

www.cloudsocket.eu

BPAAS ALLOCATION AND
EXECUTION ENVIRONMENT

PROTOTYPES
D3.4

Editor Name Frank Griesinger (UULM)

Submission Date December 31, 2016

Version 1.0

State FINAL

Confidentially Level PU

Co-funded by the Horizon 2020

Framework Programme of the European Union

Copyright © 2016 UULM and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 2 of 58

EXECUTIVE SUMMARY

The output of this deliverable are the research prototypes that were developed to be fed back to the stable branch

of the Execution Environment and Allocation Environment, as soon as they reach the needed maturity. The

development is based on a selection of the discussed and presented blueprints in Deliverable D3.3. The

prototypes deal with interesting research problem that appear in the context of BPaaS management. They are

covering the modelling of BPaaS bundles, the discovery and supportive mapping of services, the component

orchestration at the PaaS level and the synergic cross-layer BPaaS monitoring and adaptation.

This report: (1) provides a problem statement and a running example to exemplify the needs and solutions in the

research related to the BPaaS Execution and Allocation Environments, (2) explains the BPaaS modelling

approaches towards multi-level cloud support and BPaaS adaptation rule specification, (3) analyses the (BPaaS)

allocation research towards smart service discovery and composition as well as a supportive deployment

modelling based on DMN, and (4) explicates the run-time management support over BPaaS with respect to multi-

level deployment and provisioning as well as cross-layer monitoring and adaptation.

The CAMEL cloud-domain language was enhanced to surpass the state-of-the-art and satisfy the requirements

from the use cases of the project. To this end, it was extended with the capability to model PaaS services and to

include them in the description of cross-layer (BPaaS / application) deployment plans as well as specify advanced

adaptation rules with sophisticated composite adaptation plans / strategies. Furthermore, an extensive SLA

support in terms of an OWL-Q extension has been realised.

The Smart Service Discovery and Composition prototype enables precisely and semantically discovering services

based on both the functional and non-functional aspects as well as to compose them according to global non-

functional user requirements (e.g., cost, QoS, and security). For service composition, a sophisticated service

selection algorithm has been proposed which is able to cover simultaneously both the IaaS and SaaS level. The

DMN-based CAMEL description approach aims at supporting the definition of mappings between the several

levels of the BPaaS life cycle, such as business plan, workflow or executable workflow.

The aforementioned CAMEL extensions are currently being realised in the prototypes for PaaS orchestration and

cross-layer monitoring and adaptation and will be reflected in the Cloud Provider Engine and multiple other

components of the Execution Environment, including the Monitoring and Adaptation Engine.

The stable as well as the research version of the prototypes are partly available free for download from the

CloudSocket webpage (cloudsocket.eu/download). The Cloudiator application is constantly merged with the

stable branch to provide best possible stability but newly integrated features are in an experimental state. The

other described prototypes will be released under the specified license of each partner.

Copyright © 2016 UULM and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 3 of 58

PROJECT CONTEXT

Workpackage WP3: Business Process as a Service Research

Task T3.2: BPaaS Allocation and Execution Environment Research

Dependencies Input to D3.5, T3.3 and WP4

Contributors and Reviewers

Contributors Reviewers

Frank Griesinger, Daniel Seybold, Jörg Domaschka
(UULM), Kyriakos Kritikos (FORTH), Chrysostomos
Zeginis (FORTH), Román Sosa Gonzalez (ATOS)

Andreea Popovic (YMENS)

Knut Hinkelmann (FHNW)

Antonio Gallo (FHOSTER)

Approved by: Stefan Wesner (UULM) as WP 3 Leader

Version History

Version Date Authors Sections Affected

0.1 November 22, 2016 Daniel Seybold (UULM) Initial version, TOC

0.2 November 29, 2016 Frank Griesinger (UULM) All

0.3 December 05, 2016 Roman Sosa (ATOS) PUL

0.4 December 07, 2016 Kyriakos Kritikos (FORTH) All

0.5 December 08, 2016 Daniel Seybold (UULM) DMN

0.6 December 11, 2016 Frank Griesinger (UULM) All

1.0 December 15, 2016 Frank Griesinger, Daniel
Seybold (UULM)

All, cleaning

Copyright © 2016 UULM and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 4 of 58

Copyright Statement ð Restricted Content

This document does not represent the opinion of the European Community, and the European Community is not

responsible for any use that might be made of its content.

This is a restricted deliverable that is provided to the community under the license Attribution-No Derivative

Works 3.0 Unported defined by creative commons http://creativecommons.org

You are free:

to share within the restricted community ð to copy, distribute and transmit the work within the
restricted community

Under the following conditions:

Attribution ð You must attribute the work in the manner specified by the author or licensor (but not
in any way that suggests that they endorse you or your use of the work).

No Derivative Works ð You may not alter, transform, or build upon this work.

With the understanding that:

Waiver ð Any of the above conditions can be waived if you get permission from the copyright holder.

Other Rights ð In no way are any of the following rights affected by the license:

o Your fair dealing or fair use rights;

o The author's moral rights;

o Rights other persons may have either in the work itself or in how the work is used, such as publicity or
privacy rights.

Notice ð For any reuse or distribution, you must make clear to others the license terms of this work.
This is a human-readable summary of the Legal Code available online at:

http://creativecommons.org/licenses/by-nd/3.0/

Copyright © 2016 UULM and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 5 of 58

TABLE OF CONTENT

1 Introduction and Problem Statement .. 9

1.1 Project Context and Blueprint selection ... 9

1.2 Running example ... 10

1.3 Structure .. 11

2 BPaaS modelling prototypes... 12

2.1 PaaS/SaaS support of CAMEL .. 12

2.1.1 Example ... 17

2.2 SLA support of OWL-Q .. 18

2.2.1 Features .. 18

2.2.2 Implementation .. 19

2.2.3 Set-Up ... 19

2.2.4 Future Work ... 19

2.2.4.1 SL Transitioning .. 19

2.2.4.2 SLA Composition .. 19

2.3 SRL update on CAMEL .. 20

2.3.1 SRL Update Analysis ... 20

2.3.2 Examples ... 24

2.3.2.1 Cloud Bursting .. 24

2.3.2.2 Service Replacement .. 25

2.3.3 Future Work ... 27

2.3.3.1 PaaS Support .. 27

2.3.3.2 Adaptation Task Coverage ... 27

3 Allocation Environment Prototypes ... 28

3.1 Smart Service Discovery and Composition .. 28

3.1.1 Features .. 28

3.1.2 Architecture.. 30

3.1.3 Setup ... 33

3.1.4 Future work .. 33

3.1.4.1 Service Composition ... 33

3.2 DMN to CAMEL Mapping ... 33

3.2.1 Features .. 35

3.2.2 Architecture.. 36

3.2.3 Setup ... 37

3.2.4 Future work .. 37

Copyright © 2016 UULM and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 6 of 58

4 Execution Environment Prototypes ... 38

4.1 PaaS Orchestration .. 38

4.1.1 Colosseum ... 38

4.1.1.1 Features .. 40

4.1.1.2 Architecture ... 40

4.1.1.3 Setup... 41

4.1.1.4 Future work ... 41

4.1.1.4.1 Integration into Existing Abstraction Layer ... 41

4.1.1.4.2 Discovery of PaaS capabilities... 41

4.1.2 Shield ... 41

4.1.3 PaaS-Unified-Library (PUL) ... 41

4.1.3.1 Features .. 42

4.1.3.2 Architecture ... 42

4.1.3.3 Setup... 44

4.1.3.4 Future Work .. 44

4.2 Adaptation Management .. 44

4.3 Synergic Cross-Layer Monitoring Framework .. 45

4.3.1 Features .. 45

4.3.2 Architecture.. 45

4.3.3 Setup ... 46

4.3.4 Future work .. 47

4.3.4.1 Dynamic monitoring .. 47

4.3.4.2 Synergic Cross-Layer Monitoring Framework Evaluation ... 47

4.3.4.3 PaaS Monitoring ... 47

4.4 Synergic Cross-Layer Adaptation Framework.. 47

4.4.1 Features .. 48

4.4.2 Architecture.. 48

4.4.3 Setup ... 50

4.4.4 Future work .. 50

4.4.4.1 Adaptation Action Coverage Extension ... 50

4.4.4.2 PaaS Support .. 50

4.4.4.3 Synergic Adaptation Framework Validation & Evaluation ... 50

5 Conclusion and future work .. 52

5.1 Summary .. 52

5.2 Future Work ... 52

6 References ... 53

Copyright © 2016 UULM and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 7 of 58

Annex A: CAMEL fragment ... 54

Annex B: List of Tools ... 56

Annex C: CAMEL Models .. 57

PaaS Deployment CAMEL Model ... 57

Cloud Bursting CAMEL Model .. 57

Service Replacement CAMEL Model .. 58

Copyright © 2016 UULM and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 8 of 58

LIST OF FIGURES

Figure 1 Context to the architecture of the CloudSocket platform ... 10

Figure 2 - Sending Christmas Greetings Business Process .. 11

Figure 3 - IaaS/PaaS requirements for the ChristmasCardDesigner ... 11

Figure 4 ï Affected components by the BPaaS modelling prototypes. .. 12

Figure 5 - The deployment meta-model class diagram focusing on the PaaS extension 13

Figure 6 - CAMEL fragment focusing on the type level of the PaaS deployment example 18

Figure 7 - Snapshot of CAMEL focusing on new and updated classes in the adaptation/scaling package 22

Figure 8 - The cloud bursting scenario for the Christmas Card Sending BPaaS ... 25

Figure 9 - Fragment of CAMEL focusing on the description of the bursting scenario .. 26

Figure 10 - Fragment of CAMEL focusing on the description of the service replacement scenario 26

Figure 11 - Prototypes in the BPaaS Allocation Environment ... 28

Figure 12 - The overall architecture of the Smart Service Discovery and Composition Module / Blueprint 30

Figure 13 - The architecture of the Service Discovery Module .. 32

Figure 14 - The architecture of the Service Selection Module ... 32

Figure 15 - DMN modelling tools: ADOxx (up) and Camunda Editor (down) ... 34

Figure 16 - Connected DMN tables for ChristmasCardDesginer deployment ... 35

Figure 17 - DMN to CAMEL Mapping web interface .. 36

Figure 18 - DMN-to-CAMEL-Mapper high level architecture ... 37

Figure 19 - Main affected components in the BPaaS Execution Environment. ... 38

Figure 20 - Database scheme of Cloudiator for the PaaS integration. .. 39

Figure 21 ï High-level Cloudiator architecture. ... 40

Figure 22 ï Service that was deployed on OpenShift Online via PaaS Unified Library ... 42

Figure 23 ï Old architecture of the PaaS Unified Library. ... 43

Figure 24 - Updated architecture of the PaaS Unified Library. .. 43

Figure 25 - The Cloudiator framework enriched by an adaptation management. .. 44

Figure 26 - The architecture of the synergic cross-layer monitoring framework .. 46

Figure 27 - The architecture of the synergic cross-layer adaptation framework .. 48

Copyright © 2016 UULM and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 9 of 58

1 INTRODUCTION AND PROBLEM STATEMENT

This deliverable introduces the research contribution for the Allocation and Execution Environment in form of

selected prototype implementations of the Allocation and Execution Environment Blueprints of D3.3 [1]. As

highlighted in D3.3 the blueprints are categorized in BPaaS Modelling, Allocation Environment and Execution

Environment blueprints and hence, the analysed prototypes of this deliverable follow the same structure.

1.1 Project Context and Blueprint selection

The BPaaS Allocation and Execution Environment prototypes present the technical realisation of the respective

Blueprints of deliverable D3.3 in order to showcase their technical feasibility and the actual enhancement to the

CloudSocket platform. As described in deliverable D3.3, each of the three blueprint categories contains multiple

research assets, though not all assets will be implemented as prototypes. Therefore, in cooperation with WP4, a

selection of prototypes was agreed on for each blueprint category. The selection was driven by novelty from the

WP3 perspective and also by functional benefits from WP4 perspective.

The selected prototypes focus on extension of the BPaaS deployment and orchestration capabilities by including

the PaaS level within the PaaS Orchestration prototype in the BPaaS Execution Environment. This extension also

affects the BPaaS Modelling on the CAMEL level and the BPaaS bundle creation in the BPaaS Allocation and

Execution Environments.

The BPaaS Allocation Environment prototypes target the ease of creating the technical BPaaS bundle

specification by applying the prototypes of Smart Service Discovery and Composition and DMN-to-CAMEL

Mapping.

Additional BPaaS Execution Environment prototypes target the holistic monitoring and adaptation across all cloud

service levels (from the infrastructure to the workflow level) by applying the Synergic Cross-Layer Monitoring

Framework and the Synergic Cross-Layer Adaptation Framework.

Figure 1 shows the high-level architecture of the CloudSocket platform and highlights the components, which are

enhanced with research prototypes. The yellow boxes refer to the BPaaS Modelling prototypes, the red boxes to

the Allocation Environment prototypes and the green boxes the Execution Environment prototypes.

As this deliverable focuses on the technical realisation of the selected prototypes, for each prototype a brief

feature description with its integration into the existing environment and the benefits for the CloudSocket platform

is provided.

In order to ease the technical details for each prototype, an architectural overview is provided, containing the

internal components and the exploited interfaces to existing environment components. This also includes a setup

guide, explaining all technical requirements and configuration steps.

In addition, for each prototype a future work section provides an overview of possible enhancements in the scope

of WP4, if the prototype is going to be integrated into the production environment1.

1 The Ăproduction environmentñ is a stable instantiation of the CloudSocket tool-suite, that remains in a stable state. These
will further be elaborated in T4.5.

Copyright © 2016 UULM and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 10 of 58

Figure 1 Context to the architecture of the CloudSocket platform

The presented blueprints are also correlated to those presented in D3.5 [7]. This particularly applies for the

Adaptation, Monitoring and Cloud Provider Engines from which respective information is harvested for the

analysis purposes in [7]. More details about the respective blueprints for the BPaaS Evaluation Environment

research prototype can be found in [7], while specific information about the input required for the latter research

prototypes proper functioning can also be found in D3.3 [1].

1.2 Running example

In order to ease the understanding of the research prototypes over the current CloudSocket solutions, we use the

ChristmasCardDesigner service of the ñSending Christmas Greetingsò business process [2] as a running example

to demonstrate the respective prototype features. The complete business process of ñSending Christmas

Greetingsò is shown in Figure 2, where the activities of the Christmas Card Designer are shown in the top lane.

Copyright © 2016 UULM and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 11 of 58

Figure 2 - Sending Christmas Greetings Business Process

As the ChristmasCardDesigner is a software component and hence orchestrated via the Cloud Provider Engine,

a set of technical requirements have to be ensured to run this service. Technically, the ChristmasCardDesigner

service is a Java based servlet, running inside a Java Application Server. Hence, this service fits as an example

for a software component deployed on IaaS or PaaS. A simplified example set of technical requirements on IaaS

and PaaS level is shown in Figure 3, including the underlying resources and the actual software stack to run the

service.

Figure 3 - IaaS/PaaS requirements for the ChristmasCardDesigner

With further elaboration, we also show that such a component is also amenable for being adapted according to

different scenarios based on the respective broker requirements posed.

1.3 Structure

The prototypes for BPaaS modelling are described in Section 2. This comprises the CAMEL and the OWL-Q

extensions. Section 3 contain the prototypes concerning the Allocation Environment, i.e. the Smart Service

Discovery and Composition, and the DMN-to-CAMEL-mapping. Prototypes for the Execution Environment that

were developed for the cross-level management of cloud applications during run-time are described in Section 4.

Section 5 concludes this deliverable with a summary and a supply of near future work directions.

Copyright © 2016 UULM and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 12 of 58

2 BPAAS MODELLING PROTOTYPES

The prototypes concerning the BPaaS modelling are relevant across all Environments of CloudSocket (see

Figure 4), since the specified models are used throughout most of the components. A modeller describes a

certain service, which is later enriched with annotations that are also used in the adaptation phase, and

subsequent in the execution phase. This section introduces modelling prototypes concerning the definition of

cloud applications on different cloud layers and its behaviour in terms of adaptation to a certain context on run-

time.

Figure 4 ð Affected components by the BPaaS modelling prototypes.

2.1 PaaS/SaaS support of CAMEL

The cloud computing stack comprises currently three main levels: IaaS, PaaS and SaaS. Two of them, namely

IaaS and SaaS, have been already accommodated in the previous versions of CAMEL. However, PaaS gains a

significant momentum lately due to the advantages that it enables users to focus on the development and

provisioning of the core application functionality without requiring to deal with any information regarding the

underlying infrastructure. To this end, to also enable exploiting this cloud service type, a PaaS extension in

CAMEL was designed and implemented. This extension was a result from the study that was performed in the

context of the previous deliverable, D3.3, as well as the review over the state-of-the-art and the corresponding

meta-models and modelling languages that have been proposed.

The PaaS CAMEL extension was based on the following principles:

Copyright © 2016 UULM and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 13 of 58

(a) same modelling style should be preserved,

(b) backward compatibility with respect to previous CAMEL versions should be guaranteed as much as

possible.

These principles reduce the learning curve of the modeller while they map to the least possible changes in the

implementation code of the system exploiting CAMEL with respect to the previous modelling features of this

language. As such, the code developer can focus mainly on extending the code to exploit the new PaaS-related

modelling feature of CAMEL.

The PaaS CAMEL extension focuses on the following aspects:

(a) description of requirements on PaaS services;

(b) description of PaaS types and instances mapping to certain PaaS capabilities;

(c) capabilities to configure the lifecycle of a component via a PaaS API.

Inline to this extension, the component description in CAMEL was slightly improved to enable incorporating

accordingly the main PaaS notions as well as mapping to the respective components that can be covered by a

PaaS. In the following, we describe the extensions made according to the above aspects and respective

component enrichment. The class diagram which depicts this extension is shown in Figure 5.

Figure 5 - The deployment meta-model class diagram focusing on the PaaS extension

Copyright © 2016 UULM and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 14 of 58

To incorporate the inclusion of main PaaS notions and still follow the type-instance pattern, the

ExternalComponent and ExternalComponentInstance classes (see also SaaS extension in D3.3) where sub-

classed with respective PaaS-related classes, namely PaaS and PaaSInstance. This is due to the fact that a

PaaS is considered as an external component with respect to the actual user application which is exploited to

provide hosting and runtime capabilities. The actual software that is deployed on a SaaS component is again an

internal component as it is part of the application. To reduce the modelling effort to the minimum, for each new

PaaS-related class, the least possible information to characterise it has been generated. A PaaS, similarly to the

VM class, is related to a set of platform and infrastructure requirements, named as PaaSRequirementSet, which

need to be satisfied and acts as a placeholder for a PaaS component that provides a hosting port via which other

components can be actually generated and hosted. This means that, e.g., DB and servlet container components

could be hosted by that component, where such a hosting maps to respective templates of components that can

be instantiated and run in the Cloud which relate to the actual components needed by the user application. For

such components, configuration information is not needed, in the sense of running scripts, in order to install and

run the components. A PaaS should be able to cater for this, provided that the respective needed component

information is specified in CAMEL. More details about this will be supplied later on when the notion of a

PaaSInstance is analysed.

We should also highlight here that we have also included a modification to the ProviderRequirement which is

included in the hardware requirement set (VMRequirementSet) of a PaaSRequirementSet. This modification

relates to the capability to either specify a concrete set of cloud providers to be used for the IaaS/PaaS selection

& respective hosting or an indication about the type of the cloud (provider) (i.e., private or public). In both cases,

we actually reflect a selection over either PaaS and/or IaaS services depending of course on the deployment (and

other types of) requirements of the corresponding application. The type of a cloud provider is specified by

explicating the respective member of a newly introduced enumeration called ProviderType in the requirement

package/sub-DSL.

The PaaSRequirementSet should be used in an equivalent way as in the case of VMRequirementsSet. In

particular, a global PaaSRequirementSet can be posed at the deployment model level that will hold for all the

PaaSes that are defined in this model. Moreover, a (local) PaaSRequirementSet can be linked to a PaaS to

specify local PaaS requirements. Both requirement types (local and global) can be exploited in conjunction or

even independently. A PaaSRequirementSet is associated to an actual PaaSRequirement and an

IaaSRequirementSet to reflect that it represents both platform and infrastructure-related requirements. The former

places requirements on the actual PaaS characteristics, while the latter, on the corresponding IaaS

characteristics which can be exploited and offered under this PaaS.

Various PaaS characteristics have been modelled, basically inspired by the selection criteria in paasfinder.org.

These criteria include:

(a) the platformTypes, where we can basically see that most of the PaaS exploit either OpenShift or

CloudFoundry ,

(b) the runtimeTypes, where a vast variety of runtimes has been considered, such as Java and Cobol ,

(c) the frameworkTypes, such as Java EE or Play ,

(d) the scalingTypes where different types of scaling can be supported from manual (either horizontal or

vertical) to automatic ,

(e) the pricingTypes which could be metered , fixed or free ,

(f) the statusTypes explicating the status of the respective API offered in terms of either being in

production or in alpha or beta versions and finally

(g) the uploadTypes which cover the way uploading can be supported, including git , maven or

gradle .

Copyright © 2016 UULM and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 15 of 58

The multiplicity of all these properties is from 0 to * indicating that the modeller can skip one criterion or provide

multiple values for it. However, the semantics can be different depending on the respective attribute at hand.

Multiple values for attributes like pricingTypes means that the modeller imposes a disjunctive constraint on these

values. On the other hand, for attributes like runtimeTypes, the semantics is that all respective values should be

covered (conjunctive constraint).

Before entering details about the instance level, we need to highlight that the InternalComponent was modified to

include a new enumerated attribute called type which provides insight about the actual kind of the component.

The following members of the InternalComponentType enumeration are envisioned for now: DB,

MESSAGE_QUEUE, LOAD_BALANCER, WORKFLOW_ENGINE, SERVLET_CONTAINER, SERVLET and

APPLICATION_COMPONENT. The first five members map to respective services offered by a PaaS. In this

sense, internal application components with such types could be hosted by a PaaS. The SERVLET member

maps to the InternalServiceComponent class as it indicates an internal software component offered as a service.

In this sense, instances of the latter class will have their type fixed to SERVLET. In case that an internal

component does not map to the first six types, then it is considered as a normal software component which

should be just installed and run, without actually being offered as a service. In this case, the type of such a

component should be APPLICATION_COMPONENT, which also represents the default enumeration value for

the type attribute.

InternalComponent was also extended to incorporate versioning information. In particular, we now allow to

indicate what is the minimum and maximum version of a component. Such information is not needed in case of

normal application components (i.e., mapping to the APPLICATION_COMPONENT type). However, in case of

components covered by a PaaS, we need to have the name and the version range for that component.

Otherwise, we would not be able to find and select the respective service capability provided by the PaaS to be

selected. As such, this name and versioning information is considered as a kind of software requirement over the

respective PaaS capability, thus influencing the selection of a PaaS. While name information is already covered

by the Component class, versioning information for components was captured via the introduction of the

InternalComponentRequirement class in the requirement package of CAMEL. An internal component is also

associated to 0 or 1 instances of this class to enable mapping it to its respective versioning requirement. This

class, apart from capturing the actual range limits of the component version, includes two Boolean attributes,

which explicate whether these limits should be included or not. This enables us to perform a more precise search

over the PaaS capabilities. Let us now provide a concrete example for this extension. For instance, in case of a

Tomcat servlet container, it is important to know the name of the component (i.e., Tomcat) and the respective

range needed by the user, such as [6.0,7.0). This can allow us to match and select, e.g., the Anynines PaaS2

which enables exploiting a tomcat container with a version between 6.0.* and 7.0.*.

Entering now the instance level, a PaaSInstance represents a certain instance of a PaaS that maps to a particular

PaaS provider. The latter mapping is established by referring to the respective feature of the CAMEL provider

model of this provider. Moreover, a PaaSInstance is also characterised by a registryID to enable the respective

environment or component exploiting the CAMEL model to retrieve information about the respective PaaS from

the corresponding entry in the Registry.

The special types of components that need to be hosted by a PaaS should be properly configured. However, this

must not be performed at the type level where the respective software requirement has been provided. It can only

be applied at the instance level, when the most suitable PaaS has been selected that fulfils all the deployment

requirements set. However, when specifying the PaaSInstance, it cannot be directly related to the component

instances that it should offer. This is only performed via the HostingInstance class. Thus, based on this analysis,

the latter class seems to be the most suitable place to enforce the mapping between the needed component

2 European Cloud Foundry Platform, https://paas.anynines.com/

Copyright © 2016 UULM and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 16 of 58

(instance) and the respective PaaS capability. To preserve CAMEL modelling style as well as guarantee

backwards compatibility, it was decided to sub-class the HostingInstance class with the PaaSHostingInstance

one. Now the latter class includes an association to the respective PaaS feature and an attribute-value pair that

reflects the concrete desired capability. For instance, by continuing the example of the servlet container

component and supposing that this component has one instance to be hosted by a respective PaaS instance, a

PaaSHostingInstance will be created that will refer to the component instance's required hosting port and the

PaaS instance's provided hosting port. This PaaSHostingInstance would map to the "Tomcat" feature (which

would be a sub-feature in the feature hierarchy of the PaaS feature) in the respective provider model of the

provider offering the PaaS (instance) as well as to its version attribute imposing the value of "6.5". In this sense,

the hosting instance will denote in the end that the PaaS instance should host a tomcat component with 6.5 as its

version.

The last modification in CAMEL for the PaaS extension concerns updating the configuration of the lifecycle of

internal components to exploit additional possibilities which come via the use of DevOps tools as well as PaaS

APIs. The extension is aligned with the PaaS extension proposal in D3.3 but slightly modifies it by relying on the

following assumptions:

(a) DevOps tools allow to install modules onto the local system but still requires to have configuration

commands in place;

(b) the PaaS APIs are heterogeneous and usually require an own model-based description of the

application/component and the environment.

As such, we came up with the decision to:

(a) not explicitly model DevOps configurations as classes as they are just special instances of script-based

configuration. To this end, we have created one class named as ScriptConfiguration which includes

references to all possible lifecycle commands as well as to the respective OS for which this configuration

can be applied. To also cater for DevOps-based configurations, an additional field was incorporated in

the same class to denote the name of the DevOps tool to be exploited;

(b) the PaaSConfiguration is modelled separately, thus requiring also to create a common super class for

PaaS and script-based configuration called Configuration. This means that the previous version of the

Configuration class becomes ScriptConfiguration and a new (abstract) class is generated with the same

name that does not incorporate any special information. The actual content of PaaSConfiguration is

platform independent. As such, we abstract away from information that could include platform-specific

configuration directives which depends on the actual API being offered by the PaaS provider.

To be as generic as possible, the only information that has been covered for a PaaS configuration is the

following:

(i) the actual API as a String to be exploited,

(ii) the version of this API,

(iii) the endpoint of the API, if it is external to the actual running platform, and

(iv) the download command for the application and environment models which should conform to the API-

specific meta-model.

Apart from the first attribute, which is obligatory, the rest are considered optional. This is especially true for the

last one as we can also consider that the respective provisioning platform that should exploit the CAMEL model

should be able to derive a respective API-specific model for the components and environments concerned out of

it. As such, we avoid enforcing modellers to perform similar modelling tasks twice but allow them to concentrate

on and finalise the deployment model of their application.

Copyright © 2016 UULM and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 17 of 58

2.1.1 Example

By relying on the well-known Christmas Card BPaaS use case, we now provide a specific example of how the

respective CAMEL model could be specified. Suppose that the Card Designer component needs to be deployed

over a (public) PaaS which needs to support the CloudFoundry PaaS platform and metered-based charging. The

Card Designer is a java-based application component that needs to be hosted as a service by a respective

servlet container, like Tomcat. In addition, due to major location constraints of the customers of the broker, the

BPaaS should be deployed in Europe. By considering the current capabilities of the existing PaaS providers, the

respective PaaS which best satisfies the user requirements could be found via employing a PaaS discovery

service. Such a service could take the form of a PaaS service discovery algorithm (a potential extension of the

algorithm proposed in Section 3.1) or an external PaaS search engine, like paasify.it. In any case, the set of

required features for the respective BPaaS could lead to the situation where a few or even one PaaS service

could be exploited, namely the Atos Cloud Foundry. In this case, the respective CAMEL model would take a

particular form, which is shortly analysed in the following while a detailed description of the model in XMI form is

provided in the appendix of this deliverable.

By considering the original IaaS-based deployment model for the Card Designer component, some specific

differences can be observed:

(a) Now the deployment model comprises two components, instead of one, as the tomcat container (with

type SERVLET_CONTAINER) is also explicitly designated to be offered by the respective PaaS service.

(b) The Tomcat container is hosted by the selected PaaS while the actual Card Designer component is

hosted in turn by this container.

(c) A PaaS-based configuration is given for the corresponding Card Designer component.

(d) The PaaS node/type in the CAMEL deployment model is associated to a respective set of requirements.

These requirements include:

i. a PaaS requirement which involves PRODUCTION as statusType for the PaaS, METERED as

its pricingType, CloudFoundry as its platformType, and Java as its runtimeType;

ii. a location requirement which indicates that the location of the PaaS should be in Europe and

iii. a provider requirement indicating that the provider type should be PUBLIC.

The respective visualisation of this example focusing on the type level is shown in Figure 6 while the whole

CAMEL model of this example is provided in the appendix.

Copyright © 2016 UULM and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 18 of 58

Figure 6 - CAMEL fragment focusing on the type level of the PaaS deployment example

2.2 SLA support of OWL-Q

The SLA OWL-Q extension, named as Q-SLA, has been extensively analysed in D3.3 [1] while it has resulted in

a particular publication [4]. To this end, the goal of this section is to summarise the main features of the language

as well as provide useful implementation details enabling the exploitation of this language even outside the

context of this project.

2.2.1 Features

The main features of Q-SLA can be summarised in the following list:

¶ Relies on OWL-Q and thus inherits its excellent coverage of all measurability aspects (e.g., metric, unit

and value type).

¶ QWL-Q and this Q-SAL are semantic languages enabling the syntactic, semantic (based on rules) and

constraint-based validation of SLA models.

¶ Enables the participation of third (non-signatory) parties in the SLA and the assignment of respective

duties on them (e.g., monitoring of SLO metrics, evaluation of SLOs).

¶ Enables the specification of both Service Levels (SLs) and Service Level Objectives (SLOs), where SLs

can be considered as a logical combination of SLOs.

¶ Enables the dynamic transitioning of SLs to cater for the following situations: (a) cover the low-level SL

delivered during maintenance periods; (b) allow a signatory party to transition from one SL to another

one when a change of requirements (e.g., service customer needs to address now a greater number of

clients) or another kind of condition occurs (e.g., percentage of violations within a certain period is above

a threshold).

¶ Enables the specification of both rewards and penalties to hold when the promised SLO is either

surpassed or violated, respectively.

Copyright © 2016 UULM and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 19 of 58

¶ Covers the modelling of the service price model which is connected also to the rewards and penalties

specified.

¶ Enables the capturing of critical situations which require a special handling over the SLA (e.g.,

renegotiation or cancelling). Both the conditions mapping to these situations as well as the handling

actions can be specified in this case.

¶ Supports the specification of hierarchical SLAs through the modelling of parent-child relationships

between SLA contracts.

2.2.2 Implementation

This OWL-Q extension has been fully realised as a sub-facet of the original specification facet. To this end, a

corresponding OWL file has been created mapping to this sub-facet in which all the features have been realised

by building on top of the elements involved in the specification and the other OWL-Q facets. SLAs can now be

specified by using any ontology editor, such as Protege3. To facilitate this specification, a mid-level ontology has

been constructed based on OWL-Q which includes a basic set of domain-independent non-functional terms, such

as quality attributes and metrics. Therefore, such terms can actually be re-used in the specification of the

respective SLOs (which map to conditions over such non-functional terms).

A Q-SLA/OWL-Q (bidirectional OWL-to-Java code) parser is underway in order to enable the programmatic

specification of SLAs. This can enable not only building any kind of editor on top of OWL-Q but also on the fly

generation of SLA content via automatic programs. Such a feature could be quite useful in the context of

negotiation where automated agents need to negotiate the SLA terms and thus be able to modify SLAs on

demand according to the negotiation strategies of the participants for whom they act on behalf.

2.2.3 Set-Up

The whole OWL-Q specification, including the SLA extension, and the respective OWL-Q parser are available in

the UULM's git repository4. The whole documentation of the latter component will also be made available in the

project wiki5.

The parser component will map to a Java maven project. In this sense, one can just clone the respective git

repository and involve usual maven commands to compile as well as run the parser. Of course, we foresee

mainly the use of the parser inline in another component. As such, mainly the compilation of that component (via

"mvn clean install" command) will be mostly relevant.

2.2.4 Future Work

2.2.4.1 SL Transitioning

Currently, Q-SLA enables the transitioning over whole SLs. In the near future, we will examine whether it makes

sense to enable a more fine-grained transitioning at the SLO level. This could be explored by also considering the

CloudSocket use cases to enable a respective validation of the corresponding modification necessity. Once this is

done and the validation is positive, then we will of course implement the required modification.

2.2.4.2 SLA Composition

Q-SLA is able only to specify SLA hierarchies by connecting them via parent-child relationships. This can be

considered as basic support to SLA composition. In the near future, we plan to extend Q-SLA to be able to

specify pure SLA compositions in which respective dependencies between non-functional terms in different SLA

3 http://protege.stanford.edu/
4 https://omi-gitlab.e-technik.uni-ulm.de/cloudsocket/owlq_parser
5 https://www.cloudsocket.eu/common-understanding-wiki/-/wiki/Main/OWL-Q+Parser

Copyright © 2016 UULM and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 20 of 58

levels can be expressed. In this way, Q-SLA will certainly become a SLA language which provides the best

possible support to all activities in the SLA/(cloud) service lifecycle.

2.3 SRL update on CAMEL

2.3.1 SRL Update Analysis

The Scalability Rule Language (SRL) in CAMEL has focused only on scaling issues based on the respective

requirements that it had to cover in the PaaSage project. However, by considering the feedback that has been

obtained in that project as well as the context of the CloudSocket project and the requirements that it brings about

(e.g., support cross-layer adaptation, cover additional adaptation actions at different layers), it was decided to

evolve the scaling package of CAMEL in order to transform it into a full-fledged adaptation DSL which covers the

specification of cross-level and advanced adaptation rules thus further advancing the state-of-the-art in cloud

adaptation modelling.

The SRL update analysis starts with explicating the main drivers for the scaling package evolution via the supply

of three main adaptation scenarios and then we proceed with the actual detailed description of this package

evolution. Please consider that CAMEL and especially the scaling package has been shortly analysed in D3.3 [1]

so there is no point in repeating the same information in this deliverable.

The following three main adaptation scenarios are now covered by this CAMEL extensions:

ǒ cloud bursting: this is a requirement from PaaSage which is not captured in SRL as in PaaSage, a

different intermediate coverage of this scenario is attained via dynamic application reconfiguration (e.g.,

new hosting of a component in a public cloud VM where the VM and of course the components are

already described in the deployment model). However, in the case of the CloudSocket project, there is

no explicit deployment reconfiguration phase which involves a certain reasoner component that implicitly

can detect the need of introducing a new component hosting. On the contrary, a rule-based approach is

followed which requires explicitly specifying the respective adaptation action that has to be performed.

As such, in the case of CloudSocket, we need to define an adaptation action which introduces the

hosting relationship between the application component and respective public cloud VM.

ǒ multi-component scaling: this is again a requirement originating from PaaSage which depends on the

level of deployment granularity (single component per VM or multiple components per VM). In particular,

it concerns the fact that within a particular scaling it is not certain which components from an existing VM

should be scaled. Moreover, this is not apparent from the semantics of the component description in

CAMEL. We could take the following directions to realise this: (a) communication requirements could

signify the needed semantics such that when two components need to communicate locally, then both

have to be scaled and not just one; (b) we consider each component independent from the other and

explicitly state which components from a respective VM have to be scaled. Via (b) we could consider a

case where the local communication semantics might need to be broken to better cover the respective

scaling requirements.

ǒ cross-layer adaptation: based on the need in CloudSocket to support cross-layer adaptation which

involves the orchestrated execution of adaptation actions at different layers, CAMEL should be extended

with the capability to specify a whole adaptation workflow comprising multiple adaptation actions in

different layers. By assuming that the event pattern detection is already well covered in the context of

scaling / adaptation rules, then this extension along with the requirement to cover well the description of

individual adaptation actions at different layers have to be accommodated in this scaling package

evolution.

Copyright © 2016 UULM and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 21 of 58

By considering the above three main adaptation scenarios to be supported, the respective modifications

performed in the CAMEL scaling package, which are depicted in Figure 7, were the following:

ǒ Mapping a horizontal scaling action to multiple components to enable scaling multiple components per

VM. In this way, we can actually cover three possible cases: (a) single component scaling per VM; (b)

multiple component scaling per VM; (c) combinations where each scaling action even in the context of

one VM is mapped to a different adaptation actions. In this way, in this latter case, we can scale two

components together in one VM as well as scale separately the third remaining component in a new

instance of this VM. The respective limits of scaling map to the component level so there is no need to

further update this - in case that we need to scale one or more components where the scale limit for one

of these components has been reached, then the scaling action cannot be completed.

ǒ Renaming of some classes was performed to denote the change of scope of this package as well as a

certain naming pattern (mapping to the fact that if something is a task or an action, the "task" postfix in

its name does not have to be repeated). To this end, the ScalabilityModel became AdaptationModel, the

ScalingAction became Scaling, the HorizontalScalingAction became HorizontalScaling, and the

VerticalScalingAction became VerticalScaling.

ǒ Removal of ActionType enumeration as it is redundant. Decided to create specific classes which map to

all possible individual adaptation actions, including new ones like service replacement and migration of

VMs/components. As this enumeration is also needed in the specification of organisational permissions,

only a small part of it was moved to the organisation package. This part has been named as

PermissionActionType and it now includes only two members, the READ and WRITE action types.

ǒ Right part of scalability rule should now map to the specification of a workflow of adaptation actions.

Please find in the sequel the way this has been modelled.

Apart from renaming ScalabilityRule to AdaptationRule to designate the extension of its applicability, such a rule

is now associated to one AdaptationTask, i.e., any kind of adaptation task / action which is able to represent

either atomic adaptation tasks or whole adaptation workflows. To this end, this latter class has been split into two

main subclasses: SimpleAdaptationTask, which signifies an atomic adaptation task, and

CompositeAdaptationTask, which signifies a composite adaptation task or workflow. The AdaptationTask is

actually a renaming of the Action class, while it has been made abstract and is now linked to the respective

responsible which should perform the corresponding adaptation task (which should usually be a service or any

kind of web-based component which can be informed for the need to perform the action and is of course able to

execute it). In order to cover the case of an adaptation task failure, an AdaptationTask is associated to a recovery

workflow. This mapping is covered by associating an adaptation task to another adaptation task that represents

the recovery workflow to be executed.

The CompositeAdaptationTask represents an adaptation workflow. This class is associated to the set of sub-

tasks to be executed by this adaptation workflow and can be categorised in turn into more concrete classes,

namely SequentialAdaptationTask, ParallelAdaptationTask, ConditionalAdaptationTask and

SwitchAdaptationTask. The SequentialAdaptationTask and ParallelAdaptationTask represent workflows which

execute their sub-tasks in sequence or in parallel, respectively. As such, their name and the respective

association to their sub-tasks (with the corresponding reference order) are enough to denote their semantics. The

ConditionalAdaptationTask is a conditional workflow with the semantics of applying a specific event out of which

one from two alternative adaptation tasks can be selected: the first task is selected when the event does occur

while the second task when this event has not actually occurred. As such, this kind of composite adaptation task

maps to one Event, whose specification is already covered in the adaptation package/meta-model, and needs to

be associated to only two sub-tasks whose order does play a role (remember first task maps to event

occurrence). Finally, the SwitchAdaptationTask maps to a workflow which applies a switch kind of statement over

the respective adaptation possibilities. In this respect, we need to evaluate such statement over a dynamic

variable which can take multiple values instead of just two as in the case of a condition (in

Copyright © 2016 UULM and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 22 of 58

ConditionalAdaptationTask). In this sense, the most logical selection of the respective construct for representing

such a dynamic variable is the MetricFormulaParameter which can represent both metrics and formulas over

such metrics. Apart from this parameter kind, a SwitchAdaptationTask is associated to a list of ValueToTask

elements which denote the mapping from a value of the metric formula parameter to a respective adaptation task

(only from the list of sub-tasks of the composite adaptation task).

Figure 7 - Snapshot of CAMEL focusing on new and updated classes in the adaptation/scaling package

As already indicated, a SimpleAdaptationTask represents an individual adaptation task. As this class is abstract,

it has been accompanied with the specification of respective sub-classes which map to concrete individual

adaptation actions that can be performed on the IaaS, SaaS & WfaaS levels, thus also covering two new levels.

In particular, we have developed the following new classes: ComponentDeployment, Migration,

ServiceReplacement, TaskModification, WorkflowModification, TaskAddition, TaskOmit, TaskReplacement,

WorkflowRecomposition, EventCreation and Reporting.

ComponentDeployment concerns the deployment of a component in a VM. This is different from the scaling as

the component and/or the VM might not be part of the original and applicable deployment model of the application

/ workflow. The latter means that there can be components and VMs that might be described but are not

connected to each other, i.e., a component is not hosted on any other component and the VM does not host any

component. In this case, the goal of this class is to tie these two component types together and enable the

respective creation of the component instances and the enforcement of their relationship. The class, thus,

includes mainly two associations: one to the (internal) component to be deployed and one to the VM on which the

component will be hosted. Here the realisation of the component deployment adaptation action is implied to

