................. 19 

2.2.4 Future Work ..................................................................................................................................... 19 

2.2.4.1 SL Transitioning ...................................................................................................................... 19 

2.2.4.2 SLA Composition .................................................................................................................... 19 

2.3 SRL update on CAMEL ........................................................................................................................ 20 

2.3.1 SRL Update Analysis ....................................................................................................................... 20 

2.3.2 Examples ......................................................................................................................................... 24 

2.3.2.1 Cloud Bursting ........................................................................................................................ 24 

2.3.2.2 Service Replacement .............................................................................................................. 25 

2.3.3 Future Work ..................................................................................................................................... 27 

2.3.3.1 PaaS Support .......................................................................................................................... 27 

2.3.3.2 Adaptation Task Coverage ..................................................................................................... 27 

3 Allocation Environment Prototypes ............................................................................................................... 28 

3.1 Smart Service Discovery and Composition .......................................................................................... 28 

3.1.1 Features .......................................................................................................................................... 28 

3.1.2 Architecture...................................................................................................................................... 30 

3.1.3 Setup ............................................................................................................................................... 33 

3.1.4 Future work ...................................................................................................................................... 33 

3.1.4.1 Service Composition ............................................................................................................... 33 

3.2 DMN to CAMEL Mapping ..................................................................................................................... 33 

3.2.1 Features .......................................................................................................................................... 35 

3.2.2 Architecture...................................................................................................................................... 36 

3.2.3 Setup ............................................................................................................................................... 37 

3.2.4 Future work ...................................................................................................................................... 37 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 6 of 58 

4 Execution Environment Prototypes ............................................................................................................... 38 

4.1 PaaS Orchestration .............................................................................................................................. 38 

4.1.1 Colosseum ....................................................................................................................................... 38 

4.1.1.1 Features .................................................................................................................................. 40 

4.1.1.2 Architecture ............................................................................................................................. 40 

4.1.1.3 Setup....................................................................................................................................... 41 

4.1.1.4 Future work ............................................................................................................................. 41 

4.1.1.4.1 Integration into Existing Abstraction Layer ......................................................................... 41 

4.1.1.4.2 Discovery of PaaS capabilities........................................................................................... 41 

4.1.2 Shield ............................................................................................................................................... 41 

4.1.3 PaaS-Unified-Library (PUL) ............................................................................................................. 41 

4.1.3.1 Features .................................................................................................................................. 42 

4.1.3.2 Architecture ............................................................................................................................. 42 

4.1.3.3 Setup....................................................................................................................................... 44 

4.1.3.4 Future Work ............................................................................................................................ 44 

4.2 Adaptation Management ...................................................................................................................... 44 

4.3 Synergic Cross-Layer Monitoring Framework ...................................................................................... 45 

4.3.1 Features .......................................................................................................................................... 45 

4.3.2 Architecture...................................................................................................................................... 45 

4.3.3 Setup ............................................................................................................................................... 46 

4.3.4 Future work ...................................................................................................................................... 47 

4.3.4.1 Dynamic monitoring ................................................................................................................ 47 

4.3.4.2 Synergic Cross-Layer Monitoring Framework Evaluation ....................................................... 47 

4.3.4.3 PaaS Monitoring ..................................................................................................................... 47 

4.4 Synergic Cross-Layer Adaptation Framework...................................................................................... 47 

4.4.1 Features .......................................................................................................................................... 48 

4.4.2 Architecture...................................................................................................................................... 48 

4.4.3 Setup ............................................................................................................................................... 50 

4.4.4 Future work ...................................................................................................................................... 50 

4.4.4.1 Adaptation Action Coverage Extension ................................................................................... 50 

4.4.4.2 PaaS Support .......................................................................................................................... 50 

4.4.4.3 Synergic Adaptation Framework Validation & Evaluation ....................................................... 50 

5 Conclusion and future work .......................................................................................................................... 52 

5.1 Summary .............................................................................................................................................. 52 

5.2 Future Work ......................................................................................................................................... 52 

6 References ................................................................................................................................................... 53 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 7 of 58 

Annex A: CAMEL fragment ............................................................................................................................. 54 

Annex B: List of Tools ..................................................................................................................................... 56 

Annex C: CAMEL Models ................................................................................................................................ 57 

PaaS Deployment CAMEL Model ..................................................................................................................... 57 

Cloud Bursting CAMEL Model .......................................................................................................................... 57 

Service Replacement CAMEL Model ................................................................................................................ 58 

  



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 8 of 58 

LIST OF FIGURES 

Figure 1 Context to the architecture of the CloudSocket platform ......................................................................... 10 

Figure 2 - Sending Christmas Greetings Business Process .................................................................................. 11 

Figure 3 - IaaS/PaaS requirements for the ChristmasCardDesigner ..................................................................... 11 

Figure 4 – Affected components by the BPaaS modelling prototypes. .................................................................. 12 

Figure 5 - The deployment meta-model class diagram focusing on the PaaS extension ...................................... 13 

Figure 6 - CAMEL fragment focusing on the type level of the PaaS deployment example ................................... 18 

Figure 7 - Snapshot of CAMEL focusing on new and updated classes in the adaptation/scaling package ........... 22 

Figure 8 - The cloud bursting scenario for the Christmas Card Sending BPaaS ................................................... 25 

Figure 9 - Fragment of CAMEL focusing on the description of the bursting scenario ............................................ 26 

Figure 10 - Fragment of CAMEL focusing on the description of the service replacement scenario ...................... 26 

Figure 11 - Prototypes in the BPaaS Allocation Environment ............................................................................... 28 

Figure 12 - The overall architecture of the Smart Service Discovery and Composition Module / Blueprint ........... 30 

Figure 13 - The architecture of the Service Discovery Module .............................................................................. 32 

Figure 14 - The architecture of the Service Selection Module ............................................................................... 32 

Figure 15 - DMN modelling tools: ADOxx (up) and Camunda Editor (down) ......................................................... 34 

Figure 16 - Connected DMN tables for ChristmasCardDesginer deployment ....................................................... 35 

Figure 17 - DMN to CAMEL Mapping web interface .............................................................................................. 36 

Figure 18 - DMN-to-CAMEL-Mapper high level architecture ................................................................................. 37 

Figure 19 - Main affected components in the BPaaS Execution Environment. ..................................................... 38 

Figure 20 - Database scheme of Cloudiator for the PaaS integration. .................................................................. 39 

Figure 21 – High-level Cloudiator architecture. ..................................................................................................... 40 

Figure 22 – Service that was deployed on OpenShift Online via PaaS Unified Library ......................................... 42 

Figure 23 – Old architecture of the PaaS Unified Library. ..................................................................................... 43 

Figure 24 - Updated architecture of the PaaS Unified Library. .............................................................................. 43 

Figure 25 - The Cloudiator framework enriched by an adaptation management. .................................................. 44 

Figure 26 - The architecture of the synergic cross-layer monitoring framework .................................................... 46 

Figure 27 - The architecture of the synergic cross-layer adaptation framework .................................................... 48 

 

  



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 9 of 58 

1 INTRODUCTION AND PROBLEM STATEMENT 

This deliverable introduces the research contribution for the Allocation and Execution Environment in form of 

selected prototype implementations of the Allocation and Execution Environment Blueprints of D3.3 [1]. As 

highlighted in D3.3 the blueprints are categorized in BPaaS Modelling, Allocation Environment and Execution 

Environment blueprints and hence, the analysed prototypes of this deliverable follow the same structure.  

1.1 Project Context and Blueprint selection 

The BPaaS Allocation and Execution Environment prototypes present the technical realisation of the respective 

Blueprints of deliverable D3.3 in order to showcase their technical feasibility and the actual enhancement to the 

CloudSocket platform. As described in deliverable D3.3, each of the three blueprint categories contains multiple 

research assets, though not all assets will be implemented as prototypes. Therefore, in cooperation with WP4, a 

selection of prototypes was agreed on for each blueprint category. The selection was driven by novelty from the 

WP3 perspective and also by functional benefits from WP4 perspective.  

The selected prototypes focus on extension of the BPaaS deployment and orchestration capabilities by including 

the PaaS level within the PaaS Orchestration prototype in the BPaaS Execution Environment. This extension also 

affects the BPaaS Modelling on the CAMEL level and the BPaaS bundle creation in the BPaaS Allocation and 

Execution Environments.  

The BPaaS Allocation Environment prototypes target the ease of creating the technical BPaaS bundle 

specification by applying the prototypes of Smart Service Discovery and Composition and DMN-to-CAMEL 

Mapping.  

Additional BPaaS Execution Environment prototypes target the holistic monitoring and adaptation across all cloud 

service levels (from the infrastructure to the workflow level) by applying the Synergic Cross-Layer Monitoring 

Framework and the Synergic Cross-Layer Adaptation Framework. 

Figure 1 shows the high-level architecture of the CloudSocket platform and highlights the components, which are 

enhanced with research prototypes. The yellow boxes refer to the BPaaS Modelling prototypes, the red boxes to 

the Allocation Environment prototypes and the green boxes the Execution Environment prototypes. 

As this deliverable focuses on the technical realisation of the selected prototypes, for each prototype a brief 

feature description with its integration into the existing environment and the benefits for the CloudSocket platform 

is provided. 

In order to ease the technical details for each prototype, an architectural overview is provided, containing the 

internal components and the exploited interfaces to existing environment components. This also includes a setup 

guide, explaining all technical requirements and configuration steps.  

In addition, for each prototype a future work section provides an overview of possible enhancements in the scope 

of WP4, if the prototype is going to be integrated into the production environment1. 

 

                                                           
1 The „production environment“ is a stable instantiation of the CloudSocket tool-suite, that remains in a stable state. These 
will further be elaborated in T4.5. 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 10 of 58 

 

Figure 1 Context to the architecture of the CloudSocket platform 

The presented blueprints are also correlated to those presented in D3.5 [7]. This particularly applies for the 

Adaptation, Monitoring and Cloud Provider Engines from which respective information is harvested for the 

analysis purposes in [7]. More details about the respective blueprints for the BPaaS Evaluation Environment 

research prototype can be found in [7], while specific information about the input required for the latter research 

prototypes proper functioning can also be found in D3.3 [1].   

1.2 Running example 

In order to ease the understanding of the research prototypes over the current CloudSocket solutions, we use the 

ChristmasCardDesigner service of the “Sending Christmas Greetings” business process [2] as a running example 

to demonstrate the respective prototype features. The complete business process of “Sending Christmas 

Greetings” is shown in Figure 2, where the activities of the Christmas Card Designer are shown in the top lane. 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 11 of 58 

 

Figure 2 - Sending Christmas Greetings Business Process 

As the ChristmasCardDesigner is a software component and hence orchestrated via the Cloud Provider Engine, 

a set of technical requirements have to be ensured to run this service. Technically, the ChristmasCardDesigner 

service is a Java based servlet, running inside a Java Application Server. Hence, this service fits as an example 

for a software component deployed on IaaS or PaaS. A simplified example set of technical requirements on IaaS 

and PaaS level is shown in Figure 3, including the underlying resources and the actual software stack to run the 

service.  

 

Figure 3 - IaaS/PaaS requirements for the ChristmasCardDesigner 

With further elaboration, we also show that such a component is also amenable for being adapted according to 

different scenarios based on the respective broker requirements posed.   

1.3 Structure 

The prototypes for BPaaS modelling are described in Section 2. This comprises the CAMEL and the OWL-Q 

extensions. Section 3 contain the prototypes concerning the Allocation Environment, i.e. the Smart Service 

Discovery and Composition, and the DMN-to-CAMEL-mapping. Prototypes for the Execution Environment that 

were developed for the cross-level management of cloud applications during run-time are described in Section 4. 

Section 5 concludes this deliverable with a summary and a supply of near future work directions. 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 12 of 58 

2 BPAAS MODELLING PROTOTYPES 

The prototypes concerning the BPaaS modelling are relevant across all Environments of CloudSocket (see 

Figure 4), since the specified models are used throughout most of the components. A modeller describes a 

certain service, which is later enriched with annotations that are also used in the adaptation phase, and 

subsequent in the execution phase. This section introduces modelling prototypes concerning the definition of 

cloud applications on different cloud layers and its behaviour in terms of adaptation to a certain context on run-

time. 

 

Figure 4 – Affected components by the BPaaS modelling prototypes. 

2.1 PaaS/SaaS support of CAMEL  

The cloud computing stack comprises currently three main levels: IaaS, PaaS and SaaS. Two of them, namely 

IaaS and SaaS, have been already accommodated in the previous versions of CAMEL. However, PaaS gains a 

significant momentum lately due to the advantages that it enables users to focus on the development and 

provisioning of the core application functionality without requiring to deal with any information regarding the 

underlying infrastructure. To this end, to also enable exploiting this cloud service type, a PaaS extension in 

CAMEL was designed and implemented. This extension was a result from the study that was performed in the 

context of the previous deliverable, D3.3, as well as the review over the state-of-the-art and the corresponding 

meta-models and modelling languages that have been proposed.  

The PaaS CAMEL extension was based on the following principles:  



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 13 of 58 

(a) same modelling style should be preserved,  

(b) backward compatibility with respect to previous CAMEL versions should be guaranteed as much as 

possible. 

These principles reduce the learning curve of the modeller while they map to the least possible changes in the 

implementation code of the system exploiting CAMEL with respect to the previous modelling features of this 

language. As such, the code developer can focus mainly on extending the code to exploit the new PaaS-related 

modelling feature of CAMEL. 

The PaaS CAMEL extension focuses on the following aspects: 

(a) description of requirements on PaaS services;  

(b) description of PaaS types and instances mapping to certain PaaS capabilities;  

(c) capabilities to configure the lifecycle of a component via a PaaS API.  

Inline to this extension, the component description in CAMEL was slightly improved to enable incorporating 

accordingly the main PaaS notions as well as mapping to the respective components that can be covered by a 

PaaS. In the following, we describe the extensions made according to the above aspects and respective 

component enrichment. The class diagram which depicts this extension is shown in Figure 5.  

 

 

Figure 5 - The deployment meta-model class diagram focusing on the PaaS extension 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 14 of 58 

To incorporate the inclusion of main PaaS notions and still follow the type-instance pattern, the 

ExternalComponent and ExternalComponentInstance classes (see also SaaS extension in D3.3) where sub-

classed with respective PaaS-related classes, namely PaaS and PaaSInstance. This is due to the fact that a 

PaaS is considered as an external component with respect to the actual user application which is exploited to 

provide hosting and runtime capabilities. The actual software that is deployed on a SaaS component is again an 

internal component as it is part of the application. To reduce the modelling effort to the minimum, for each new 

PaaS-related class, the least possible information to characterise it has been generated. A PaaS, similarly to the 

VM class, is related to a set of platform and infrastructure requirements, named as PaaSRequirementSet, which 

need to be satisfied and acts as a placeholder for a PaaS component that provides a hosting port via which other 

components can be actually generated and hosted. This means that, e.g., DB and servlet container components 

could be hosted by that component, where such a hosting maps to respective templates of components that can 

be instantiated and run in the Cloud which relate to the actual components needed by the user application. For 

such components, configuration information is not needed, in the sense of running scripts, in order to install and 

run the components. A PaaS should be able to cater for this, provided that the respective needed component 

information is specified in CAMEL. More details about this will be supplied later on when the notion of a 

PaaSInstance is analysed.  

We should also highlight here that we have also included a modification to the ProviderRequirement which is 

included in the hardware requirement set (VMRequirementSet) of a PaaSRequirementSet. This modification 

relates to the capability to either specify a concrete set of cloud providers to be used for the IaaS/PaaS selection 

& respective hosting or an indication about the type of the cloud (provider) (i.e., private or public). In both cases, 

we actually reflect a selection over either PaaS and/or IaaS services depending of course on the deployment (and 

other types of) requirements of the corresponding application. The type of a cloud provider is specified by 

explicating the respective member of a newly introduced enumeration called ProviderType in the requirement 

package/sub-DSL.   

The PaaSRequirementSet should be used in an equivalent way as in the case of VMRequirementsSet. In 

particular, a global PaaSRequirementSet can be posed at the deployment model level that will hold for all the 

PaaSes that are defined in this model. Moreover, a (local) PaaSRequirementSet can be linked to a PaaS to 

specify local PaaS requirements. Both requirement types (local and global) can be exploited in conjunction or 

even independently. A PaaSRequirementSet is associated to an actual PaaSRequirement and an 

IaaSRequirementSet to reflect that it represents both platform and infrastructure-related requirements. The former 

places requirements on the actual PaaS characteristics, while the latter, on the corresponding IaaS 

characteristics which can be exploited and offered under this PaaS.  

Various PaaS characteristics have been modelled, basically inspired by the selection criteria in paasfinder.org. 

These criteria include:  

(a) the platformTypes, where we can basically see that most of the PaaS exploit either OpenShift or 

CloudFoundry,  

(b) the runtimeTypes, where a vast variety of runtimes has been considered, such as Java and Cobol,  

(c) the frameworkTypes, such as Java EE or Play, 

(d) the scalingTypes where different types of scaling can be supported from manual (either horizontal or 

vertical) to automatic,  

(e) the pricingTypes which could be metered, fixed or free,  

(f) the statusTypes explicating the status of the respective API offered in terms of either being in 

production or in alpha or beta versions and finally 

(g) the uploadTypes which cover the way uploading can be supported, including git, maven or 

gradle.  



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 15 of 58 

The multiplicity of all these properties is from 0 to * indicating that the modeller can skip one criterion or provide 

multiple values for it. However, the semantics can be different depending on the respective attribute at hand. 

Multiple values for attributes like pricingTypes means that the modeller imposes a disjunctive constraint on these 

values. On the other hand, for attributes like runtimeTypes, the semantics is that all respective values should be 

covered (conjunctive constraint). 

Before entering details about the instance level, we need to highlight that the InternalComponent was modified to 

include a new enumerated attribute called type which provides insight about the actual kind of the component. 

The following members of the InternalComponentType enumeration are envisioned for now: DB, 

MESSAGE_QUEUE, LOAD_BALANCER, WORKFLOW_ENGINE, SERVLET_CONTAINER, SERVLET and 

APPLICATION_COMPONENT. The first five members map to respective services offered by a PaaS. In this 

sense, internal application components with such types could be hosted by a PaaS. The SERVLET member 

maps to the InternalServiceComponent class as it indicates an internal software component offered as a service. 

In this sense, instances of the latter class will have their type fixed to SERVLET. In case that an internal 

component does not map to the first six types, then it is considered as a normal software component which 

should be just installed and run, without actually being offered as a service. In this case, the type of such a 

component should be APPLICATION_COMPONENT, which also represents the default enumeration value for 

the type attribute. 

InternalComponent was also extended to incorporate versioning information. In particular, we now allow to 

indicate what is the minimum and maximum version of a component. Such information is not needed in case of 

normal application components (i.e., mapping to the APPLICATION_COMPONENT type). However, in case of 

components covered by a PaaS, we need to have the name and the version range for that component. 

Otherwise, we would not be able to find and select the respective service capability provided by the PaaS to be 

selected. As such, this name and versioning information is considered as a kind of software requirement over the 

respective PaaS capability, thus influencing the selection of a PaaS. While name information is already covered 

by the Component class, versioning information for components was captured via the introduction of the 

InternalComponentRequirement class in the requirement package of CAMEL. An internal component is also 

associated to 0 or 1 instances of this class to enable mapping it to its respective versioning requirement. This 

class, apart from capturing the actual range limits of the component version, includes two Boolean attributes, 

which explicate whether these limits should be included or not. This enables us to perform a more precise search 

over the PaaS capabilities. Let us now provide a concrete example for this extension. For instance, in case of a 

Tomcat servlet container, it is important to know the name of the component (i.e., Tomcat) and the respective 

range needed by the user, such as [6.0,7.0). This can allow us to match and select, e.g., the Anynines PaaS2 

which enables exploiting a tomcat container with a version between 6.0.* and 7.0.*.      

Entering now the instance level, a PaaSInstance represents a certain instance of a PaaS that maps to a particular 

PaaS provider. The latter mapping is established by referring to the respective feature of the CAMEL provider 

model of this provider. Moreover, a PaaSInstance is also characterised by a registryID to enable the respective 

environment or component exploiting the CAMEL model to retrieve information about the respective PaaS from 

the corresponding entry in the Registry.  

The special types of components that need to be hosted by a PaaS should be properly configured. However, this 

must not be performed at the type level where the respective software requirement has been provided. It can only 

be applied at the instance level, when the most suitable PaaS has been selected that fulfils all the deployment 

requirements set. However, when specifying the PaaSInstance, it cannot be directly related to the component 

instances that it should offer. This is only performed via the HostingInstance class. Thus, based on this analysis, 

the latter class seems to be the most suitable place to enforce the mapping between the needed component 

                                                           
2 European Cloud Foundry Platform, https://paas.anynines.com/ 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 16 of 58 

(instance) and the respective PaaS capability. To preserve CAMEL modelling style as well as guarantee 

backwards compatibility, it was decided to sub-class the HostingInstance class with the PaaSHostingInstance 

one. Now the latter class includes an association to the respective PaaS feature and an attribute-value pair that 

reflects the concrete desired capability. For instance, by continuing the example of the servlet container 

component and supposing that this component has one instance to be hosted by a respective PaaS instance, a 

PaaSHostingInstance will be created that will refer to the component instance's required hosting port and the 

PaaS instance's provided hosting port. This PaaSHostingInstance would map to the "Tomcat" feature (which 

would be a sub-feature in the feature hierarchy of the PaaS feature) in the respective provider model of the 

provider offering the PaaS (instance) as well as to its version attribute imposing the value of "6.5". In this sense, 

the hosting instance will denote in the end that the PaaS instance should host a tomcat component with 6.5 as its 

version.     

The last modification in CAMEL for the PaaS extension concerns updating the configuration of the lifecycle of 

internal components to exploit additional possibilities which come via the use of DevOps tools as well as PaaS 

APIs. The extension is aligned with the PaaS extension proposal in D3.3 but slightly modifies it by relying on the 

following assumptions:  

(a) DevOps tools allow to install modules onto the local system but still requires to have configuration 

commands in place;  

(b) the PaaS APIs are heterogeneous and usually require an own model-based description of the 

application/component and the environment.  

As such, we came up with the decision to:  

(a) not explicitly model DevOps configurations as classes as they are just special instances of script-based 

configuration. To this end, we have created one class named as ScriptConfiguration which includes 

references to all possible lifecycle commands as well as to the respective OS for which this configuration 

can be applied. To also cater for DevOps-based configurations, an additional field was incorporated in 

the same class to denote the name of the DevOps tool to be exploited;  

(b) the PaaSConfiguration is modelled separately, thus requiring also to create a common super class for 

PaaS and script-based configuration called Configuration. This means that the previous version of the 

Configuration class becomes ScriptConfiguration and a new (abstract) class is generated with the same 

name that does not incorporate any special information. The actual content of PaaSConfiguration is 

platform independent. As such, we abstract away from information that could include platform-specific 

configuration directives which depends on the actual API being offered by the PaaS provider.  

To be as generic as possible, the only information that has been covered for a PaaS configuration is the 

following:  

(i) the actual API as a String to be exploited,  

(ii) the version of this API,  

(iii) the endpoint of the API, if it is external to the actual running platform, and  

(iv) the download command for the application and environment models which should conform to the API-

specific meta-model.  

Apart from the first attribute, which is obligatory, the rest are considered optional. This is especially true for the 

last one as we can also consider that the respective provisioning platform that should exploit the CAMEL model 

should be able to derive a respective API-specific model for the components and environments concerned out of 

it. As such, we avoid enforcing modellers to perform similar modelling tasks twice but allow them to concentrate 

on and finalise the deployment model of their application. 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 17 of 58 

2.1.1 Example 

By relying on the well-known Christmas Card BPaaS use case, we now provide a specific example of how the 

respective CAMEL model could be specified. Suppose that the Card Designer component needs to be deployed 

over a (public) PaaS which needs to support the CloudFoundry PaaS platform and metered-based charging. The 

Card Designer is a java-based application component that needs to be hosted as a service by a respective 

servlet container, like Tomcat. In addition, due to major location constraints of the customers of the broker, the 

BPaaS should be deployed in Europe. By considering the current capabilities of the existing PaaS providers, the 

respective PaaS which best satisfies the user requirements could be found via employing a PaaS discovery 

service. Such a service could take the form of a PaaS service discovery algorithm (a potential extension of the 

algorithm proposed in Section 3.1) or an external PaaS search engine, like paasify.it. In any case, the set of 

required features for the respective BPaaS could lead to the situation where a few or even one PaaS service 

could be exploited, namely the Atos Cloud Foundry. In this case, the respective CAMEL model would take a 

particular form, which is shortly analysed in the following while a detailed description of the model in XMI form is 

provided in the appendix of this deliverable.  

By considering the original IaaS-based deployment model for the Card Designer component, some specific 

differences can be observed:  

(a) Now the deployment model comprises two components, instead of one, as the tomcat container (with 

type SERVLET_CONTAINER) is also explicitly designated to be offered by the respective PaaS service.  

(b) The Tomcat container is hosted by the selected PaaS while the actual Card Designer component is 

hosted in turn by this container.  

(c) A PaaS-based configuration is given for the corresponding Card Designer component.  

(d) The PaaS node/type in the CAMEL deployment model is associated to a respective set of requirements. 

These requirements include:  

i. a PaaS requirement which involves PRODUCTION as statusType for the PaaS, METERED as 

its pricingType, CloudFoundry as its platformType, and Java as its runtimeType;  

ii. a location requirement which indicates that the location of the PaaS should be in Europe and  

iii. a provider requirement indicating that the provider type should be PUBLIC.  

The respective visualisation of this example focusing on the type level is shown in Figure 6 while the whole 

CAMEL model of this example is provided in the appendix.   



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 18 of 58 

 

Figure 6 - CAMEL fragment focusing on the type level of the PaaS deployment example 

 

 

2.2 SLA support of OWL-Q 

The SLA OWL-Q extension, named as Q-SLA, has been extensively analysed in D3.3 [1] while it has resulted in 

a particular publication [4]. To this end, the goal of this section is to summarise the main features of the language 

as well as provide useful implementation details enabling the exploitation of this language even outside the 

context of this project.  

2.2.1 Features 

The main features of Q-SLA can be summarised in the following list: 

 Relies on OWL-Q and thus inherits its excellent coverage of all measurability aspects (e.g., metric, unit 

and value type). 

 QWL-Q and this Q-SAL are semantic languages enabling the syntactic, semantic (based on rules) and 

constraint-based validation of SLA models. 

 Enables the participation of third (non-signatory) parties in the SLA and the assignment of respective 

duties on them (e.g., monitoring of SLO metrics, evaluation of SLOs).  

 Enables the specification of both Service Levels (SLs) and Service Level Objectives (SLOs), where SLs 

can be considered as a logical combination of SLOs.  

 Enables the dynamic transitioning of SLs to cater for the following situations: (a) cover the low-level SL 

delivered during maintenance periods; (b) allow a signatory party to transition from one SL to another 

one when a change of requirements (e.g., service customer needs to address now a greater number of 

clients) or another kind of condition occurs (e.g., percentage of violations within a certain period is above 

a threshold).  

 Enables the specification of both rewards and penalties to hold when the promised SLO is either 

surpassed or violated, respectively. 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 19 of 58 

 Covers the modelling of the service price model which is connected also to the rewards and penalties 

specified.  

 Enables the capturing of critical situations which require a special handling over the SLA (e.g., 

renegotiation or cancelling). Both the conditions mapping to these situations as well as the handling 

actions can be specified in this case. 

 Supports the specification of hierarchical SLAs through the modelling of parent-child relationships 

between SLA contracts.  

2.2.2 Implementation 

This OWL-Q extension has been fully realised as a sub-facet of the original specification facet. To this end, a 

corresponding OWL file has been created mapping to this sub-facet in which all the features have been realised 

by building on top of the elements involved in the specification and the other OWL-Q facets. SLAs can now be 

specified by using any ontology editor, such as Protege3. To facilitate this specification, a mid-level ontology has 

been constructed based on OWL-Q which includes a basic set of domain-independent non-functional terms, such 

as quality attributes and metrics. Therefore, such terms can actually be re-used in the specification of the 

respective SLOs (which map to conditions over such non-functional terms).   

A Q-SLA/OWL-Q (bidirectional OWL-to-Java code) parser is underway in order to enable the programmatic 

specification of SLAs. This can enable not only building any kind of editor on top of OWL-Q but also on the fly 

generation of SLA content via automatic programs. Such a feature could be quite useful in the context of 

negotiation where automated agents need to negotiate the SLA terms and thus be able to modify SLAs on 

demand according to the negotiation strategies of the participants for whom they act on behalf. 

2.2.3 Set-Up 

The whole OWL-Q specification, including the SLA extension, and the respective OWL-Q parser are available in 

the UULM's git repository4. The whole documentation of the latter component will also be made available in the 

project wiki5.  

The parser component will map to a Java maven project. In this sense, one can just clone the respective git 

repository and involve usual maven commands to compile as well as run the parser. Of course, we foresee 

mainly the use of the parser inline in another component. As such, mainly the compilation of that component (via 

"mvn clean install" command) will be mostly relevant.    

2.2.4 Future Work 

2.2.4.1 SL Transitioning 

Currently, Q-SLA enables the transitioning over whole SLs. In the near future, we will examine whether it makes 

sense to enable a more fine-grained transitioning at the SLO level. This could be explored by also considering the 

CloudSocket use cases to enable a respective validation of the corresponding modification necessity. Once this is 

done and the validation is positive, then we will of course implement the required modification.  

2.2.4.2 SLA Composition 

Q-SLA is able only to specify SLA hierarchies by connecting them via parent-child relationships. This can be 

considered as basic support to SLA composition. In the near future, we plan to extend Q-SLA to be able to 

specify pure SLA compositions in which respective dependencies between non-functional terms in different SLA 

                                                           
3 http://protege.stanford.edu/ 
4 https://omi-gitlab.e-technik.uni-ulm.de/cloudsocket/owlq_parser 
5 https://www.cloudsocket.eu/common-understanding-wiki/-/wiki/Main/OWL-Q+Parser 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 20 of 58 

levels can be expressed. In this way, Q-SLA will certainly become a SLA language which provides the best 

possible support to all activities in the SLA/(cloud) service lifecycle.  

2.3 SRL update on CAMEL 

2.3.1 SRL Update Analysis 

The Scalability Rule Language (SRL) in CAMEL has focused only on scaling issues based on the respective 

requirements that it had to cover in the PaaSage project. However, by considering the feedback that has been 

obtained in that project as well as the context of the CloudSocket project and the requirements that it brings about 

(e.g., support cross-layer adaptation, cover additional adaptation actions at different layers), it was decided to 

evolve the scaling package of CAMEL in order to transform it into a full-fledged adaptation DSL which covers the 

specification of cross-level and advanced adaptation rules thus further advancing the state-of-the-art in cloud 

adaptation modelling. 

 

The SRL update analysis starts with explicating the main drivers for the scaling package evolution via the supply 

of three main adaptation scenarios and then we proceed with the actual detailed description of this package 

evolution. Please consider that CAMEL and especially the scaling package has been shortly analysed in D3.3 [1] 

so there is no point in repeating the same information in this deliverable.  

 

The following three main adaptation scenarios are now covered by this CAMEL extensions: 

● cloud bursting: this is a requirement from PaaSage which is not captured in SRL as in PaaSage, a 

different intermediate coverage of this scenario is attained via dynamic application reconfiguration (e.g., 

new hosting of a component in a public cloud VM where the VM and of course the components are 

already described in the deployment model). However, in the case of the CloudSocket project, there is 

no explicit deployment reconfiguration phase which involves a certain reasoner component that implicitly 

can detect the need of introducing a new component hosting. On the contrary, a rule-based approach is 

followed which requires explicitly specifying the respective adaptation action that has to be performed. 

As such, in the case of CloudSocket, we need to define an adaptation action which introduces the 

hosting relationship between the application component and respective public cloud VM. 

● multi-component scaling: this is again a requirement originating from PaaSage which depends on the 

level of deployment granularity (single component per VM or multiple components per VM). In particular, 

it concerns the fact that within a particular scaling it is not certain which components from an existing VM 

should be scaled. Moreover, this is not apparent from the semantics of the component description in 

CAMEL. We could take the following directions to realise this: (a) communication requirements could 

signify the needed semantics such that when two components need to communicate locally, then both 

have to be scaled and not just one; (b) we consider each component independent from the other and 

explicitly state which components from a respective VM have to be scaled. Via (b) we could consider a 

case where the local communication semantics might need to be broken to better cover the respective 

scaling requirements. 

● cross-layer adaptation: based on the need in CloudSocket to support cross-layer adaptation which 

involves the orchestrated execution of adaptation actions at different layers, CAMEL should be extended 

with the capability to specify a whole adaptation workflow comprising multiple adaptation actions in 

different layers. By assuming that the event pattern detection is already well covered in the context of 

scaling / adaptation rules, then this extension along with the requirement to cover well the description of 

individual adaptation actions at different layers have to be accommodated in this scaling package 

evolution.  

 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 21 of 58 

By considering the above three main adaptation scenarios to be supported, the respective modifications 

performed in the CAMEL scaling package, which are depicted in Figure 7, were the following: 

● Mapping a horizontal scaling action to multiple components to enable scaling multiple components per 

VM. In this way, we can actually cover three possible cases: (a) single component scaling per VM; (b) 

multiple component scaling per VM; (c) combinations where each scaling action even in the context of 

one VM is mapped to a different adaptation actions. In this way, in this latter case, we can scale two 

components together in one VM as well as scale separately the third remaining component in a new 

instance of this VM. The respective limits of scaling map to the component level so there is no need to 

further update this - in case that we need to scale one or more components where the scale limit for one 

of these components has been reached, then the scaling action cannot be completed.  

● Renaming of some classes was performed to denote the change of scope of this package as well as a 

certain naming pattern (mapping to the fact that if something is a task or an action, the "task" postfix in 

its name does not have to be repeated). To this end, the ScalabilityModel became AdaptationModel, the 

ScalingAction became Scaling, the HorizontalScalingAction became HorizontalScaling, and the 

VerticalScalingAction became VerticalScaling. 

● Removal of ActionType enumeration as it is redundant. Decided to create specific classes which map to 

all possible individual adaptation actions, including new ones like service replacement and migration of 

VMs/components. As this enumeration is also needed in the specification of organisational permissions, 

only a small part of it was moved to the organisation package. This part has been named as 

PermissionActionType and it now includes only two members, the READ and WRITE action types. 

● Right part of scalability rule should now map to the specification of a workflow of adaptation actions. 

Please find in the sequel the way this has been modelled.  

 

Apart from renaming ScalabilityRule to AdaptationRule to designate the extension of its applicability, such a rule 

is now associated to one AdaptationTask, i.e., any kind of adaptation task / action which is able to represent 

either atomic adaptation tasks or whole adaptation workflows. To this end, this latter class has been split into two 

main subclasses: SimpleAdaptationTask, which signifies an atomic adaptation task, and 

CompositeAdaptationTask, which signifies a composite adaptation task or workflow. The AdaptationTask is 

actually a renaming of the Action class, while it has been made abstract and is now linked to the respective 

responsible which should perform the corresponding adaptation task (which should usually be a service or any 

kind of web-based component which can be informed for the need to perform the action and is of course able to 

execute it). In order to cover the case of an adaptation task failure, an AdaptationTask is associated to a recovery 

workflow. This mapping is covered by associating an adaptation task to another adaptation task that represents 

the recovery workflow to be executed. 

 

The CompositeAdaptationTask represents an adaptation workflow. This class is associated to the set of sub-

tasks to be executed by this adaptation workflow and can be categorised in turn into more concrete classes, 

namely SequentialAdaptationTask, ParallelAdaptationTask, ConditionalAdaptationTask and 

SwitchAdaptationTask. The SequentialAdaptationTask and ParallelAdaptationTask represent workflows which 

execute their sub-tasks in sequence or in parallel, respectively. As such, their name and the respective 

association to their sub-tasks (with the corresponding reference order) are enough to denote their semantics. The 

ConditionalAdaptationTask is a conditional workflow with the semantics of applying a specific event out of which 

one from two alternative adaptation tasks can be selected: the first task is selected when the event does occur 

while the second task when this event has not actually occurred. As such, this kind of composite adaptation task 

maps to one Event, whose specification is already covered in the adaptation package/meta-model, and needs to 

be associated to only two sub-tasks whose order does play a role (remember first task maps to event 

occurrence). Finally, the SwitchAdaptationTask maps to a workflow which applies a switch kind of statement over 

the respective adaptation possibilities. In this respect, we need to evaluate such statement over a dynamic 

variable which can take multiple values instead of just two as in the case of a condition (in 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 22 of 58 

ConditionalAdaptationTask). In this sense, the most logical selection of the respective construct for representing 

such a dynamic variable is the MetricFormulaParameter which can represent both metrics and formulas over 

such metrics. Apart from this parameter kind, a SwitchAdaptationTask is associated to a list of ValueToTask 

elements which denote the mapping from a value of the metric formula parameter to a respective adaptation task 

(only from the list of sub-tasks of the composite adaptation task).  

 

 

Figure 7 - Snapshot of CAMEL focusing on new and updated classes in the adaptation/scaling package 

 

As already indicated, a SimpleAdaptationTask represents an individual adaptation task. As this class is abstract, 

it has been accompanied with the specification of respective sub-classes which map to concrete individual 

adaptation actions that can be performed on the IaaS, SaaS & WfaaS levels, thus also covering two new levels. 

In particular, we have developed the following new classes: ComponentDeployment, Migration, 

ServiceReplacement, TaskModification, WorkflowModification, TaskAddition, TaskOmit, TaskReplacement, 

WorkflowRecomposition, EventCreation and Reporting. 

 

ComponentDeployment concerns the deployment of a component in a VM. This is different from the scaling as 

the component and/or the VM might not be part of the original and applicable deployment model of the application 

/ workflow. The latter means that there can be components and VMs that might be described but are not 

connected to each other, i.e., a component is not hosted on any other component and the VM does not host any 

component. In this case, the goal of this class is to tie these two component types together and enable the 

respective creation of the component instances and the enforcement of their relationship. The class, thus, 

includes mainly two associations: one to the (internal) component to be deployed and one to the VM on which the 

component will be hosted. Here the realisation of the component deployment adaptation action is implied to 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 23 of 58 

include two main steps: (a) reasoning over which VM flavour to select for the respective component (based on the 

respective requirements posed), in case this VM has not been reasoned before (the VM is not used in other 

component hostings provided that the component is not associated to specific requirements that can have an 

effect over the VM flavour selection); (b) actual component deployment via the respective cloud orchestration 

framework. Please note here that we consider that both the component and the VM are described in the 

deployment model and are thus only associated to this adaptation task. 

 

The incorporation of this class could provide support to cloud bursting scenarios (initial rule to start the 

deployment of an existing component to a certain (public) VM, subsequent rule could also handle the scaling of 

this components in the public cloud, if needed) as well as the incorporation of new component deployments in the 

currently running deployment model of an application. For instance, there can be a case where a scaling of a 

component needs to be accompanied with the addition of a LoadBalancer. The latter component could be part of 

the original deployment model at the type level but not part of the actual concrete deployment of the application. 

The introduction of this component could cater cases where the load between the old and previous instances of 

the component scaled needs to be balanced.  

 

Migration concerns the migration of one or more components from an old VM to a new one. To specify this, three 

associations have been created: (a) one to the old VM; (b) another to the new VM; (c) to the components to be 

migrated. The latter association is optional. In case it is absent, then this means that all the components hosted in 

a particular VM need to be migrated. Moreover, there is a boolean attribute which denotes the multiplicative 

semantics of the migration. In particular, when this attribute takes a true value, then this means that all instances 

of the components hosted in all instances of the old VM should be migrated to new instances of the new VM; 

otherwise, only the current instance(s) affected are to be migrated to a new instance of the new VM. This 

distinction should of course be correlated to respective metrics which operate on either the type (i.e., class-based 

metrics) or the instance level (i.e., instance-based metrics), respectively. 

 

ServiceReplacement concerns the replacement of one service with another one in the context of one or more 

(BPaaS) workflow tasks. To this end, the following pieces of information are specified in this class: (a) a reference 

to the service to be replaced. In this case, we refer to a Component in order to have the two possible cases 

mapping to the replacement of an internal service component or an external SaaS one; (b) a reference to the 

replacement service - here we have included two attributes that can be exploited only when we need to explicate 

exactly which service to use for the replacement. Otherwise, the system can internally identify which concrete 

service will be used for that replacement. These attributes are the newService and serviceSpecification. The first 

attribute can refer to the endpoint of the service or the id of the respective Registry entry or any other pointer that 

can identify properly the new service. To this end, it has been mapped to a String-based type. The second 

attribute has been included to cover the case of a service composition. In that case, additional information needs 

to be provided, mapping to the specification of the service workflow that has to replace the previous service. In 

this latter case, as the composition has been produced dynamically, there is no registry entry for the description 

of the composite service; (c) the ids of the tasks where the respective replacement will apply.  

 

A WorkflowModication is an abstract class that denotes any kind of modification that can be performed on the 

overall workflow level. Currently, only one concrete subclass of that class has been generated which is named as 

WorkflowRecomposition with the main target to recompose a part of a specific workflow. In this sense, the 

workflow part is designated by two associations: one to the starting element and one at the ending element on 

which the replacement will take place. Another association is then used to retrieve the actual sub-workflow 

specification that will replace the existing one. 

 

TaskModification is an abstract class and a sub-class of WorkflowModification which denotes any kind of 

modification that can be performed at the task level. This class is associated to the id of the workflow element that 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 24 of 58 

directly encloses the task to be modified as well as to the position in that element of the task at hand. This 

abstract class is sub-classed by three concrete classes, namely TaskAddition, TaskReplacement and TaskOmit. 

The first subclass represents the case of inserting a new task in the workflow at the designated position; thus this 

class is associated to the description of the task to be incorporated. The second subclass has the same content 

with the previous one but different semantics. In this case, the goal is to replace one task, which lies in a well 

designated position in the workflow, with another one whose specification is provided to be incorporated in the 

current workflow specification. The third sub-class represents the case that an existing task is omitted from the 

current execution of the running workflow (instance). In this case, no additional information needs to be provided, 

as the required information is already covered by the parent abstract class. 

 

EventCreation represents a concrete action with the main purpose to create an event and report it in the 

measurement & evaluation system. This action is associated to the respective event to be created (which is 

specified naturally via SRL). Specific additional information communications might be implementation-specific and 

do not need to be provided at the current moment. 

 

Reporting represents an action that reports a message to a component (e.g., a UI one). This could be considered 

as similar to EventCreation with the main exception that the content of the message can be arbitrary. In addition, 

here the recipient should also be clarified as well as the way to contact him/her in order to send the message. As 

such, the following information needs to be provided for this class: (a) message: the content of the message to be 

distributed as a String; (b) recipients: a list of Strings which could be interpreted as names of components or 

email addresses or any other kind of information that can distinguish the recipient position/address; (c) protocol: 

the actual protocol/means for communication which could be for example "email". 

 

The overall set of modifications proposed on SRL make it an advanced adaptation language which is able to 

cover a plethora of adaptation scenarios. This language also inherits the main event combination mechanisms of 

the original SRL language that could represent the triggering conditions of these scenarios while also it is 

equipped with additional adaptation modelling capabilities that make it suitable to compose adaptation actions on 

different levels of abstraction. Of course, the SRL language is substantially extended and modified such that it is 

not totally compatible with its previous version. This is a small penalty we have to pay in order to make this 

language a truly adaptation one.   

 

2.3.2 Examples 

2.3.2.1 Cloud Bursting 

Description. Suppose that we have still the Christmas Card Sending process where now both service 
components (card designing and email sending) are internal. In this case, bursting the card designer would not 
make sense as this component is not heavily used and does not seem to create a major utilisation issue on the 
respective VM on which it is deployed. On the other hand, if the same email service is used by the same client 
many times, there is of course the danger that this service can overload the respective VM. As such, it might be 
required to scale the latter service component by allocating yet another VM. However, such a scaling might not 
succeed if the private infrastructure on which both components have been deployed is already full. To this end, 
the email service component would need to be burst.  
 
Concerning the original deployment model in CAMEL, the two BPaaS service components will be placed on 
different private cloud VMs which are named as CardDesignerVM and EmailServiceVM, respectively. To also 
support cloud bursting, a new VM named as EmailServicePublicVM is introduced which will map to certain 
requirements over a public cloud (i.e., those quantitative hardware requirements also prescribed in the case of 
EmailServiceVM) and will host a new instance of the email service component. One communication is specified in 
the original CAMEL deployment model: one from the card designer service component to the email service one.   



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 25 of 58 

 
To support cloud bursting, we rely on the following scenario: when the EmailServiceVM's average CPU is above 
70% and the private cloud quota limit is reached, then a new instance of the email service component will have to 
be created and hosted in an instance of the EmailServicePublicVM while also a communication link between this 
new instance and the card designer instance will have to be created. Such an adaptation could be specified in the 
form of a component deployment adaptation task where the component is the email service one and the VM is 
the EmailServicePublicVM.     
 
The architecture at the type level of the respective example is depicted in the following figure where we can 

clearly see the components utilised, the VMs that they can host them and the respective new hosting link that is 

to be created upon the email service bursting.  

 

Figure 8 - The cloud bursting scenario for the Christmas Card Sending BPaaS 

Implementation. A respective CAMEL fragment for this scenario is visualised in Figure 9, while the whole CAMEL 

model in XMI form is provided in the appendix of this deliverable. 

2.3.2.2 Service Replacement 

By considering yet the Christmas Card Sending BPaaS use case, we consider now a scenario where one service 

component is under-performing or becomes unavailable and we need to replace it with another one. We rely on 

the assumption that the email service has a response time of more than half of a minute which indicates that it is 

possibly overloaded. In this case, we consider that both the card designer component and the email service one 

have been deployed in one cloud, namely the Omistack cloud operated by UULM. We also assume that we have 

here two opportunities for service replacement: (a) the email service is replaced with another one; (b) another 

instance is exploited from the same service which has been created in the context of another client. In case of (a), 

the service interface can be altered. As such, we would need to also modify the BPaaS workflow, which is 

currently not supported by the CloudSocket research prototype. In case of (b), the service interface is not 

modified but just its endpoint. However, we need to keep account of the service instances that are dynamically 

created or destroyed for each service in the Registry component of the CloudSocket prototype. As (b) is more 

appealing, then we follow it by also considering that the Cloud Provider Engine is able to dynamically modify the 

contents of the (service) registry.  

 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 26 of 58 

 

Figure 9 - Fragment of CAMEL focusing on the description of the bursting scenario 

 

Based on the above analysis, the respective adaptation rule to be specified in the CAMEL model will prescribe 

the following: If raw response time for email service component is greater than 0.5 minutes, then replace the 

current instance with a new one. This will involve specifying a ServiceReplacement object which will indicate that 

the previousService property value would map to the email sending internal service component while the 

newService attribute value will be empty to indicate the preference that the system should identify automatically 

the most appropriate replacement service. Please also note that the taskIds will also be empty, signifying that this 

change will have an effect over the whole BPaaS workflow instance and thus on all tasks being realised by the 

email service component instance.  

 

Figure 10 - Fragment of CAMEL focusing on the description of the service replacement scenario 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 27 of 58 

 

The respective part of CAMEL which is used to specify the adaptation rule is depicted in Figure 10, while the 

whole CAMEL model is provided in the appendix of this deliverable.   

2.3.3 Future Work 

2.3.3.1 PaaS Support 

Currently, the SRL extension considers that the BPaaS has been mapped to a workflow which includes the 

exploitation of SaaS services and the usage of underlying IaaS resources to support its execution. To this end, 

the adaptation on the PaaS level is currently not considered. This is a rather rational choice as the respective 

PaaS extension in CAMEL has been developed in parallel with this extension. However, in the near future and 

possibly in the context of this project, we plan to further enhance this SRL extension to be able to address the 

missing level in the cloud computing stack.  

2.3.3.2 Adaptation Task Coverage 

The coverage of adaptation tasks has followed a pragmatic approach based on the actual coverage in the 

literature, especially with respect to corresponding proprietary frameworks and research prototypes. This 

corresponds to the most usual adaptation tasks at the IaaS level, the most frequently realised adaptation task at 

the SaaS level and well-known and supported adaptation tasks at the workflow level (useful in dynamic or critical 

situations (e.g., emergency) or when respective tasks are handled by humans (and can thus involve even 

delegation and splitting of a task functionality)). This pragmatic approach is assorted with respective adaptation 

capabilities that are or will be supported by the CloudSocket implementation. In the near future, when more 

advanced scenarios are to be addressed, then we do not preclude a further extension of SRL in order to cover 

their appropriate modelling and implementation of the corresponding extra adaptation capabilities.  



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 28 of 58 

3 ALLOCATION ENVIRONMENT PROTOTYPES 

The prototypes of the BPaaS Allocation Environment will be used in the Allocation editor and KPI & SLA Editor 

(see Figure 11). The following prototypes Smart Service Discovery and Composition and DMN to CAMEL 

Mapping will be integrated in order to support the allocation decisions. The first approach allows an automatic 

allocation decision based on technical requirements, whereas the latter can be used by business consultants to 

have an increased usability while customizing an existing BPaaS bundle to specific use cases. Examples for this 

supportive behaviour are to help the system or user to find appropriate implementations for the workflow, or 

define rules to adapt a certain BPaaS bundle to the needs of a customer. In addition, these prototypes will ease 

the usage of the new features PaaS orchestration and cross layer service adaptation by reducing the complexity 

of the BPaaS bundle creation process. 

 

Figure 11 - Prototypes in the BPaaS Allocation Environment 

3.1 Smart Service Discovery and Composition 

The Smart Service Discovery and Composition blueprint enables both the discovery of cloud services at different 

levels of abstraction as well as the concurrent selection of both SaaS & IaaS services for service-based workflow 

concretisation according to the broker functional and non-functional requirements. The latter type of selection has 

been deemed as a necessity in order to support the discovery of a real optimised solution by considering that the 

selection at a lower level has an effect over the selection of a higher level at the cloud computing stack.  

A detailed analysis of the blueprint can be found at Deliverable D3.3 [1]. In this section, we provide a summary of 

the blueprint, report its current status and specify important implementation and exploitation aspects for it while 

we unveil its short-term future extensions.  

3.1.1 Features 

The blueprint actually comprises two main components or sub-blueprints dedicated to cloud service discovery 

and selection, respectively.  As such, the respective feature presentation is done per each main component of 

this blueprint.  

Concerning service discovery, the main features of the blueprint can be summarised as follows: 

 Supports both functional and non-functional semantic service discovery to cover all possible aspects in 

service description. The functional aspect is covered by OWL-S while the non-functional one by OWL-Q. 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 29 of 58 

 Smart service discovery is offered which enables boosting the service matchmaking time. Smartness is 

realised at two levels: (a) the transactional combination of aspect-specific matchmakers according to 

different composition semantics (currently parallel composition maps to the fastest implementation); (b) 

at the individual, aspect-specific level, each service matchmaker utilises smart structures in order to 

better organise the service advertisement space and accelerate the service matchmaking.  

 The blueprint enables not only the matchmaking but also the management (update, insertion, deletion) 

of the functional and non-functional service specifications.   

 A Java and REST API are offered to enable the service discovery and service specification 

management.   

We should highlight that the second feature was partially analysed in D3.3. The focus was then on the 

combination of different techniques for non-functional service matchmaking. In the meantime, to also support 

functional and thus combined service discovery, respective work has been conducted in order to explore the 

possible ways functional and non-functional service matchmaking algorithms can be combined in order to speed 

up the service discovery time. The main result of that work, where more details can be found in [5], were 4 main 

orchestration algorithms: (a) sequential with two versions focusing on first performing functional service 

matchmaking and then non-functional one. The main difference between these two versions is that one filters on 

the fly the services mapping to the functional results based on the user non-functional requirements while the 

second creates a respective repository out of the non-functional advertisements of these services and then 

applies a specific non-functional algorithm over them; (b) parallel where both functional and non-functional 

service matchmaking are performed in conjunction and then their common results, mapping to the same set of 

services, are joined. The main advantage of this algorithm is that it can stop whenever the fastest from the two 

aspect-specific algorithms returns no discovery result while its overall execution time is restrained only from the 

slowest of the two aspect-specific algorithms being exploited; (c) subsumes where a subsumes-based hierarchy 

between the service advertisements is created in order to speed up the matchmaking time in a similar fashion 

with respect to the non-functional service matchmaking implementation (see more details in D3.3), where now a 

combined matchmaking metrics is exploited taking into consideration both service description aspects; (d) 

subsumedBy where a similar hierarchy is constructed which now relies on the opposite to subsumes relation.   

As far as service selection is concerned, a respective algorithm has been already developed (see D3.3 & [8]) 

which exhibits the following features: 

 concurrent selection of both IaaS and SaaS services to deliver purely optimal selection solutions for the 

service-based BPaaS workflow. 

 catering also for different realisation alternatives for a SaaS service: (a) either an external SaaS service 

can be exploited or (b) an internal one which also requires being hosted in a public or private cloud. In 

the latter case, the internal service code would be either purchased or has been developed internally by 

the broker organisation. 

 consideration of a great variety of non-functional requirements, including performance and reliability 

ones (over, e.g., response time, throughput, availability and reliability), security ones at both a coarse (in 

terms of security controls) and a fine-grained level (in terms of security SLOs) and cost.  

 capability to map low-level non-functional capabilities to higher-level ones in the form of dependency 

functions to cover any dependency gap within the respective optimisation problem. 

 capability to handle both linear and non-linear constraints as well as both real and integer-based 

variables (mapping to the coverage of the previous functions as well as aggregation ones over non-

functional metrics (from component/service to application/workflow level)). 

 in case that a specific time deadline has to be provided, the respective solver can be configured to take 

it into consideration, thus being able to more rapidly produce solutions with a potential penalty over 

solution optimality.   



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 30 of 58 

 capability to handle over-constrained user/broker requirements via the use of flexible utility functions that 

enable a slight violation of user requirements in that case in order to always produce a meaningful 

solution to the broker. 

 takes into account offerings which promise not just one but a range of values for each non-functional 

term considered - this is essential in order to be able to capture service level variability in highly dynamic 

environments.  

Please note that the selection algorithm has been recently extended [6] to enable fixing parts of the problem 

according to the knowledge that is derived by a Knowledge Base by applying rules over the application execution 

history. While this feature is thus enabled, it cannot be immediately exploited in CloudSocket since the respective 

knowledge derivation functionality has not yet been realised in the context of T3.3 (see also D3.5 [7]). Once the 

latter realisation is done, then of course this feature will be exploitable, enabling the production of solutions in a 

much faster way.  

3.1.2 Architecture 

The architecture of the blueprint is an agglomeration of the architectures proposed in the respective publications 

in [5, 8] as well as in D3.3 [1]. This architecture, which is depicted in Figure 12, includes three main levels: UI, 

business logic and database while it certainly embraces service-orientation. It comprises the following 

components at the highest level:  

 The UI component offers the respective visualisation and editing means to enable the initialisation of 

service discovery and workflow concretisation interactions. At the background, it performs REST calls 

over the next component, the REST SDS service.  

 The REST SDS (Service Discovery and Selection) service encapsulates the whole functionality of the 

blueprint and enables its programmatic access via REST function calls. This functionality is offered via 

two different modules which focus on the two main parts of service discovery and selection.  

 The Service Discovery Module enables performing functional and non-functional service discovery via 

the supply of a combined OWL-S and OWL-Q request.  

 The Service Selection Module actually realises the service-based workflow concretisation functionality. 

As service discovery is a prerequisite for service-based workflow concretisation, this module is actually 

able to invoke the Service Discovery Module in order to obtain all possible (service) alternatives for each 

BPaaS workflow task. 

 

Figure 12 - The overall architecture of the Smart Service Discovery and Composition Module / Blueprint 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 31 of 58 

This high-level architecture is further elaborated by concentrating on the internal architecture of the latter two 

modules. The latter architecture is also able to unveil the third level which was not apparent in the high-level 

architecture. 

The architecture of the Service Discovery Module is depicted in Figure 13. As it can be seen, the Specification 

Processor is the component which takes the user/broker input and attempts to validate it both syntactically, 

semantically as well as in a constraint-based manner. Once user input is validated, its non-functional part is also 

aligned according to a specific non-functional alignment algorithm operating over a (non-functional) term store. 

Both the aligned non-functional specification and the functional one are passed to the Compositor which then 

issues them to the respective aspect-specific matchmakers, which are named as Functional Matchmaking 

Module and NonFunctional Matchmaking Module. Depending on the type of functionality requested, different 

actions are actually performed. In case of service registration / updating / deletion, the corresponding 

matchmaker performs the required update and then informs the Compositor for its main result. For service 

registration and deletion, transactionality is guaranteed by the latter component. This means that if for some 

reason, an aspect-specific registration / deletion fails, then the other aspect-specific registration is also rolled 

back to maintain a consistent state in the whole system. To assist in transactionality enforcement, a Combined 

Registry can be consulted and managed by the Compositor which enables storing the mappings between 

functional and non-functional specifications of services.   

In case of service matchmaking, the Compositor realises the service discovery's composition logic by being able 

to execute different orchestration algorithms, as reported in D3.3 [1, 8], such as sequential and parallel ones. In 

any case, the facilities of the respective matchmaking modules are exploited in order to support the required 

aspect-specific discovery functionality. Once both aspect-specific discovery results are obtained, then these are 

relayed back from the Compositor to the Specification Processor.   

The Functional Matchmaking Module is a slight modification of the service matchmaker that has been developed 

in the Alive European project [9]. Apart from being semantic, this matchmaker employs a smart structure and 

respective dynamic encoding scheme for domain ontologies that enables discovering concept ancestors or 

descendants in O(1) time, thus greatly speeding up the functional service matchmaking time where such 

ontology-based functions are highly needed and used. More about the internal details of this matchmaker can be 

found in [9]. For simplification reasons, the internal architecture of this module can be seen as a combination of 

two main components: (a) the functional matchmaking algorithm and (b) the Functional Store as the storage 

medium for the functional specification of services.  

The Non-Functional Matchmaking Module is an agglomeration of different non-functional matchmaking algorithms 

which are able to exploit two different techniques to perform the matchmaking:  

(a) constraint programming / solving and  

(b) ontology subsumption.  

All these algorithms have been extensively reported in D3.3 [1]. The respective internal architecture of this 

module was also reported in that deliverable. However, due to the integration with the combined service 

discovery work, this architecture was simplified as some of its components were moved out of this module at the 

level of the overall the Service Discovery Module. In this sense, the updated architecture of this module can be 

seen in Figure 13. As it can be seen, it comprises 6 main components. The Broker is responsible for orchestrating 

the appropriate actions towards conducting the service matchmaking. It actually realises internally the service 

matchmaking logic and exploits the facilities of other components in order to realise part of the needed 

functionality. In particular, in case of constraint-based service matchmaking, the respective service request needs 

to be transformed into a constraint (satisfaction) problem (CSP) via the Transformer. This CSP is then exploited 

in order to realise a corresponding matchmaking metric which also takes into account the CSP model of the 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 32 of 58 

corresponding non-functional service specification by exploiting the facilities of the Constraint Solver. In case of 

ontology-based service matchmaking, an Ontology Reasoner is exploited in order to infer the subsumption 

hierarchy between a pair of service request and offer or between the service request and all the non-functional 

offers, depending on the respective ontology-based non-functional service matchmaking algorithm to be 

exploited.  

 

Figure 13 - The architecture of the Service Discovery Module 

In case constraint-based service matchmaking is enabled via configuration, then obviously all the service offers 

should have been previously processed and transformed into CSP models which are stored in a Constraint Model 

Repository. On the other hand, in case that ontology-based service matchmaking is enabled, the respective 

service offers are stored in an internal Semantic Repository.   

 

Figure 14 - The architecture of the Service Selection Module 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 33 of 58 

The Service Selection Module follows a simplified architecture, depicted in Figure 14, which comprises three main 

components: (a) the Service Selection Controller is responsible for the orchestration of the components involved 

in the service-based workflow concretisation. This component first invokes the Input Processor in order to 

construct the appropriate input for the actual optimisation problem construction. This means that based on the 

respective semantically-annotated service-based BPaaS workflow, the Input Processor performs service 

discovery for all the tasks involved according to both task-based functional and non-functional broker 

requirements provided in the form of annotations. This also means that this component takes into account the 

BPaaS CAMEL model in order to discover those IaaS offerings which satisfy the respective requirements posed 

for the BPaaS internal service components. Once all input has been gathered and extended, the Service 

Selection Controller invokes the Optimisation Problem Constructor with it in order to transform it into a constraint 

optimisation problem. The later problem is finally sent by the Service Selection Controller to the Constraint Solver 

for solving.     

3.1.3 Setup 

The whole blueprint can be found as a Java project in the UULM's git repository6. As it is a maven project, it can 

be compiled and run via issuing well-known maven commands. The core functionality is offered as a REST 

service. Thus, the final compilation result is a war file which can be then deployed on a servlet container like 

tomcat. The UI component has not been yet developed. It is speculated whether it will be a new component or 

rely on the respective UI component of the Allocation Environment. Full documentation of this component can be 

found in the project wiki7.     

3.1.4 Future work 

3.1.4.1 Service Composition 

In cases where there is no SaaS able to realise the functionality of a particular BPaaS workflow task, then there is 

a high need to implement service composition functionality. The latter implementation can rely on our previous 

work on semantic service planning [10] which however relies on the existence of rich service specifications. An 

alternative would be to either use this semantic planning work based only on I/O or, if this is not supported, adopt 

a semantic I/O based planner. In any case, we need to check here the following: (a) whether there is a real 

scenario for which service composition is needed in the context of the CloudSocket use cases; (b) in case that 

such a scenario exists, inspect the actual way service composition functionality could be exploited. In the latter 

case, the most natural way would be to obtain all possible abstract service plans able to realise the required 

BPaaS workflow task functionality and select the best possible one according to service plan criteria. In this way, 

the BPaaS workflow will be actually extended to include new tasks for which service selection will then need to be 

applied.  

3.2 DMN to CAMEL Mapping 

The DMN-to-CAMEL-Mapper prototype [1, 14] reduces the technical complexity of the software component 

allocation by mapping high-level business requirements to the low-level cloud-specific description.  As business 

experts still require technical assistance for consuming cloud services and allocating the software components, 

the DMN-to-CAMEL-Mapper aims to create a way to semi-automatically handle the software component 

allocation and configuration based on high-level parameters. In this respect the Decision Model and Notation 

(DMN) [13] is applied. DMN is an industry standard for modeling and executing decisions that are determined by 

business rules. The DMN standard provides a human-readable common notation for modelling and automating 

decisions. We choose decision tables (DTs) to represent decisions as these are well known to business experts. 

                                                           
6 https://omi-gitlab.e-technik.uni-ulm.de/cloudsocket/service_discovery_composition 
7 https://www.cloudsocket.eu/common-understanding-wiki/-/wiki/Main/Smart+Service+Discovery+and+Composition+Blueprint 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 34 of 58 

This approach enables the modelling of cloud applications by using non-technical business values relating to 

business requirements, which will be mapped to the technical CAMEL model. 

 

 

Figure 15 - DMN modelling tools: ADOxx (up) and Camunda Editor (down) 

 

In terms of the running example, the DMN-to-CAMEL-Mapper can be used for creating different kind of 

deployment models for the ChristmasCardDesigner service. An example scenario, which can be solved with the 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 35 of 58 

prototype, is the following: The CAMEL deployment model fragment should be generated based on the desired 

cloud provider and the customer level bronze, silver and gold, where the business values are mapped to the 

respective virtual machine flavours. Therefore, the required DMN tables need to defined, which can be edited via 

the web-based editors offered by ADOxx8 or Camunda9, as depicted in Figure 15. 

Defined DMN tables are registered at the DMN-to-CAMEL-Mapper and are executed via the provided REST API. 

The result of an exemplary call to get the deployment CAMEL fragment for the parameters cloud provider = 

UULM and customer level = gold can be found in the Annex. 

A more complex example with connected DMN tables could be used to determine the placement of the 

ChristmasCardDesigner software component based on the following business values: software state, 

customer level, privacy, and scalability. The connected tables are shown in Figure 

16. A first table can determine if the software component should be deployed on IaaS if the software 

state is final while PaaS is selected when the software state is development as PaaS supports the easy 

integration of continuous delivery of new software versions. Based on the decision connected tables can select 

the actual cloud provider, either a IaaS or a PaaS provider, based on the customer level and privacy 

values. Finally, is also possible to derive adaptation actions based on the scalability values, e.g. 

expected amount of users. In the end, a CAMEL model is returned, comprising the model fragment for the 

selected cloud provider and a model fragment with adaptation actions. 

 

Figure 16 - Connected DMN tables for ChristmasCardDesginer deployment 

3.2.1 Features 

 Executing DMN 1.1 tables to generate CAMEL model fragments 

 Mapping high level business values to technical CAMEL fragments 

                                                           
8 https://www.cloudsocket.eu/BPAASDesigner/login.view  
9 https://camunda.org/dmn/simulator/  



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 36 of 58 

 Executing of multiple interconnected DMN tables, enabling hierarchical mapping of business values 

down to technical model fragments 

 Current support for deployment and cloud provider modelling fragments 

 Modular and easy extensible architecture 

 Access via an easy to use REST API or web-based UI 

3.2.2 Architecture 

A high-level overview of the DMN-to-CAMEL-Mapper architecture is provided in Figure 18. To execute a 

mapping, the prototype provides a REST interface as well as a web-based UI (see Figure 17). Due to the use of 

the Swagger REST API description, it is possible to auto-generate also clients for all common programming 

languages that eases the integration in existing systems. 

 

Figure 17 - DMN to CAMEL Mapping web interface 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 37 of 58 

Mapping calls are internally processed by translating these calls to the respective DMN tables in the DMN table 

repository. DMN tables need to be modelled beforehand and stored in the DMN model repository. The DMN-to-

CAMEL-Mapper supports all DMN tables modelled in DMN version 1.1. 

The output parameters of DMN tables can link to two options: (1) output values and another DMN table to 

execute, which allows a hierarchical mapping of multiple DMN tables (2) a CAMEL fragment from the CAMEL 

fragment repository in XMI or textual format which will be returned by the DMN-to-CAMEL-Mapper. 

 

Figure 18 - DMN-to-CAMEL-Mapper high level architecture 

3.2.3 Setup 

The prototype is a standalone server application that has no external dependencies to other components. The 
sources of the prototype are publicly available on the GitLab of UULM10. A setup and usage guide can be found in 
the CloudSocket Wiki11. 
 
A running instance is available at http://134.60.64.155:8989/index.html and will later be referenced on the 
CloudSocket webpage. 

3.2.4 Future work 

The extensible architecture of the prototype offers the following extension points for additional features that can 

be followed in the context of WP4 

 Support for mapping business values to CAMEL adaptation model fragments 

 Update existing CAMEL models based on updated business values  

 Composition of multiple DMN tables mapping to create complete CAMEL models 

                                                           
10 https://omi-gitlab.e-technik.uni-ulm.de/cloudsocket/dmn-to-camel-mapper  
11 https://www.cloudsocket.eu/common-understanding-wiki/-/wiki/Main/DMN-to-CAMEL+Mapper  



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 38 of 58 

4 EXECUTION ENVIRONMENT PROTOTYPES 

The prototypes of the BPaaS Execution Environment mainly circle around the Adaptation Engine, Monitoring 

Engine and the Cloud Provider Engine (see Figure 19). For the latter engine, we introduce capabilities to manage 

Cloud applications also on the PaaS layer. For the Monitoring and Adaptation Engines, we developed enhanced 

synergic frameworks. These also feed the SLA Engine partly in terms of capturing and ensuring more fine-

grained SLOs. 

 

Figure 19 - Main affected components in the BPaaS Execution Environment. 

4.1 PaaS Orchestration 

The Cloud Provider Engine of CloudSocket, namely the Cloudiator Framework, has focussed on the orchestration 

of multi-cloud deployments on the IaaS level. In order to enable the usage of additional cloud service levels the 

Cloud Provider Engine is extended by the PaaS Orchestration Prototype to support the orchestration on the PaaS 

level based on the concepts described in Deliverable D3.3 [1]. While the multi-cloud orchestration on the IaaS 

level has already been addressed by different research projects12, the multi-cloud orchestration on the PaaS level 

is a quite new research problem, which includes the modelling of PaaS applications (cf. PaaS extension of Camel 

in Section 2.1), the orchestration of PaaS applications and an abstraction layer over PaaS providers. Hence, the 

PaaS Orchestration Prototype comprises of the following prototype extensions to the Cloudiator components 

Shield and Colosseum [3] as well as a new component, called the PaaS-Unified-Library (PUL). These 3 

components are analysed in the following three sub-sections. 

4.1.1 Colosseum 

In order to allow the definition of PaaS-based components and their deployment, we extended the model of 

Cloudiator by the entities shown in Figure 20.  

                                                           
12 For example PaaSage (http://www.paasage.eu/) and Cactos (http://www.cactosfp7.eu/) 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 39 of 58 

 

Figure 20 - Database scheme of Cloudiator for the PaaS integration. 

Platform holds Provider-specific data like endpoint, API description and credentials. This is for the system to be 

able to connect and authenticate to a specific provider. 

PlatformApi describes the actual API that is later used to decide how to communicate with a certain PaaS 

provider. A PlatformComponent describes the deployment and configuration of a Component on the PaaS layer. 

In Figure 20 it is part of the class Component, as an extension to the available properties. This is currently mainly 

defined by the API of the PaaS Unified Library server, i.e. mostly the artifact or a git URI that has to be provided 

to deploy a component. PlatformCredential holds the user authorization data, such as user name and a secret.  

PlatformEnvironment defines the needed PlatformRuntime and PlatformService for a given PlatformComponent. 

A PlatformEnvironmentTemplate abstracts from the former PlatformEnvironment in the form of allowing to define 

an initial template that is used in case of horizontal scaling or migration, as it describes the initial template of a 

PlatformEnvironment, which can change over time (e.g. due to vertical scaling). 

PlatformHardware holds information about the hardware-specification of the PlatformEnvironment, such as 

available memory and provisioned CPUs. PlatformInstance is the actual running instance on the PaaS provider 

and is started, stopped and deleted by Cloudiator via the manipulation of this entity. 

The PlatformMonitor enables the integration of application- and PaaS-platform-specific monitoring data into the 

monitoring system of Cloudiator. You can specify the components and instances to be monitored and define 

sensors for them. For this we run a Visor instance with the needed sensors on the same machine as Cloudiator 

that collects (push and pull) monitoring data from the PaaS provider towards a certain instance. 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 40 of 58 

PlatformRuntime defines the software resources that are needed by the component and which will be installed 

into the PlatformEnvironment on which the Instance will be running. 

Asynchronous background jobs perform the creation of a PlatformInstance equivalently to the creation of the 

deployment of components on IaaS-level. We currently directly access the PaaS Unified Library, developed within 

this project, via REST calls but we aim at integrating it later on in our own provider-abstraction layer called Sword. 

The new research model entities can be found on github13. Along with their specific APIs, we have introduced 

them into the Colosseum-Client14 Finally, we have created a simple sample application that later can be used to 

understand the way to define a PaaS-based application15. 

4.1.1.1 Features 

In order to enable the PaaS orchestration, Colosseum has been extended with the following features: 

 Interfaces to store and update PaaS specific environment parameters. With respect to the Card 

Designer Service these parameters are programming language=JAVA, type=Servlet, 

version=1.7 

 Interfaces to store PaaS resource parameters such as memory or cpu cores  

 Interfaces to bind additional PaaS services to the actual applications, e.g. bind a MySQL service offered 

by the PaaS provider to the actual PaaS service, e.g. the Card Designer Service. 

 Orchestration interfaces for PaaS applications, providing the following actions: create, start, delete, 

update, and scale. 

4.1.1.2 Architecture 

As the Colosseum component of Cloudiator is the main component for orchestration, several features have been 

implemented to enable the PaaS orchestration Figure 21 shows the original internal architecture of Colosseum 

where the green shapes show extended internal components, orange shapes show new components and blue 

shapes show the new PaaS orchestration feature. The latter just shows some of the available features provided 

by respective PaaS services. 

 

Figure 21 – High-level Cloudiator architecture. 

                                                           
13 https://github.com/cloudiator/colosseum/tree/cs-paas-prototype/app/models  
14 https://github.com/cloudiator/colosseum-client/tree/cs-paas-prototype 
15 https://omi-gitlab.e-technik.uni-ulm.de/cloudsocket/cpe-paas-example 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 41 of 58 

The REST interface has been extended in order to provide all the listed features of the previous section. The 

registries now store not only IaaS specific resources, but also PaaS specific resources. The application repository 

contains now IaaS and PaaS applications, which enables the composition of complex services, partially running 

on IaaS and PaaS providers.   

4.1.1.3 Setup 

As Colosseum is part of the Cloud Provider Engine, which requires to be a stable component in the CloudSocket 

execution workflow, a separate branch for the PaaS orchestration prototype has been created16. This branch is 

integrated according to the integration process [T4.5] which will be described in the upcoming deliverable “D4.9 

CloudSocket Integration Report” and requires the respective branch of the Shield components to be operational. 

A technical setup description along with the complete documentation can be found in the CloudSocket Wiki17.  

4.1.1.4 Future work 

4.1.1.4.1 Integration into Existing Abstraction Layer 

Currently, the PaaS Unified Library server is running outside the Cloudiator framework and is used to 

communicate with the PaaS provider via own background jobs in Colosseum itself. We plan to more closely 

integrate the PaaS management into the abstraction layer Sword of Cloudiator. This will enable us to integrate 

also other PaaS management libraries as described in D3.3 [1]. This is similar to introducing cloud abstraction 

libraries, such as Apache jclouds18, into Sword, as we did for the IaaS layer in order to re-use existing tools, but 

extend them by needed features. 

4.1.1.4.2 Discovery of PaaS capabilities 

Colosseum is able to automatically discover the capabilities of IaaS providers. This is later used to find optimal 

providers and deployment strategies. This feature will also be covered for PaaS providers in the future. 

4.1.2 Shield 

Shield is the adapter component of Cloudiator that currently implements the adaptation from CAMEL models to 

deployments in the Cloudiator framework. As CAMEL has run through greater updates when it comes to 

deployment description and adaptation plans, this CAMEL adapter had to be reorganised to fit the new needs. 

The current research version can be found here19. 

4.1.3 PaaS-Unified-Library (PUL) 

In D3.3 [3], two tools were proposed to be integrated in the PaaS abstraction layer: PaaS Unified Library and 

COAPS API. The PaaS Unified Library was finally selected due to its maintainability and the on-going support by 

one of the partner in the consortium (i.e. ATOS) that will lead to improved bug-fixing and development of new 

features. As introduced in D3.3, the PaaS Unified Library is an outcome of the SeaClouds EU project20, and it is 

being improved in CloudSocket. It comprises 

(a) a library that provides simple operations for managing applications in PaaS providers, 

(b) a REST interface on top of it, allowing the use of the library as a standalone 

application, and 

(c) a Java client. 

                                                           
16 https://github.com/cloudiator/colosseum/tree/cs-paas-prototype  
17 https://www.cloudsocket.eu/common-understanding-wiki/-/wiki/Main/Cloud+Provider+Engine+Component  
18 https://jclouds.apache.org/  
19 https://omi-gitlab.e-technik.uni-ulm.de/cloudsocket/camel-adapter/tree/cs-paas-prototype  
20 http://www.seaclouds-project.eu/  



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 42 of 58 

 

Figure 22 – Service that was deployed on OpenShift Online via PaaS Unified Library 

4.1.3.1 Features 

This is the list of original features of the PaaS Unified Library: 

 Unified API for managing PaaS providers 

 The supported providers are Heroku, OpenShift v2 and CloudFoundry v2 

 Operations: deploy, undeploy, start, stop, scale and bind service 

The list of improvements implemented in CloudSocket is: 

 Java client 

 Different handling of credential headers.  

 Initial Provider-independent deployment model 

 Ability to support new providers by just adding runtime dependencies, with no need to recompile the 

whole library. This also allows to deploy PUL instances that support not all PaaS provider, but some of 

them. See the PUL architecture section below. 

 API now includes ApiVersion as a parameter. A provider with two different API versions (e.g. OpenShift 

v2 and v3) were previously modelled as two different providers (mapped for example, in /openshift2 and 

/openshift3). Now, both versions are mapped in /openshift, and a parameter selects the version to use. 

The Cloud Provider Engine uses the PaaS Unified Library to communicate with different PaaS providers in a 

standardised uniform way. 

4.1.3.2 Architecture 

The basic architecture of a server running the PaaS Unified Library is shown in Figure 23, where a web service 

offers a REST API that uses several drivers, each of them connecting to the supported PaaS providers. The 

architecture is completed with the API client, which is used by the CloudSocket PaaS Abstraction Layer. 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 43 of 58 

 

Figure 23 – Old architecture of the PaaS Unified Library. 

 

Since each driver uses the respective Java client for a provider, it could happen, when more providers are added, 

that their dependencies collide. For this reason, the PUL has been redesigned to accept the following 

architecture, where there are several PUL instances, each of them managing a predefined list of providers (for 

example, one provider per instance), and a reverse proxy in front of them (for example, an NGINX). This new 

architecture is shown in Figure 24.  

 

Figure 24 - Updated architecture of the PaaS Unified Library. 

 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 44 of 58 

4.1.3.3 Setup 

A technical setup description can be found in the CloudSocket Wiki21. 

4.1.3.4 Future Work 

The immediate future work for the PaaS Unified Library is driven by the features and improvements requested by 

the PaaS Abstraction Layer. This is a list of possible enhancements: 

 Transparent service binding. Currently, the name given to a service by the provider is needed to bind an 

application to a service (e.g., a MySQL service is called ClearDB in Heroku). This improvement will allow 

the creation of a service using a generic name. 

 Scaling. This will allow the creation of an application passing scaling properties, either horizontal or 

vertical. 

 OpenShift v3. OpenShift v3 is being implanted in OpenShift Online and it is the next interesting API to 

support in the PaaS Unified Library. 

4.2 Adaptation Management 

In order to support the Adaptation Plans defined in the CAMEL extension, the Cloudiator components were 

enriched to be able to evaluate more complex rules. A respective documentation can be found in the project 

wiki.22 This component is used in the context of the later described Synergic Cross-Layer Adaptation Framework. 

Cloudiator remains reasoning free, except for simple scalability and monitoring rules. Instead, we put a reasoning 

layer on top of Cloudiator (see Figure 25). This abstraction layer will be handled as an external component that 

uses Cloudiator (i.e. the REST-API of Colosseum) to keep the pre-defined life-cycle of components in Cloudiator 

independent of the user-defined imperative life cycles that will be handled by the Adaptation Management. 

 

Figure 25 - The Cloudiator framework enriched by an adaptation management. 

On the Cloudiator side, component adaptation focused on supporting the extended CAMEL definitions, i.e., we 

have created the super class Action, that is extended to cover the CAMEL capabilities added in the former 

described enhancements. The task composition described in CAMEL will not be handled by Cloudiator itself, but 

by the adaptation management layer. Cloudiator will implement in a first step the following atomic tasks: Service 

Migration and Component Deployment. Service Migration allows to specify a component as LifecycleComponent 

                                                           
21 https://www.cloudsocket.eu/common-understanding-wiki/-/wiki/Main/Unified+PaaS+component 
22 https://www.cloudsocket.eu/common-understanding-wiki/-/wiki/Main/Adaptation+Management  



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 45 of 58 

and as PlatformComponent in order to be able to migrate from one provider to another. Component Deployment 

allows to add a component and its communication dependencies to an application. This action will lead to the 

change of the application’s topology. 

For this, the Adaptation Management provides a REST-API to allow the creation of the entities similar to the way 

defined in CAMEL, but with the concrete matches in the Cloudiator entities, i.e., the Adaptation Management 

component receives a Cloudiator-compatible description of CAMEL’s Adaptation Plans. 

4.3 Synergic Cross-Layer Monitoring Framework 

In D3.3 [1], different BPaaS monitoring frameworks have been proposed. Two of them map to individual 

frameworks that have been developed by respective project partners, namely UULM and FORTH [11]. The last 

one maps to a synergic framework which attempts to combine the best of the worlds from the two aforementioned 

frameworks. To speed up the development time and facilitate the uptake of the respective monitoring framework 

in the CloudSocket implementation, it was decided to join forces and finally evolve the last of the frameworks, the 

synergic one. As such, the goal of this section is to provide a short summary of this framework, prescribe its 

evolution as well as provide guidelines on how this framework can be installed and run. In the end, some short 

term future work directions are provided which might be followed in the next forthcoming (6-month) period of the 

project.  

4.3.1 Features 

The synergic cross-layer monitoring framework exhibits a set of features that make it an ideal candidate for the 

realisation of the Monitoring Engine in the Execution Environment of the CloudSocket prototype. These features 

along with their benefits are the following: 

 Coverage of three main layers, namely IaaS, SaaS and WfaaS. Monitoring mechanisms are provided 

for each individual layer. Moreover, layer-specific mechanisms subscribe to measurements on other 

lower layers in order to cover measurability gaps via the consideration of metric dependencies.   

 Recovery capability in case a specific monitoring component becomes unavailable.  

 Data redundancy through the capability to store the measurements sensed or derived in different 

measurement stores.  

 Capability to cover the measurement of both domain-independent and domain-specific metrics. A set of 

domain-independent metrics is already supported while domain-specific metrics are developed on 

demand according to the respective use case that needs to be supported (and its respective domain of 

application). The capability to also support the measurement of cloud-specific and cross-cloud metrics is 

offered. In principle, this monitoring framework is able to measure any kind of metric, provided that its 

specification has been described in OWL-Q while the respective sensors which produce raw 

measurements needed for the computation of such a metric have been developed and can be 

incorporated in this framework.  

 Capability to generate events which can be consumed by the Adaptation Engine / Synergic Cross-Layer 

Adaptation Framework (see Section 4.4) in order to trigger adaptation rules. 

 Delivery of a publish-subscribe mechanism via which respective interested components can subscribe 

only to the corresponding metrics of interest. This can enable for example partitioning the adaptation 

functionality into different parts (i.e., instances of the Adaptation Engine) which can focus on the 

monitoring of a different set of metrics for load-balancing reasons.  

4.3.2 Architecture 

The architecture of the synergic monitoring framework is depicted in Figure 26. As it can be seen, it comprises 

the combination of the two individual monitoring frameworks of the two partners in a complementary way. In 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 46 of 58 

particular, the monitoring framework of UULM focuses on the monitoring at the IaaS level while the monitoring 

framework of FORTH focuses on the monitoring at the SaaS and WfaaS level. In case that specific IaaS 

measurements are needed by FORTH’s framework, then that framework will subscribe to the corresponding 

metric on UULM’s framework. In this sense, a publish-subscribe mechanism is employed to foster the 

communication between the two individual frameworks. Once a measurement is produced by either individual 

framework, it is published via the corresponding pub-sub mechanism to the Evaluator component which takes 

care of evaluating this measurement and mapping it to a respective event. The measurement evaluation is 

performed by exploiting the facilities of a CEP Engine. Once events are generated, they are published again via a 

pub-sub mechanism to the respective BPaaS adaptation component (Synergic Cross-Layer Adaptation 

Framework). The framework is accompanied via two components at the interface level: (a) a UI component which 

enables the inspection of measurements as well as the production of nice monitoring graphs; (b) a REST-based 

component which enables retrieving the measurements for a particular metric or metric context. Both of these 

components are actually part of UULM's Colosseum framework. The first maps to the Colosseum's UI and the 

second to Colosseum's REST API.   

As described in Section 4.1.1, we introduced with the PlatformMonitor a new way to capture metrics from 

externally managed entities into Cloudiator that will then be available to other components. These advances the 

usability of the monitoring system and allows to create greater synergies between the monitoring and adaptation 

approaches of the different partners of the projects. We are currently implementing the most needed sensors to 

gather monitoring information from the most common PaaS providers and PlatformRuntimes. 

 

 

Figure 26 - The architecture of the synergic cross-layer monitoring framework 

    

4.3.3 Setup 

Each individual framework as well as the combined one map to Java projects which are situated in the UULM git 

repository23. Each project is maven-based such that respective maven commands can be used to compile and 

                                                           
23 https://omi-gitlab.e-technik.uni-ulm.de/cloudsocket/cross_layer_monitoring 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 47 of 58 

run it. The FORTH's monitoring framework is provided as a service such that it needs to be deployed in a 

respective servlet container like Tomcat. UULM's monitoring framework as well as the Evaluator component are 

incorporated in the overall Colosseum framework in order to also facilitate the respective integration with REST 

and visualisation functionalities. FORTH's monitoring framework needs to be configured in order to communicate 

properly with the UULM's monitoring framework. Both frameworks need also to be configured in order to 

communicate with the Evaluator component. The latter component should be also made aware of the presence of 

the aforementioned frameworks. All such information is actually configured via the use of respective configuration 

files whose content is first set before being actually read by the framework/components upon their initialisation. A 

more detailed manual concerning both the installation and usage of the synergic cross-layer framework can be 

found in the project wiki24.      

4.3.4 Future work 

4.3.4.1 Dynamic monitoring 

Based on the current capabilities that have been developed in the context of the PaaSage project, the UULM 

monitoring framework has the capability to update the monitoring infrastructure in case that there is a respective 

modification in the application deployment model. As this framework focuses on the IaaS layer and driven also by 

the need to support other types of adaptation at higher levels of abstraction, the FORTH's monitoring framework 

should be modified with the capability to modify its own part of the monitoring infrastructure, mostly related to 

modifications on the SaaS and WfaaS level. Apart from this, as also indicated in D3.3, it might also be interesting 

to realise a dynamic reconfiguration approach of the whole monitoring infrastructure which can also infer the 

optimal measurement periods for the metrics measured as well as be able to scale as needed. This is something 

we plan to investigate in the near future and certainly represents a very interesting research direction to follow.  

4.3.4.2 Synergic Cross-Layer Monitoring Framework Evaluation 

The proposed synergic framework needs to be validated based on the project use cases and evaluated according 

to various aspects, including monitoring performance and accuracy. Such validation and evaluation feedback can 

then unveil those optimisation points over the proposed framework that need to be followed.  

4.3.4.3 PaaS Monitoring 

The capability to deploy applications by also exploiting PaaS services is currently realised as an interesting 

extension over CAMEL and the Colosseum framework. However, in case such services are do exploited, there is 

a need to also monitor them or the respective facilities that they provide. In this sense, we need to explore all 

possible possibilities that such monitoring can take place and then select the best possible ones to be 

implemented as an extension to the current synergic monitoring framework developed. PaaS could for instance 

be exploited to obtain measurements for some certain metrics over respective BPaaS components or they could 

be used to deploy internal monitoring mechanisms over BPaaS components in order to enable the capability to 

properly monitor them or the underlying infrastructure.  

4.4 Synergic Cross-Layer Adaptation Framework 

Similarly, to the case of the cross-layer monitoring framework, the synergic cross-layer adaptation blueprint has 

been adopted to join forces, speed up the development process and propose a common framework which can 

also lead to attempt to achieve common publications. This framework's main features are now summarised, 

followed by a detailed analysis over its architecture and the respective procedures to be followed for its 

installation. Some short term future work directions are supplied in the end.  

                                                           
24 https://www.cloudsocket.eu/common-understanding-wiki/-/wiki/Main/Synergic+Cross-Layer+Monitoring+Framework 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 48 of 58 

4.4.1 Features 

The synergic cross-layer adaptation framework attempts to combine the best of the worlds from the 

corresponding individual frameworks from UULM and FORTH [12]. The end result is a combined framework 

which exhibits the following list of features: 

 Adaptation capabilities realised in different layers. Currently, scaling is supported at the IaaS level and 

service replacement at the SaaS level but other adaptation capabilities are planned to be developed in 

the near future also spanning the workflow level. 

 Capability to specify complex adaptation rules in order to cover advanced adaptation scenarios. 

 Capability to orchestrate individual adaptation capabilities at different levels to jointly confront a certain 

problematic situation.  

 Combined with respective capability to be delivered by the Evaluation Environment, the adaptation rules 

monitored and triggered can be updated and enriched by possibly employing a learning approach.  

All of the above features cater for the addressing of advanced adaptation scenarios which cannot be addressed 

via performing individual adaptation actions. As such, this feature agglomeration gives rise to a framework that 

advances the state-of-the-art in (cloud) service adaptation. Such a framework is ideal to realise the Adaptation 

Engine functionality in the respective CloudSocket prototype implementation. In addition, it can be considered a 

standalone component which could be adopted and provide added-value to any kind of (cloud) service 

management framework.   

 

Figure 27 - The architecture of the synergic cross-layer adaptation framework 

4.4.2 Architecture 

The architecture of this component is simplified with respect to the one specified in Deliverable D3.3. This 

simplification has actually been performed by moving the adaptation rule generation functionality to the BPaaS 

Evaluation Environment (addressed in T3.3 and respective deliverables D3.5 [7] and D3.6). The respective 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 49 of 58 

simplified synergic cross-layer adaptation framework is depicted in Figure 27. As it can be seen, the framework 

comprises 9 main components: 

 The Rule Engine is responsible for retrieving events and assessing whether a respective adaptation rule 

needs to be triggered.  

 A triggered adaptation rule leads to invoking the Adaptation Engine which is a normal workflow engine 

with all adaptation strategies of rules deployed in the form of adaptation workflows. As such, the 

invocation of the Adaptation Engine just leads to creating an instance of an adaptation workflow and 

executing it.  

 The Transformer is responsible for transforming the adaptation strategies of respective rules being 

suggested by the BPaaS Evaluation Environment into adaptation workflows. This maps to the ability to 

process the AdaptationTask part of CAMEL (by assuming that adaptation rules are specified by this 

language) and to transform it into a workflow in the BPMN format. The same component is also used to 

transform the adaptation rule into a rule which is compatible with the current Rule Engine 

implementation. The transformed rule is stored into the Rule Base of the Rule Engine.  

 An adaptation workflow comprises executing adaptation services which are offered at different levels of 

abstraction. Two services are currently offered: one being able to support the adaptation of IaaS 

services (IaaS Adaptation Service) and another able to support the adaptation at the SaaS and workflow 

level (SaaS/WfaaS Adaptation Service). The first service maps to the Colosseum framework as this 

framework actually includes the capability to manage the lifecycle of application component as well as 

the respective IaaS offerings providing support to this lifecycle. Currently, this framework includes the 

realisation of scaling capabilities but also migration and bursting ones are under way, as indicated in 

Section 4.2. The second service is realised in the form of an add-on over a Workflow Engine, which is 

currently able to realise the service replacement adaptation action. This realisation is enabled by 

exploiting first the facilities of the Smart Service Discovery and Composition Tool in order to find the 

service replacement so as to produce a new BPaaS workflow for the running instance and then those of 

the Workflow Engine in order to migrate this instance to this new workflow.   

 Once an adaptation workflow is successfully or not executed, the Adaptation DB is updated with the 

corresponding entry which stores specific information about this execution, such as how long it took to 

be executed, whether it has been successful, which adaptation rule was triggered and which BPaaS 

components have been affected. All this information can then be collected by the Evaluation 

Environment in order to support the functionality of adaptation rule derivation by employing a learning 

based approach. 

 The Adaptation UI enables the visualisation and the management of the adaptation rules to be stored 

and executed in this synergic adaptation framework. Such a UI could exploit the concrete syntax of 

CAMEL in order to enable the visualisation and editing of the rules. More importantly, via the editing of 

rules, the human expert enters the loop and can be used to increase the suitability and appropriateness 

of the rules that are automatically generated by the system while providing in the beginning the initial 

input in the form of simple adaptation rules (in the form of simple event mapping to one adaptation 

action). 

 The Adaptation Service enables the retrieval of adaptation-related information to suit the purposes of the 

Evaluation Environment while also catering for the programmatic triggering of adaptation rules in case 

there is a need to do so. Adaptation-related information includes a list of BPaaS-specific or generic 

cross-BPaaS rules and the adaptation history for a certain BPaaS or a certain adaptation rule. All this 

information is of course drawn from the corresponding Adaptation DB.   



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 50 of 58 

4.4.3 Setup 

The adaptation framework code is split into various Java projects in UULM’s git and the github repositories.25,26,27 

The IaaS Adaptation Service maps to the Colosseum framework so there is no need to further elaborate on it. 

The UI component has not been implemented yet. All relevant projects are maven-based such that they can be 

compiled and run via maven. The service-based components need to be associated to a war file which has to be 

deployed on a respective servlet container, like tomcat. A more detailed manual concerning this component is 

available in the project wiki28.    

4.4.4 Future work 

4.4.4.1 Adaptation Action Coverage Extension 

Currently, the adaptation capabilities of the synergic framework are limited to horizontal scaling at the IaaS level 

and service replacement at the SaaS level. Such capabilities can be considered as quite basic, inherent in other 

related adaptation frameworks, that can support a basic but sufficient number of simple scenarios. However, we 

believe that these capabilities need to be enhanced in order to enable the support of more advanced adaptation 

scenarios which can include either new adaptation capabilities or the orchestrated execution of existing ones. To 

this end, we plan to support in the near future new adaptation actions spanning: (a) cloud bursting: capability to 

reserve resources from a public cloud when there are no more resources left in the private cloud initially 

exploited; (b) vertical scaling: in some cases, vertical scaling might be less expensive than horizontal one but still 

be able to confront the current problematic situation; (c) workflow modification: a BPaaS workflow could be 

modified either by the broker or the BPaaS client (in cases it possess the respective expertise). There are two 

situations where the latter can occur: (i) emergency cases where some workflow tasks might need to be skipped 

or re-ordered; (ii) cases where a human worker decides to split one user task into two as well as delegate the 

execution of the original task or the new sub-tasks to other workers; (d) cloud migration: we are currently 

exploring the migration of special types of components, like DBs. By including all these new capabilities in the 

current support list, the adaptation portfolio is enlarged while the respective possibilities to confront a current 

problematic situation are actually multiplied, thus enabling our framework to deliver quite sophisticated and 

advanced cross-layer adaptation functionality.  

4.4.4.2 PaaS Support 

Driven also by the respective extension of the deployment capabilities of the framework to cover the exploitation 

of PaaS services, we foresee that in the near future a PaaS service could be utilised in the following two ways: (a) 

as a potential substitute or alternative to an IaaS service. In this sense, a PaaS could be exploited in migration or 

bursting scenarios; (b) as a potential service provider for adaptation capabilities which are of course restrained in 

a certain cloud. As such, a PaaS could be regarded as an adaptation service which could for instance trigger the 

scaling of a BPaaS component or its migration to a new VM. To this end, we will explore these two possibilities 

and possibly extend the current adaptation functionality to include at least one of them, if not both.  

4.4.4.3 Synergic Adaptation Framework Validation & Evaluation 

Similarly, to the case of the synergic cross layer monitoring framework, we plan to validate the adaptation 

framework based on the CloudSocket use cases as well as evaluate it according to particular evaluation aspects, 

such as the adaptation performance and accuracy/suitability. The validation and evaluation feedback will pave the 

                                                           
25 https://github.com/cloudiator/axe-aggregator  
26 https://omi-gitlab.e-technik.uni-ulm.de/cloudsocket/adaptation-management  
27 https://omi-gitlab.e-technik.uni-ulm.de/cloudsocket/cross_layer_adaptation 
28 https://www.cloudsocket.eu/common-understanding-wiki/-/wiki/Main/Synergic+Cross-Layer+Adaptation+Framework 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 51 of 58 

way for further improving the synergic adaptation framework either through the correction of some implementation 

issues or the update over some adaptation capabilities.  



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 52 of 58 

5 CONCLUSION AND FUTURE WORK 

This chapter gives a short summary of the deliverable and an outlook to the further prototype development. 

5.1 Summary 

This report describes the research prototypes for BPaaS cloud modelling, allocation and execution. These 

prototypes will be part of the BPaaS Allocation Environment and BPaaS Execution Environment. 

The prototypes implement 

(a) advanced cloud service modelling approaches with CAMEL and OWL-Q,  

(b) a well-integrated Smart Service Discovery and Composition prototype, 

(c) a supportive modelling approach combining CAMEL and DMN,  

(d) an extended cloud orchestration platform based on the Cloudiator tool-suite and  

(e) a synergic cross-layer monitoring and adaptation framework. 

Some of the presented prototypes will later be used in the prototypes described in D3.5 [7] BPaaS Monitoring and 

Evaluation Blueprints, such as the Monitoring Framework that provides input for the later evaluation. Furthermore, 

some prototypes will be integrated into the stable environment developed in WP4, whereas the others will remain 

in the research environment that is constantly updated with the latest features in terms of the Continuous 

Integration process described in T4.5. 

The prototypes are available free for download from the CloudSocket webpage29. 

5.2 Future Work 

These prototypes must be further evaluated in terms of their suitability for other real-life use cases. This will be 

performed via more detailed studies. Once this is fulfilled, we will bring selected prototypes in a more mature 

state. 

Cloudiator for example aims to be a production-ready solution and therefore demands for highly stable modules. 

This implies that continuous quality assurance will be applied by the future developers of Cloudiator, once the 

prototypes are integrated into the stable master branch. 

The presented prototype towards DMN-to-CAMEL mapping will be further elaborated with respect to being 

integrated into the currently running BPaaS Allocation Environment in order to ease the allocation process. Also it 

will be better integrated in modelling tools such as ADOxx. The Smart Service Discovery and Composition 

prototype could be also integrated in the BPaaS Allocation Environment to enable taking allocation decisions 

based on technical requirements.  

The cross-layer monitoring and adaptation frameworks seem to be good replacements for the Monitoring and 

Adaptation Engines in the stable CloudSocket environment. In this sense, they could be integrated with the latter 

environment, once their development has been finalised.  

Based on the above, many of the prototypes are currently in an integration process with WP4 and will further 

serve the implementation and demonstration purposes of the CloudSocket project. 

                                                           
29 https://www.cloudsocket.eu/download 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 53 of 58 

6 REFERENCES 

[1] D. Seybold, K. Kritikos, F. Griesinger, Hinkelmann, K. Kritikos, R. Sosa, J. Iranzo and C. Zeginis, ‘D3.3 – 

BPaaS Allocation and Execution Environment Blueprints’, CloudSocket project deliverable,  June 2016 

[2] J. Jähnert et. al., ‘D5.1 – Initial CloudSocket Setup Report’, CloudSocket project deliverable, December 2015 

[3] J. Iranzo et al., ‘First BPaaS Prototype - D4.2 - D4.3 - D4.4’, CloudSocket project deliverable, July 2016. 

[4] Kyriakos Kritikos, Dimitris Plexousakis: Semantic SLAs for Services with Q-SLA. CF 2016. 

[5] Kyriakos Kritikos, Dimitris Plexousakis: Towards Combined Functional and Non-functional Semantic Service 

Discovery. ESOCC 2016: 102-117. 

[6] Kyriakos Kritikos, Kostas Magoutis, Dimitris Plexousakis: Towards Knowledge-Based Assisted IaaS Selection. 

CloudCom 2016. 

[7] K. Kritikos, 'D3.5 - BPaaS Monitoring and Evaluation Blueprints'. CloudSocket project deliverable, December 

2016.  

[8] Kyriakos Kritikos, Dimitris Plexousakis: Multi-cloud Application Design through Cloud Service Composition. 

CLOUD 2015: 686-69. 

[9] Lam, J. S. C., Vasconcelos, W. W., Guerin, F., Corsar, D., Chorley, A., Norman, T. J., ... Nieuwenhuis, K. 

(2009). ALIVE: a framework for flexible and adaptive service coordination. In H. Aldewereld, V. Dignum, & G. 

Picard (Eds.), Engineering Societies in the Agents World X: 10th International Workshop, ESAW 2009 Utrecht, 

The Netherlands, November 18-20, 2009. Proceedings. (pp. 236-239). (Lecture notes in computer science; Vol. 

5881). Berlin: Springer. 

[10] G. Baryannis and D. Plexousakis, ‘Fluent calculus-based semantic web service composition and verification 

using wssl’, in Service-Oriented Computing–ICSOC 2013 Workshops, 2013, pp. 256–270. 

[11] C. Zeginis, K. Kritikos, P. Garefalakis, K. Konsolaki, K. Magoutis, and D. Plexousakis, ‘Towards cross-layer 

monitoring of multi-cloud service-based applications’, in Service-Oriented and Cloud Computing, Springer, 2013, 

pp. 188–195. 

[12] Zeginis, C., Kritikos, K., Plexousakis, D. (2014). Event Pattern Discovery for Cross-Layer Adaptation of Multi-

cloud Applications. In ESOCC, 138-147. 

[13] Group, O.M.: Decision model and notation. Tech. rep., OMG, http://www.omg.org/spec/DMN/1.1/ (2016) 

[14] Griesinger, Frank et al.: A DMN-based Approach for Dynamic Deployment Modelling of Cloud Applications; 

Service Oriented and Cloud Computing, ESOCC 2016, September 2016 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 54 of 58 

ANNEX A: CAMEL FRAGMENT 

Deployment model fragment for the ChristmasCardDesginer, cloud provider = UULM, customer level = gold 

 

deployment model DeploymentPlan { 

  

  requirement set DemoAppRequirement { 

   os: Requirement.UbuntuOS 

  } 

   

  vm DemoAppVM { 

   requirement set DemoAppRequirement 

   provided host DemoAppCompononentHost 

  } 

   

   

  internal component DemoAppComponent { 

   provided communication WebServiceCommunication { 

port: 2181 }  

   required host DemoAppHostReq 

    

   configuration DemoAppConfiguration { 

    download: 'sudo apt-get install -y curl' 

    install: 'curl -o 

demoapp_checkstart_ubuntu.sh https://omi-gitlab.e-technik.uni-

ulm.de/cloudsocket/prototype_v1_files/raw/master/demoapp_checkstart_ubuntu.

sh && chmod +x demoapp_checkstart_ubuntu.sh && curl -o 

demoapp_install_ubuntu.sh https://omi-gitlab.e-technik.uni-

ulm.de/cloudsocket/prototype_v1_files/raw/master/demoapp_install_ubuntu.sh 

&& chmod +x demoapp_install_ubuntu.sh && ./demoapp_install_ubuntu.sh' 

    configure: '' 

    start: '/apache-tomcat-7.0.65/bin/catalina.sh 

run' 

                upload: 'source /demoapp_checkstart_ubuntu.sh' 

   } 

  } 

   

   

  hosting DemoAppToDemoAppVM { 

   from DemoAppComponent.DemoAppHostReq to 

DemoAppVM.DemoAppCompononentHost 

  } 

   

   

  internal component instance DemoAppComponentInstance typed 

BundleCamelModel.DeploymentPlan.DemoAppComponent{ 

   required host instance DemoAppInstanceHostReq typed 

DemoAppComponent.DemoAppHostReq 

   provided communication instance 

DemoAppWebServiceCommunication typed 

DemoAppComponent.WebServiceCommunication 

  } 

   

  ###### large VM selected for GOLD customer 

  vm instance DemoAppOmistackSmallInstance typed 

BundleCamelModel.DeploymentPlan.DemoAppVM { 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 55 of 58 

   vm type: 

BundleCamelModel.OmistackProvider.Omistack.VM.VMType 

   vm type value: 

BundleCamelModel.OmistackType.VMTypeEnumeration.m1.small 

   provided host instance DemoAppComponentHostInstance 

typed DemoAppVM.DemoAppCompononentHost 

  } 

   

  # defines the host instance model from component instance to 

vm instance 

  host DemoAppComponentInstance.DemoAppInstanceHostReq on 

DemoAppOmistackSmallInstance.DemoAppComponentHostInstance typed 

BundleCamelModel.DeploymentPlan.DemoAppToDemoAppVM 

   

   

} 

 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 56 of 58 

ANNEX B: LIST OF TOOLS 

ADONIS® Business Process modelling tool, http://www.boc-eu.com/, 

CAMEL  A cloud domain specific language, http://camel-dsl.org/, 

Cloudiator Cloud orchestration tool-suite, https://cloudiator.github.io/,  

DMN  Decision Model and Notation, OMG standard, http://www.omg.org/spec/DMN/, 

jclouds  IaaS cloud abstraction library, https://jclouds.apache.org/, 

nginx  Web server, http://nginx.org/, 

Protégé  ontology editor, http://protege.stanford.edu/, 

Tomcat  Java-based application server, http://tomcat.apache.org/, 

Visor  Monitoring agent of the Cloudiator framework, https://github.com/cloudiator/visor/, 

 

 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 57 of 58 

ANNEX C: CAMEL MODELS 

In this appendix, we provide the complete CAMEL models in XMI form for the PaaS deployment (Section 2.1.1), 

cloud bursting (Section 2.3.2.1) and service replacement scenarios of the Christmas Card Sending use case 

(Section 2.3.2.2). The examples can be found in the wiki30. 

 

PaaS Deployment CAMEL Model 

The example for the PaaS deployment can be found in the wiki31. An excerpt of the internal component with the 

new PaaS configuration is shown here: 

  <deploymentModels 
      name="ChristmasCardSendingDeployment"> 
    <internalComponents 
        xsi:type="deployment:InternalServiceComponent" 
        name="CardDesigner" 
        type="SERVLET" 
        serviceType="REST"> 
      <configurations 
          xsi:type="deployment:PaaSConfiguration" 
          name="CardDesignerPaaSConfiguration" 
          api="PUL" 
          version="1.0" 
          endpoint=""/> 
      <requiredHost 
          name="CardDesignerRequiredHost"/> 
      <workflowTaskIDs>sid-1C5E88D8-C7E3-4FAC-85E5-FAD80099C28B</workflowTaskIDs> 
      <workflowTaskIDs>sid-D891CCD3-40B6-4555-9C84-81BECCDCB1C2</workflowTaskIDs> 
      <workflowTaskIDs>sid-B99151C2-9914-4E71-9540-9DFE38334B7B</workflowTaskIDs> 
    </internalComponents> 

 

Cloud Bursting CAMEL Model  

The example for the cloud bursting can be found in the wiki32. An excerpt of such an adaptation rule can be seen 

here: 

  <adaptationModels 
      name="ChristmasCardSendingAdaptation"> 
    <rules name="BURST" 
        event="//@adaptationModels.0/@events.2" 
        task="//@adaptationModels.0/@tasks.0" 
        entity="//@organisationModels.0/@organisation"/> 
    <events 
        xsi:type="adaptation:NonFunctionalEvent" 
        name="ViolRTCondition" 
        metricCondition="//@metricModels.0/@conditions.0" 
        isViolation="true"/> 
    <events 

                                                           
30 https://www.cloudsocket.eu/common-understanding-wiki/-/wiki/Main/Examples 
31 https://www.cloudsocket.eu/common-understanding-wiki/-/wiki/Main/PaaS+Deployment 
32 https://www.cloudsocket.eu/common-understanding-wiki/-/wiki/Main/Cloud+Bursting 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 58 of 58 

        xsi:type="adaptation:NonFunctionalEvent" 
        name="ViolCapacityCondition" 
        metricCondition="//@metricModels.0/@conditions.1" 
        isViolation="true"/> 
    <events 
        xsi:type="adaptation:BinaryEventPattern" 
        name="BurstEventPattern" 
        leftEvent="//@adaptationModels.0/@events.0" 
        rightEvent="//@adaptationModels.0/@events.1"/> 
    <tasks xsi:type="adaptation:ComponentDeployment" 
        name="EmailServiceOnPublicCloud" 
        components="//@deploymentModels.0/@internalComponents.1" 
        vm="//@deploymentModels.0/@vms.2"/> 
  </adaptationModels> 

 

Service Replacement CAMEL Model  

The example for the service replacement can be found in the wiki33. An excerpt of this adaptation rule is shown 

here: 

  <adaptationModels 
      name="ChristmasCardSendingAdaptation"> 
    <rules name="Replace" 
        event="//@adaptationModels.0/@events.0" 
        task="//@adaptationModels.0/@tasks.0" 
        entity="//@organisationModels.0/@organisation"/> 
    <events 
        xsi:type="adaptation:NonFunctionalEvent" 
        name="ViolRTCondition" 
        metricCondition="//@metricModels.0/@conditions.0" 
        isViolation="true"/> 
    <tasks xsi:type="adaptation:ServiceReplacement" 
        name="ReplaceEmailService" 
        previousService="//@deploymentModels.0/@internalComponents.1"/> 
  </adaptationModels> 

 

                                                           
33 https://www.cloudsocket.eu/common-understanding-wiki/-/wiki/Main/Service+Replacement 


