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EXECUTIVE SUMMARY

Thefirst phase of the BPaaS lifecycle - the BPaaS Deisgn - and the respective research challenges were covered
in D3.1 “Modelling Framework for BPaaS”. T he first phase produces the BPaaS Design Package that provides the
inputfor the following phases. T his documentintroduces research challenges on the second and third phase of the
BPaas lifecycle, which are supported by the BPaaS Allocation and Execution Environments.

This is the second deliverable of work package 3 "BPaaS Allocation and Execution Environment Blueprints ". Its
contentis twofold: first, in the Allocation phase, the mapping ofthe abstractworkflows from the Design Package to
executable workflows that involves incorporating actual cloud services to realise and support the workflow
functionality. T he executable workflowalongwith additionalinformation as SLAs and scalabilityrules then constitute
the BPaaS Bundle produced. Second, the execution of the BPaaS Bundle, including the orchestration, monitoring
and adaptation of all services involved.

In order to enhance the BPaas lifecycle with research findings, three Blueprint categories are covered within this
deliverable: The BPaaS Modelling Blueprints, the BPaaS Allocation Blueprints and the BPaaS Execution Blueprints.
Each Blueprint comprises a set of research assets. The upcoming deliverable D3.4 “BPaaS Alocation and
Execution Environment Prototypes”, which is due in December 2016, will build upon these research assets and
provide prototypes for each Blueprint category.

The BPaaS Blueprintcomprises the modellingapproach for the BPaaS Bundle. In order to provide complete support
to the BPaaS allocation and execution phases, the CAMEL domain-specificlanguage is exploited and extended as
one research asset in order to additionallycover the modelling of SaaS and Paa$S allocation decisions apartfrom
laaS ones. Apart from the modelling of the application deployment, CAMEL also covers the aspects of application
adaptation and monitoring. The second research asset is the semantic quality description language OWL-Q that
canbe used to describe non-functionalrequirements and capabilities atall levels of abstraction as well as semantic
hierarchical SLAs. The resulting assets are (1) PaaS/SaaS support of CAMEL and (2) SLA supportin OWL-Q

The BPaaS Allocation Blueprint presents more sophisticated senice selection and concretisation algorithms to map
the abstractworkflows to actual cloud services. This comprises smartsenice discovery, compositionand selection
tools. Based on the semanticallylifted BPaaS Design Package and the Allocation Environment Blueprint,a more
accurate creation ofthe corresponding partof the BPaaS Bundle, i.e., the executable and deployable workflow is
enabled. The resulting assets are (3) Smart Service Discovery and Composition Tools and (4) DMN to CAMEL
Mapping.

The BPaa$S Execution Blueprint is split into three crucial sub-phases of BPaaS execution, i.e., orchestration,
monitoring and adaptation with the offering of corresponding research assets for each. BPaaS orchestraton
encompass research assets regarding the BPaaS execution across different cloud service levels. The BPaaS
monitoring assets focus on a self-scalable monitoring infrastructure (UULM) as well as on cross-layer monitoring
(FORT H) framework while a synergic framework betweenthese two is also proposed. T he adaptation assets cover
the scalabilityon the lower cloud service levels (UULM) as well as service adaptation in higher cloud service levels
(FORTH) along with a corresponding proposal for a synergic/combined approach. The resulting assets are (5)
PaaS orchestration, (6) Dynamic laaS Selection at Runtime, (7) Distributed and self-scalable Monitoring, (8) Cross-
Layer Monitoring, (9) Synergic Cross-Layer Monitoring, (10) AXE Adaptation Framework, (11) Cross-Layer
Adaptation and (12) Synergic Cross-Layer Adaptation

Al three Blueprints and the included research assets are categorised according to theiradded value for the BPaaS
lifecycle and their current state. This facilitates the prioritisation for work package 4 to derive the desired features
from the architectural perspective. Based on the prioritisation, the prototype developmentis structured for the follow
up deliverable D3.4.
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1 INTRODUCTION AND PROBLEM STATEMENT

This document introduces research Blueprints with respect to the BPaaS Allocation and BPaaS Execution
Environment (cf. Figure 1). The Blueprints focus on the BPaaS Allocation and Execution Environment research
challenges and solutionsin the contextof CloudSocket. T he previous Deliverable D3.1 has focused on the BPaaS
Design Environment and its outcome constitutes the starting point of this document, respectively the input to the
Allocation Environment. This deliverable is concerned with the mapping of business episodes to deployable
solutions in the cloud, which are then taken care of accordingly by enabling their adaptive provisioning. As such,
the Blueprints presented focus on the specification of the appropriate information in order to supportthe envisioned
activities (deployment, execution, monitoring & adaptation) as well as on the realisation of such activities.

As a blueprinthas a meaning ofa plan and not an actual realisation, this deliverable actually explains the analysis
of concrete algorithms or frameworks that support the aforementioned activities. In this sense, it goes far deeper
than reporting some blueprints. As such, we adopta differentterm to referto these algorithms or frameworks, which
is a research asset. Thisisalsomore close to ourfinal goal,i.e., to introduce particular assets or components that
could be adopted by the CloudSocketimplementation by providing add-ons to existing components or more
advanced replacements of them. Nevertheless, in some cases, some algorithms/fram eworks are just a sketch of
an idea. Moreover, additional algorithms are sketched in future work directions. In this case, indeed, such ideas or
sketches can be regarded as blueprints that can be realised in the next 6 monthsin the projectsuch thatthey can
then constitute more mature research assets that could be exploited by the CloudSocket implementation.
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Figure 1 - Initial High-level Architecture of CloudSocket
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1.1 Project Context

As this document focuses on the Alocation and Execution Environment, a high-level architecture of all
environments, which constitute the CloudSocket prototype, with their main components is shown in Figure 1. A
detailed architectural ovenview of all CloudSocketenvironments can be found in Deliverable D4.1 [1]. The BPaaS
Allocation Environment allows a CloudSocket Broker to retrieve workflows from the BPaaS Design Environment
and create a Cloud deployable as well as executable Workflow Bundle — named as BPaaS Bundle - and publish it
in the Marketplace, by means of a web-based userinterface. Such a deployable workflow bundle comprises: (a) a
executable workflow where service tasks have been mapped to certainsenices/Saas; (b) a deployment plan which
indicates where (in the cloud) the BPaaS$ internal components are deployed; (c) monitoring and adaptation
information to guide the adaptive provisioning of the BPaaS workflow; (d) SLA specification explicating the exact
service level to be offered by the BPaa$S.

As soon asaBPaaSbundle is ordered in the Marketplace, the BPaaS Bundle is transferred to the BPaaS Execution
Environment. T his environmentis responsible to manage, monitor and adapt the execution of the BPaaS bundles
generated during the allocation phase. The execution comprises the deploymentand orchestration of the required
cloud services via the Cloud Provider Engine, the preparation ofthe Workflow Engine to interactwith the deployed
senices and the monitoring of the holistic BPaaS$S lifecycle. When a BPaaS workflow bundle is deployed, the
environment will allow to manage the workflow instances created by the BPaaS Customer and to visualize the
conformance levels to associated agreements and respective monitoring data. Besides, based on the monitoring
data, the violations incurred as well as the BPaa$S bundle adaptation rules, the environment will be able to adapt
the BPaaS instances to maintain the promised senice level via executing particular adaptation actions, including
component scaling, component/workflow migration and senice substitution, possibly across different levels
(Workflow as a Service (WfaaS), SaaS, Paa$, & 1aaS).

This Deliverable D3.3 describes the “BPaaS and Allocation Environment Research Blueprints”, including modelling,
allocation and execution related challenges and solutions. Based on the resulting blueprints of D3.3, the follow up
Deliverable D3.4 “BPaaS Allocation and Execution Environment Prototypes” will analyse the actual blueprint
prototypes, i.e., the (almost) mature research prototypes/assets that could be adopted by the CloudSocket
implementation.

The concepts/blueprints of D3.3 and prototypes of D3.4 will provide the required inputto the upcoming Deliverable
D3.5 “BPaaS Monitoring and Evaluation Blueprints”in M24. D3.5 will close the loop of the holistic BPaaS lifecycle
with the focus on the Evaluation Environment providing analysis capabilities that result in business intelligence
knowledge through KPI analysis and drill-down, SLA violation patterns detection, best BPaaS deployments
discovery and determination of optimised billing models for the CloudSocket broker.

1.2 Research Problem

With the definition of the business processes and respective workflows in the Design Environment, the Allocation
and Execution Environments enable the deployment and adaptive provisioning of workflows in the cloud. Therefore,
the Allocation Environment enables the mapping of abstract workflows to deployable and executable solutions,
namely BPaaS Bundles, by receiving sematically enriched models from the Design Environment, which are
translated into a technical allocation description.

The identified research challenges are introduced by the means of the business process “Sending Christams
Greeting Cards”, which was introduced in D5.1. T his business process requires three different kinds of senices,
an email service, a CRM senvice and a card designer senice, which need to be mapped to respective allocation
decisions constituting an executable business process solution thatis deployable in the cloud. In the contextof this
deliverable we focus on the technical realization and do not reflect the modelling guidelines presented in D52 In
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orderto enhance the BPaaS lifecyle, three blueprints categories are derived from the high-level architecture shown
in Figure 1 and the related tasks: BPaaS Modelling Blueprints, Allocation Environment Blueprints and Execution
Environment Blueprints. Each blueprint category comprises a set of research assets, which represent the actual
prototypes. Figure 2 provides an overview of the identified research challenges thatare described in the following
paragraphs.

BPaa$ Design Env.

i BPaaS Modelling Blueprints:

= CAMEL
. \_/ . g I T
Allocation Env. Blueprints: =2>0WL-Q Execution Env. Blueprints:
=>Service Discovery =>Orchestration
=>Service Selection =>Monitoring
=>»Service Composition = Adaptation

Figure 2 - Identified Research Challenges

The first blueprint, the BPaaS Modelling Blueprint, is represented by the yellow box in Figure 2. The respective
research challenge involves the necessity of a smart description for the holistic BPaaS lifecycle, including
deployment, adaptation, and monitoring as well as the support of semantics for each aspect. The modeling
research area of Domain Specific Languages (DSLs) provides an established set of DSLs: TOSCA [2], CloudML
[3] and CAMEL [4]. However, these approaches onlytarget a subset of the aforementioned aspects and none of
the existing modelling approaches targets the BPaaS domain explicitly. To provide to the Allocation Environment
the complete mappingbetween business processes anda deployable BPaaS Bundle, the evaluation and extension
of appropriate modelling solutions comes up as the first research challenge.

The second blueprint category, the Allocation Environment Blueprint, is depicted in the red box in Figure 2 with
respectto the high-level architecture. T his blueprintcomprises the actual allocation ofthe BPaaS Bundle while also
provides rules for its runtime adaptation. The allocation relies on the use of smart and semantic discoveryand
compositionalgorithms which attemptto map BPaaS workflow tasks to concrete cloud services byalso respecting
the main broker requirements. T he respective section (3) will presentthese algorithms as well asindicate particular
research challenges that still need to be satisfied. The broker is able to specify adaptation rules in a high-le\el
language, whichis transformed into CAMEL by utilising the Decision Model and Notation (DMN). Itcan be facilitated
by the existence of metric blueprints (i.e., sets of already specified and re-usable metrics) as well as the findings
from the Evaluation Environment in terms of event patterns leading to SLO/KPI violations.

The contextofthe third blueprint, the Execution EnvironmentBlueprint, is shown in the green boxin Figure 2Figure
1. This blueprintis separated into the research assets for orchestration, monitoring and adaptation of the BPaaS
Bundle. The holistic lifecycle ofa BPaaS Bundle requires the deploymentand orchestration of services acrossall
cloud senvice levels. Whereas recentdeploymenttools focus solelyon the laaS level, higher-level deploymenttools
also covering the PaaS or SaaS levels are not yet specificallytargeted inacademia and industry. All cloud service
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levels need to be considered also bythe BPaaS monitoring solution. Whereas currentmonitoring solutions typically
focus only one a specific cloudsenice level, cross-level monitoring is required to cover in amore complete manner
problematic situations thatimpactmultiple levels within the BPaaS stack. Monitoring across all service levels also
raises new challenges, including scalabilityto provide a monitoring solution with a suitable performance level.
Cross-layer BPaaS adaptationis also a necessityin order to address problematic situations in a holistic manner by
also preventing cases where individual level-based actions are performed which are overlapping or conflicting.

1.3 Structure

The structure of this document is organised in the following chapters: chapter 2 introduces the BPaaS Modelling
Blueprint, which will be exploited bythe Allocation Environmentto design the BPaaS Bundle. The BPaaS Modelling
Blueprintcomprises cloud specific DSLs as well as semantic languages. Chapter 3 describes the actual Allocation
EnvironmentBlueprint,including smartsenice discoveryand composition tools and the adoption of DMN to semi-
automaticallycreate CAMEL. Chapter 4 presents the Execution Environment Blueprintfor the specific sub-phases
of BPaaS deployment, monitoring and adaptation. Chapter 5 describes requirements imposed by the identified
research items of the previous chapters with respectto their interaction with other CloudSocket Environments.
Finally, Chapter 6 concludes with the research showroom, summarising and categorising all research items and
their actual research state. Moreover, a brief description of the research handover process to WP4 is provided.
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2 BPAAS MODELLING BLUEPRINT

The various tasks that need to be performed for the allocation, execution, monitoring and adaptation of a BPaaS
require the existence of models that provide information that properly supports these tasks. A more detailed view
on the BPaaS Modelling is providedin Figure 3. The models have to enable the mapping between workflow tasks
and actual cloud senvices, including all technical details to allow the deployment of the service in the cloud. The
models should also supportthe definition of adaptation rules in order to supportthe adaptive provisioning of BPaa$,
which will obviouslyinclude the appropriate measurement details required for BPaaS monitoring. In addition, the
models need to support the definition of SLAs as well as cost models.
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Figure 3 - BPaaS Modelling Blueprint

Such models should conform to one or more languages that define the structure, the main notions and the
relationships between these notions. Concerning the BPaaS deployment and adaptation, the language that the
consortium has selectedis CAMEL [5], a main research resultdeveloped in the contextof the PaaSage ' European
project. Forthe semantic modelling of metrics and SLAs, OWL-Q [6] has been chosen due to its ability to express
all appropriate aspects related to the modelling of quality terms and senvice levels. These are the two main
languages that are to be used for the research prototype environments.

In the following, after conducting a state-of-the-artanalysis concerning the modellingin cloud computing especially
spanning the aforementioned lifecycle activities, we describe the main project research contributions conceming
the modelling aspect. Figure 3 shows the targeted area for the resulting blueprints. The blueprints are incarnated
into the analysis of CAMEL and its main extension blueprints with the focus on the deploymentand adaptation of
cloud senices. An equivalentanalysis of OWL-Q is performed, encompassing the respective extensions blueprints
with the focus on SLA specification.

2.1 State-of-the-art

The modelling of services in general and for specific domains like cloud computing is an ongoing research area
with a large set of existing solutions. As CloudSocketintroduces the quite new BPaaS paradigm, the current state
of the art on service and cloud modelling is reviewed towards their capabilities and shortcomings for BPaa$S.

! http://www.paasage.eu/
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21.1 Service Description Languages

The functional specification of services benefits from a plethora of many different languages. Each language
focuses on a different functionality aspect. The most commonly used languages are those used to structurally
specify the service interface. Such languages are WSDL [7] and WADL [8] that cover SOAP and REST -based
services, respectively.

As structural specifications are not information rich, semantic languages have been proposed to close the gap by
alsoraising the level of service discovery accuracy. In this respect, semantic languages like OWL-S [9]and WSMO
[10] have been proposed but have not been undertaken due to the shortage in tools able to support the semantic
specification of services as well as to the gap between the knowledge of semantic representation and the current
expertise of the service modeller. However, such languages have been extensively used in research prototypes
with quite significantresults and are assorted with collections of semantic specifications, which map to real-world
services. Need to mention here that both languages support the specification of the service /0 as well as its
behaviour in terms of pre-conditions and effects. OWL-S also enables the description of the abstract interface of
the service covering the interactions needed with the service requester.

USDL is a semi-formal language for business and software service description. This language has been recenty
transformed to a Linked-Data counterpart[2]to become moreformal. Moreover, USDL covers also the specificafion
of SLA, quality, security, cost and legal aspects. An approach in [11] was also proposed focusing on integrating
USDL with TOSCAto link service selection with deployment such that the cloud application lifecycle is better
supported.

A UML based language called SoaML [12] has been proposed to specify Service-Oriented Architectures (SOAs)
by defining components and their inter-relationships at the business and service levels. T his language, however,
mainlyfocuses on the functional specification of the sernvices and does not deal with the internal orchestration logic.

As composite services comprise more simpler services that have to be coordinated, quite well-known workflow
specification languages can be used to express the internal orchestration logic such as WSBPEL [13]. In addition,
recently, BPMN [14] was also extended in order to supportthe specificationof sernvice-based workflows. Both these
two languages and especiallyBPEL4WS are used bythe majorityof service providers in order to specifythe internal
logic oftheir senvices. In addition, semantic annotations have been considered for both languagesin order to assist
in the concretisation of abstract workflows. D3.1 [15] also shed light on this in terms of semantic liting and
alignment.

The project has decided to follow a structural-based approach to specify services according to a specific JSON
schema. T hiswas mainly done for simplicity and currentimplementation reasons. However, concerning the main
research developments and the need for supporting semantic service discovery that reaches higher-levels of
accuracy, the main research prototypes addressing smart service discovery adopt OWL-S due to its main
capabilities to semantically describe both I/0 and behaviour of the service. Moreover, OWL-S is coupled with a
semantic service collection,which can be used as a basis for an extended semantic senvice registry. In case that
the internal logic needs to be captured, then BPMN is by de facto adopted by the project. Semantic annotations are
entered in this case in the current registry implementation thatin conjunction with the CAMEL deployment plan
indicate the way the functionalityof an abstractBPMN workflow task can be realised by a specific abstract service
entry in the registry, which is semantically annotated.

Various non-functional senice descriptionlanguages have been proposed. Aquite detailed evaluation on them can
be found in [16]. From this evaluation, it becomes apparent that: (a) there are particular features that distinguish
one language over the other, including the formalism, the richness, and the complexity; (b) languages can be
separated according to the lifecycle activities that they can cover. In this way, languages covering service quality
profiles go until the service discovery while languages covering SLAs cover potentiallythe whole lifecycle; (c) OWL-
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Q is the mostprominentlanguage from those used to represent quality profiles while for SLAs, there is actuallyno
language thatprevails. In fact, a trend has been revealed where differentlanguages are combined togetherin order
to exploitin a complementaryway their SLA specification capabilities. Nevertheless, languages from the first type
canbe extended to coverthe second specification type and this will be witnessed in section 2.3.2.2 where we will
analyse the extension made towards enabling OWL-Q to specify SLAs. Such an extension leads to an SLA
language that surpasses the current state-of-the-art.

21.2 Cloud Service Modelling

A de-facto standard for the description ofthe application deploymentthatis widely usedin research prototypes
is TOSCA[2]. TOSCAisan OASIS open standard thatdefines a description of services and applications, including
theircomponents, relationships, dependencies, requirements, and capabilities. ltcan be described as a technology
centred on the application. The objective is to enable portabilityand automated managementacross cloud
providers regardless of underlying platform or infrastructure. This way, TOSCA expands customer choice,
improves reliability, and reduces cost and time-to-value. These characteristics also facilitate the portable and
continuous delivery of applications (DevOps) across their entire lifecycle. However, it comes with certain
shortcomings related to the non-coverage of the instance level required for dealing with runtime aspects, the lack
of cloud/domain-specific constructs and the almost non-coverage of the non-functional aspect. T hese shortcomings
limitthe holistic modelling ofthe BPaasS lifecycle needed which takesinto consideration all cloud service levels as
well as various types of technical requirements.

CAMEL is a multi-purpose DSL developed in the context of the PaaSage European project. This language is
analysed in detail in section 2.2 and has been finally adopted by the CloudSocket project. Two main drawbacks
applyto CAMEL: (a) itis quite lengthy covering a great level of details that mightnot be requiredin the contextof
specific tasks; (b) itis semi-formal asitis Ecore-based. However, the first drawback s solved by the modularityof
the language such that only specific modules can be used in the contextof a specific task. The second drawback
can be solved via enabling semantic annotations via using an appropriate and suitable language like OWL -Q (see
section 2.4.2).

In [17], a language enabling the semi-formal description of Blueprint Templates is proposed. Such templates
cover cloud-offerings at multiple abstraction levels and capture service capability, virtual topology as well as QoS
and policyaspects. Apart from being semi-formal, this language does notcapture information thatis required in all
lifecycle activities as done in the case of CAMEL. In addition, it cannotdefine the quality termsrequired for quality
capability specification of respective service offerings.

Galan et al. [18] have proposed a cloud meta-model that extends OVF2 towards covering self-configuration,
elasticityand performance monitoring. T his meta-model cannot specify componentdependencies as well as quality
capabilities and requirements.

The senice manifest is another OVF extension proposed in [19]. This extension covers placement and
allocation constraints, security requirements and performance profiles according to the properties of trust,
reputation, eco-efficiency and cost. However, the sernvice manifest covers mainly the laaS level without the ability
to describe componentdependencies. In addition, it does not have the ability to model additional qualityattributes
and metrics related, e.g., to performance as in the case of CAMEL.

mOSAIC [20] is an OWL-based ontology used for semanticallyannotating semi-formal cloud service descriptions.
It covers various aspects, including cloud service requirements and resources, metrics, SLAs, components and

2 https://www.dmtf.org/standards/ovf
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policies. Such an ontology could be exploited in the context of semantically annotating CAMEL as indicated in
section 2.4.2 but mainly covering semantic concepts not currently captured by OWL-Q.

By considering the laaS level, it can be considered that CAMEL is the richestfrom all languages able to cover all
possible aspects in an appropriate level of detail. In addition, it caters for the models@runtime [21] approach
enabling a system to always keep up with an up-to-date state of the multi-cloud applications that are being
provisioned. Moreover, itis also coupled with tools that enable both the deploymentdescription, provisioning and
local as well as global adaptation of multi-cloud applications.

2.2 CAMEL

In orderto coverappropriatelyall the information aspectsinvolved in the design and adaptive provisioning of multi-
cloud application, the PaaSage European project has developed the CAMEL family of DSL languages. CAMEL
comprises DSLs whichwere alreadyexisting, such as CloudML [3]and Saloon feature meta-model [22], as well as
languages that were developed from scratchin that project, such as the ScalabilityRule Language (SRL) [4]. The
information aspects that CAMEL spans include application deployment, monitoring, scaling, cloud provider
offerings, organisation, security, as well as requirements modelling.

Al meta-modelsin CAMEL have been specifiedin EMF23ecore. T his enables using various technologies provided
by the Eclipse framework, including editors and programmatic interfaces. T hese meta-models were also carefully
integrated by removing duplicate concepts or relationships and connecting appropriately related concepts from
different aspects/meta-models. This integration is supported via the specification of OCL* constraints that enable
proper semantic validation of models in one oracross domains. In this way, the modelleris guided in providing only
semanticallyand structurallyvalid models conforming to the CAMEL meta-model. This guidance is supported both
in aninteractive mode via editors as well as in programmatic mode. T hree editors can be mainlyexploited in order
to specify CAMEL models. T he firstone is provided by default by the Eclipse IDE and enables a tree -based editing
of the models. The rest of the editors have been developedin the contextof PaaSage. Thefirstis a textual editor
that conforms to the textual syntax of CAMEL, which was defined by exploiting Eclipse's XT ext®technology. T his
editor provides some added-value features like auto-completion, error marking and automatic transformation ofthe
model into an XMI form. The web-based editor has been developed again via Eclipse Technologies (RAP¢) and
enables the web-based editing of CAMEL models focusing more on (deployment and application) requirements
specification as well as in the specification of organisation models and especially their security-oriented aspects
(user and permission modelling). Its main advantages are that it does not require from the user to know the textual
or normal syntax of CAMEL, it immediately generates valid models that are persistent in a corresponding model
repository and it enables a role-based access onlyto CAMEL aspect-specific models which conformto this role's
allowed permissions.

Due to this extensive aspectcoverage at the more technical level and especiallyits prominent capabilities to
describe both abstract and concrete deployment plans as well as scalability rules, CAMEL was selected as the
main cloud modelling language for the CloudSocket project. However, while this language can be used more or
less asit is, there are particularaspects thatneed to be slightly or more heavily extended in orderto better support
the aforementioned BPaaS lifecycle tasks/operations across all possible layers (laaS, PaaS, SaaS and WfaaS). In
this respect, we first provide an overview of the original version of CAMEL and then we analyse in detail the
extensions that were performed on it.

3 https://eclipse.org/modeling/emf/

4 https://wiki.eclipse.org/OCL

> https://eclipse.org/Xtext/

® http://eclipse.org/rap/
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2.2.1 Original Version

Ouranalysis on the original CAMEL version focuses mainlyon those aspects or sub-DSLs that are mainlyused by
the project. These sub-DSLsincludethe deployment, metric, scaling, requirement, provider and organisationmeta-
models. Thesemeta-models are going to be shortlydescribed only. More details can be found in CAMEL's technical
documentation’.

Camel Meta-model. This is the top-level meta-model which defines a root CAMEL model that can encompass
aspect specific models. It also enables the definition of applications comprising their name, short description and
version. As such,one CAMEL model can be associated to one or more applications for which the respective aspect-
specific models should hold.

Deployment Meta-model. This meta-model enables the specification of both abstract and concrete deployment
plans. Abstract plans define the structure of the userapplication in a provider-independentway. T heyindicate what
are the main application components and how theycan be configured via respective OS commands, the VM nodes
on which these components can be hosted along with the respective requirements on VM characteristics like the
number of cores, as well as hosting and communication relationships between the application components.
Concrete deploymentplans, on the other hand, model the deploymentofan applicationin a cloud provider specific
way by working mainly at the instance level. In this sense, the deployment meta-model suitably covers the type-
instance pattern. In such plans, each application componentor VM maps to one or more instances that are
connected to each other according to the respective relationships defined at the type level. Moreover, both
application components and especially the VMs that host them map to real IPs. We should also note here that at
the instance level we also make a connection between a VM instance and the respective VM offering of a cloud
provider that is instantiated (specified in a respective (cloud) provider model). This is essential information for
deployment as the respective deployment engine will then know which W to instantiate at which cloud.

Requirement meta-model: This meta-model enables the specification of various types of requirements. First,
requirements can be categorised into hard and soft. Hard requirements must be satisfied at all means while soft
requirements are usually optimisation directives over non-functional parameters to the platform over how the best
deployment plan can be derived. Hard requirements can be further categorised into hardware, OS, provider,
location, and service level objectives (SLOs). The first 4 sub-classes can be associated either to the whole
deployment plan, as global requirements that must hold for all VMs, or to specific VMs as local requirements in
order to restrain the cloud provider space. Hardware requirements mainlyimpose restrictions on the values of VM
characteristics, which include the number of cores, the memory size and the disk storage size. OS requirements
explicate the OS that must be supported by the VM. Provider requirementsindicate a specific provider from which
respective VM offerings should only be considered to instantiate a specific VM. Location requirements are used to
restrain the cloud provider space to a specific location that can be physical or virtual. Physical locations map o
specific continents or countries while virtual locations map to locations thatare specific fora certain cloud. Finally,
SLOs are hard requirements on the application senice level, which indicate that the values of a particular quality
term (attribute or metric) should notoverpass a specific low or upper threshold. Such requirements are mainlyused
in order to filter the provider space during deployment plan reasoning.

Metric meta-model. T his meta-model specifies all necessary measurement details in order to measure specifc
properties of components at different levels of abstraction. Such measurement details are encompassed in the
notion of a metric. Metrics can be raw or composite. A raw metric can be immediately measured via sensors. A
composite metric can be measured byapplying a specific formula over measurements of other metrics. Formulas
are actuallyexpressions that can encompass the application of mathematical or statistical operators over metrics,

7

https://tuleap.ow2.org/plugins/git/paasage/camel ?p=camel .git&a=blob_plain&h=62d67508d3611f64d67a88e
adl10afeef350f711e&f=documents/CAMELDocumentation.pdf&noheader=1
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attributes or other (sub-)formulas. In order to cater for scheduling/timing aspects, metrics can be associated o a
metric context which indicates when (how frequently) each metric should be computed and according to which
measurements (time or measurement or mixed-type of windows). Such a context also indicates other details like
which is the object thatis being measured (the application or one of its components or a VM) and pattern-based
information (pertaining to how many instances of a component should be considered in order to deem a metric
condition as being violated or not). Metrics or attributes are associated to conditions thatapply a specific threshold
on their values. Such conditions are used as building blocks in order to specify scaling rules and service level
objectives. As can also be easily understood, metric conditions are also related to a specific metric context in order
to set-up exactly the appropriate information to be used for their proper evaluation.

Scalability meta-model. T his meta-model can be exploited in order to specify scalability rules. Such rules map a
particulareventto one or more actions. Currently, horizontal scalingactions are supported as well as event creation
actions. The latter lead to the creation of an event when local/cloud-specific scaling fails indicating that global
adaptation should be performed for the whole application. Horizontal scaling actions indicate important details about
how scaling should be performed by explicating how many instances to create or destroy for which particular
application component. Events can be simple or composite. Simple events map to the violation of a metric or
attribute condition. Composite events map to unary or binary event patterns. Event patterns combine one ormore
events according to logic-based (e.g., AND/OR) and time-based operators (e.g., PRECEDES). For instance, we
canindicate that we should wait for 10 seconds before a specific eventhappens or that two different events need
to occur in order to consider that the respective event pattern is satisfied.

Provider meta-model. T his meta-model has the main goal to specify feature models, which cover all types of
offerings of a specific cloud provider. A feature model comprises a tree-based hierarchyof features. Each feature
canhave a set of attributes whose values map to a specific value type. A feature model is also associated to a set
of constraints thatcan be intra- orinter-feature-based. Intra-feature constraints indicate thate.g. one attribute value
of a feature leads to another value for another attribute to be fixed. This is an essential mechanism to specify a
mapping from a VM flavour name to the characteristics ofthis flavour (where VM flavour is an equivalentterm to a
W offering ora VM type). Inter-feature constraints can operate over the atributes ofthe features or their cardinality.
Forinstance, we can expressthat a particular VM flavour of a provider (mapping toa VM feature) is available only
in specific locations (mapping to a location feature). As it can be easily derived, this meta-model is quite generic
and can express any kind of cloud provider offering, including laaS and PaaS senvices. In this respect, this meta-
model does not need to be extended in order to cover all layers in the cloud computing stack.

Organisation meta-model. T his meta-model originates from the CERIF standard [112] that is used to specify
research organisation information, covering aspects like publications, equipments, users, and roles. A particular
sub-set of CERIF was selected as a base for the organisation meta-model and especially concerning the
information about user and role modelling. The basic root constructis the organisation model that represents
information abouta specific organisation, like name, address and web site URL. Specific types of organisation can
also be modelled mapping to cloud providers. In this case, additional information can be modelled, like what type
of cloud is offered and what of cloud offerings. An organisation model also includes the specification of one ormore
users. Each user is related to specific personal information, like username, first and last name, and email as well
as to credential-based information. Credentials can be platform-specific or cloud-specific. Platform-specific are
credentials (in the form of a password) used to connect the user to the respective platform prototype, like the
PaaSage (or CloudSocket) prototype. On the other hand, cloud credentials (which can take different forms) are
specific to one cloud and represent security information that can be exploited in order to perform cloud -specific
tasks (like VM instantiation) on behalf of the user. Users are related to one or more roles. In PaaSage, the basic
roles of administrator, DevOps and business have been identified. Each role is associated in turn to a set of
permissions thatare allowed foritin terms of differenttypes of accesses on platform resources (models or services).
Role assignments as well as permissions are associated to specific information that can be used to inspect their

validity, like the end date of the assignment or permission.
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In the context of the CloudSocket project, the organisation meta-model is exploited by the initial version of the
project prototype. However, when the Identity Management solution is ready (to be provided by YMENS for user
access control), differentformalisms and a differentcorresponding language mightbe exploitedto specifythe same
type of information.

2.2.2 Extension: SaaS Modelling

Currently, concerning deployment/allocation, CAMEL onlycovers allocation decisions for the hosting of application
componentsto VMs. However, the main requirements originating from the projectrequire: (a) allocation decisions
to cover additional layers in the cloud computing stack; (b) the respective lifecycles of the components at these
layers to be properly handled.

As afirst extension to CAMEL attempting to satisfy the above requirements, the deploymentmeta-modelin CAVIEL
was expanded towards the specification of allocation decisions related to the WfaaS and SaaS layers as well as
the coverage of SaaS and internal service components. In the sequel, we explain in detail these two types of
extensions.

In order to prepare for the forthcoming extensions towards covering the modelling of PaaS components, a
Componentin the deploymentmeta-model is now further classified into internal and external components. Internal
are software components of the application or BPaaS workflow at hand. On the other hand, external are
components mapping to SaaS, Paa$S (not currently modelled) and laaS services (i.e., mapping to VM conceptin
the meta-model).

A SaaSsenvice isrelated to: (a) the set of BPaaS workflow tasks for whichitcan realise the respective functionality
(mapping to an attribute of type String that can take multiple values mapping to the IDs of these tasks) and (b) a
particular ID mappingto the respective entry in the atomic senvice registryin the main CloudSocket prototype. Such
an ID canbe a normal identifieror a URI (both can be used as the type of the respective attribute is just a String).
In this sense, any kind of service repository can be catered from which we can identify and obtain information for
the particular SaaS at hand. Please consider that this is usually an abstract SaaS and not a concrete one. This
means thatit mapsto an abstractfunctionalitythat needs to be concretised atthe instance level. However, we also
do allow specifying a concrete SaaS in order to cover all possible scenariosin CloudSocket concerning the
concretisation of abstract BPaaS workflows. Such scenarios can be static which indicates thata concrete SaaS
has already beenidentified or more dynamic where we just indicate an abstractfunctionality and then indicate at
allocation specification time how this functionalitycan be concretised eitherin a vague or quite specific way. Vague
means that we specifya concrete SaaS but do not explicate which endpoint from those available (mapping to its
instances) will be exploited; specific means that we also choose the particular endpoint to be exploited.

Covering the case of internal sernvice components, we have also modelled the InternalService Component class,
which s a subclass of InternalComponent. T hisindicates thatan internal service componentis a kind of software
componentthatalso inherits the respective information pertaining to software components like the ways to configure
them.As such, the lifecycle of service components is also handled in a uniform manner asin the case of any other
software component. Of course, some differentiation can existwhich actuallyconcerns the instance level in terms
of issuing different commands in order to handle the lifecycle with respect to other types of components, like
databases. In this class, we have also modelled specific additional information which relates to the type of the
senice (SOAP or REST), mapping to a member of a new enumeration called ServiceType, plus allocation
information equivalentlyspecified asin the case of SaaS (IDs of tasks for which the functionalitycan be realised).

To cater for the instance level, the same classification (as in the type level) has been enforced. This means that
componentinstances are further classified into internal and external componentinstances. The external component
instances now map to SaaS and VM instances. A SaaSInstance is mapped to a set of endpoints, which indicate
the differentinstances ofa SaaS that are available in orderto realise the functionalityof a BPaaS workflow task. In

Copyright © 2016 UULM and other members ofthe CloudSocket Consortium
www .cloudsocket.eu Page 22 of 118



case thatone endpointis provided, this means thatthe allocationdecisionis fixed for the respective abstract BPaaS
workflow task(s). In case of multiple endpoints, the allocation is not actuallyfixed and has been determined at
deployment time when additional information is available. For instance, as each endpointis location specific, it
mightbe the case that we need to know the location ofthe BPaaS customerin order to selectthe SaaS endpoint
thatis closer to this customer.

Similarly, the InternalServiceComponentinstance class has been realised which justindicates the endpoint from
which this instance is available. This endpoint is to be set when the respective deployment plan is executed and
especiallywhen the respective instance is deployed on a particular VM. We need to mention here that multiple
instances can map to the same internal senice component. This can occur when we need to split the tasks
horizontally into partitions that are covered by different instances for load balancing reasons. To this end, each
internal service componentinstance can be related to a subset of the tasks that are associated to its type. If this
information is not provided, this means that the instance realises all the tasks allocated to its type.

We should note here that following the design principles of CAMEL, we have made extensions thatare compatble
with the original CAMEL version in order to allow easily CAMEL to evolve without requiring modifying existing code
of respective platforms. Moreover, we have created an initial small set of OCL constraints, which further enhance
the semantics of the deployment domain according to the extensions that have been performed.

2.2.3 Extension: Cross-Layer Description of Components

In the current CAMEL meta model,acomponentcan have multiple configurations. Any configuration is a set of life
cycle actions represented as Strings. Unfortunately, the configurations are not annotated with any semantic
information about how to use and execute the life-cycle actions on which platform. Obviously, this hinders the
execution of a component across multiple cloud service levels.

In the following, we present an approach to develop a method specifiying componentsin a way that will lead to the
ability to deploy a service on cloud providers of different senvice levels and capabilities (laaS and Paa$S).

Configurations ofacomponentcan have differentformulations basedon the service level(s) supported bythe Cloud
provider and the abilityin terms of DevOps tools to manage the deployment.

On laaS level, a typical approachis to define the life-cycle actions directly on the operating system (OS) in terms
of scripts. These are then executed and their correctness is evaluated via environmentvariables or return values.
This approach suffers from an OS-dependent description as well as an imprecise error handling when executing
the life-cycle actions.

On PaaS level, there exists a numerous amount of provider-specific APIs, focusing on specifying the application
andits environment, which are managed bythe Paa$S provider. T here are also APIs to build an abstraction layer to
plethora of Paa$S providers, such as the COAPS API (see section 4.1.1.2), by defining a spanning format for the
application manifest and the environment with its capabilities.

There are also approaches between those levels that make use of laaS providers and build up the environment for
an application bydefining its platform in terms DevOps tools like Chef® or Puppet?. Examples for this are Scalr'oor
Foreman', which allow to describe nodes of your deployment by means of Chef recipes or Puppet modules.

8 https://www.chef.io/

9 https://puppet.com/

10 http://www.scalr.com/

11 https://theforeman.org/
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Foreach senvice level and DevOps ability, there are multitude of variants to consider before moving from one Cloud
provider to the other.

The first approach to solve this on the modelling side, is to allow the application engineer to specify multiple
configurations for each senvice level and DevOps ability. Here, we present an extension to CAMEL, which only
needs few adjustments to the language itself.

Figure 4 shows the class structure forthe Configuration entityreferred from the Componententity, which is needed
in this solution. It shows that the Componententity can now have attached several different kinds of Configuration
entities. In particular, a Configuration is specialized in a ScriptConfiguration, DevOpsConfiguration and
PaaSConfiguration. T he ScriptConfiguration is expanded by life-cycle actions that are already supported by the
Cloudiator toolset, while is almostidentical to the original Configuration classin CAMEL . DevOpsConfiguration will
be specialized to several DevOps tools, such as Chef or Puppet. In PaaSConfiguration, it will be possible to
specialise for different PaaS providers (e.g., Heroku) but also cater for a cross-provider description, asis the case
of e.g. the COAPS API manifest for environments and applications (see section 4.1.1.2).

Component

§

ConfigurationRequirementSet|1 : - Configuration

Ja

ScriptConfiguration DevOpsConfiguration PaaSConfiguration
ts Secin
[ l Heroku COAPS
Puppet Chef

Figure 4 - Advanced class structure of the configurations of a component in CAMEL

A Configuration has now also attached a ConfigurationsRequirementSetwhose structure is visualised in Figure 5.
The semantics ofthis entity is based onthe VmRequirementSetof the current CAMEL version. This means thatit
comprises several entities thatdescribe the requirements for this Configuration. T he updated ProviderRequirement
entity definesrestrictions ofthe Cloud Provider for this configuration, e.g.,it has to be an laaS or PaaS provider, or
support a certain PaaS API or PaaS abilities, such as storage- or messaging-specific capabilities. For the latter
restriction, the current CAMEL has to be extended by additional configuration values in this class, which are
represented by Strings in the field’s type, name and version. As with the current CAMEL version, it is still possible
to define specific Cloud Providers as a requirement. A HardwareRequirement, has not been modified with respect
to the current CAMEL version, and defines hardware constraints such as the number of CPU cores or size of RAM.
An OsOrlmageRequirement imposes the usage of a certain image or operating system. A SoftwareRequirement
defines which software has to be made available forthe Componentto run with. By that, it will be possible to define
a ScriptConfiguration that has no SoftwareRequirement defined, when the scripts actually install the software,
besides a PaaSConfiguration that describes the PaaS capabilities in terms of SoftwareRequirements that are
needed in order to run a certain component.
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Figure 5 - The ConfigurationsRequirementSet part of the class structure

Thelife cycle thatis managed per Componentis directlydefined in the ScriptConfiguration as actions represented
as Strings, whereas the management of life-cycle actions of DevOpsConfiguration defined by the actual DevOps
tool. PaaSConfigurations have their life cycle pre-defined bythe provider or an abstraction layer. In the latter case,
the Configuration maps to the parameters of the predefined life-cycle actions of the PaaS providers, such as
"createEnvironment", "createApplication", and "destroyEnvironment".

Another way to realize this multi-definition ofthe life-cycle actionsis to rely on the principle of building blocks from
which the user plugs his application together and for each block, a description for multiple cloud-service levels and
DevOps tools is available. Thisis a more sophisticated approach as we not only add additional configurations for
the same topology, but also integrate the conceptof Containerizables and Containers (cf. Figure 6). A code, thatis
an actual componentofan application,canbe a Containeror Atom. We define Atoms as atomic senvices that are
pre-configured and ready-to-use software (delivered as SaaS), which is not yet in the focus of this configuration
model.A Containeris a building block thatprovides a hosting platform for a Containerizable. A Containerizable is
a template class, which is related to the Container it can be hosted in. A Container can host severable
Containerizables. T his allows the user to plug the building blocks together that he/she needs.

Hardware
ServietContainer Code g, 1 |Configuration
[ fa¥
VM | | ___|IaaSConfiguration
< JUM>> D Container Atom
OperatingSystem || | PaaSConfiguration
<Opoeht i ngSyatonss .
L--_— === || DevOpsConfiguration
{> Containerizable|” |

Serviet VanillaSoftware

Figure 6 - Class structure for Container and Containerizables concept

A Common specialization for Containers is Hardware associated with a description about the essential hardware
capabilities as CPU, RAM and Storage. An OperatingSystemis a Container as well as a Containerizable for
Hardware Containers.A JVM is a Containeras well as a Containerizable foran OperatingSystem. The OpenJDK
for example is a specialized JVM. For the Provider, as seen in Figure 7, we need to define explicit entities for
Containers and Containerizables, so the user is able to choose or define them on his/her own, which would then
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mean to provide also the Configuration entities. This way, every Code (that can be an Atom, Container or
Containerizable) has multiple Configurations attached, which aim for different Cloud-service levels.
laaSConfiguration remains with executable scripts and a reference to an Operating System. A PaaSConfiguration
contains the part of the application manifest that deals with this part of the component of an application. Any
SaaSConfiguration is to be specialized for each SaaS provider. SaaSConfiguration includes provider-speciiic
mechanismsfor, e.g., accounting and provisioning that is out of focus of the current research. By this structure, if
a user uses for his VanillaSoftware the OperatingSystem Container Ubuntu, which is a parent class of
Ubuntu_14_04, the Allocation Environment will be able to use any sub-class of this Container, which is provided
from any of Cloud provider — implied that no other restriction is given in the deployment rules.

Provider | Offer ==—— Container

Al'h
| I I

Images I OperatingSystem Hardware

M 1.7 : Container Image X : Image .ﬂ Flavor X : Hardware
Tomeat 4 ; Container Ubunty 16.04 : OperatingSystem

Figure 7 - Provider model for Containers and example instances

Thisapproach caters for an easy-to-reuse container model bythe conceptofbuilding blocks. Figure 8 shows an
example stack of Containers and a derivation of a Servlet, whichimplements the actual life-cycle actions (e.g.in
case of an application manifest) in the context of a user-defined custom application component.

<< ServietContainer s>
MySerdet @ Serviet

!

o iMs =
Tomcat : ServietContainer, Containerizable

!

< <O peratingSysbem:> >
OpendDK1_6 : WM

!

<<Hardware>>
UbuntulG04 : OperatingSystem

!

MyFlavor © Hardware

Figure 8 - Example for a application stack from building blocks

In the end, the proposed modelling might serve as a meta language for CAMEL, since the Containerization
capabilities willbe mappableto the current Hosting concept, as it will then be able for multiple components to share
the same hosting capabilities. In addition, the very generic provider model ofthe current CAMEL version needsto
be specialized by enriching it with the ability to define Components with hosting capabilities.
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Due to the immense genericity of CAMEL's provider meta-model, a mapping to this meta-model is possible, but
semantic definitions on howto use attributes and constraints, need to be made. Figure 9 shows a simplified example
of how such a language construct could look like. This of course requires to have entities like Tomcat or JVM
already defined, such that the user does not have to care for the complex Provider model needed to map the
application deployment description to actual available offers. For such entities, we need and ontologyor repository,
such that the same terminologyis adopted in defining both, the cloud service requirements and cloud service
capabilities. Thisisup to be integrated in the modelling/developmentenvironment, such as the user just needs to
provide the minimum possible information to define his/her application.

Application “Example”:
MyServlet [quantity: 1- 10] /* '[]' denotes further configuration and
set of requirements */
Loadbalancer [quantity: 1]
-> MyServlet /* '->' denotes communication */

Component “MyServiet”:

Servlet [/* custom manifest and custom
life-cycle action scripts,
means here IaaS and Paas
deployment is possible */]

Tomcat[version: [3.1; 3.3-40]]

JvM[version: [7-8]1]

OperatingSystem[LINUX]

Hardware[CPU:[1-4]]

Component “Loadbalancer”:
Nginx [ /* custom Tife-cycle action scripts, means here only IaaS */]
Image[ Image_X]
Hardware[CPU:[1-4]; RAM:[4-8]]

Figure 9 - Simplified application description

For CloudSocket we aim to be maximally flexible in choosing the right Cloud provider. T his will enable us to be
more cost-efficientby, e.g., usinga cheaper hosted platform from a PaaS provider, instead of creating the platform
on our own based on virtual machines. Other criteria for provider selection are, e.g., trust and availability.

The firstapproach affords the least effort for extending CAMEL and integrating it into the currentsystem. However,
this approach would involve duplicate definitions of componentconfigurations and would therefore most likely not
be feasible as a directinterface for, e.g., DevOps engineers. As this is not the main target group for CloudSocket,
we would most likely go this very first alternative approach and then widen the user interface capabilities.

Using building blocks as highlighted in the second approach, will help the modellerto (re-)use the same artefacts
across multiple applications. The idea of CloudSocket's architecture relying on building blocks, that can be
independentlyused and exchanged, is reflected in the latter approachand will make iteasier to be used by DevOps
engineers, by having a way to plug their components together.

In order to make CAMEL more usable for actual human users, a meta-language approach is feasible as described
in the second approach. However, this would also demand a high amountof effort as this approach implies many
changestothe CAMEL meta-model. T he firstpresented approach aims on fulfilling the main goals of a cross-layer
description of components, i.e., the ability to deploy the same component across multiple provider (types) and
technicallymap and integrate common DevOps approaches, byas few modifications to CAMEL as possible. At the
currentstage of CloudSocket, DevOps are not the main target user group of the project. In addition, CAMEL is not
used as a directinterface for the user, but created in a semi-automatical way. Evaluating these priorities and
characteristics, we suggest going for the first approach. The effort for huge modifications to cater for DevOps
engineers does not give much of a benefit to the project at the current stage.
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2.3 OWL-Q

OWL-Q [6]is a prominentsemantic service specification languagethat covers completelythe non-functional aspect
by allowing the description of qualitymodels as well as quality specifications. It has been carefully designed into
different facts, which cover various aspects in the definition of non-functional terms and specifications. Quality
models are specifications of quality terms, like quality metrics, attributes and groups, which cover the relationships
between these terms. For example, a quality model can specify the group of performance, which caninclude the
quality attribute of response time as well as the mean response time metric able to measure this attribute. Such
quality models can be regarded as standardised vocabularies covering domain-independent and domain-specific
quality terms that can be used in the specification of quality capabilities or requirements in quality specifications.

Based on the survey in [16], OWL-Q has been considered as the most prominent service quality description
language which has the major drawback of being quite lengthy. In addition, by considering the context of this project,
this language needs to be extended in order to cover: (a) the consideration of components in all possible layers;
(b) the specification of SLAs as a special kind of non-functional service specifications. Through satisfying the
requirementin (b), OWL-Q can be considered to apply across the whole senvice lifecycle and not just the service
description and discoveryactivities. T hisis the main advantage of having the ability to specify SLAs. However, this
also must be properly supported through modelling all the necessaryinformation to supportthe remaining lifecycle
activities. As such, OWL-Q has been updated in order to alleviate all these aforementioned issues. In the sequel,
we explain shortly what was the original version of OWL-Q and then we analyse the main extensions performed on
it.

Before explicating OWL-Q and its main extensions, we need to highlight a specific additional issue that might be
raised by the conscious reader. Both OWL-Q and CAMEL seem to overlap with respectto qualityterm specification.
Thisis indeed true but the usage of these languagesin the context of this projectwill be complementary. O WL-Q
will be mainly used for specifying the semantics of quality terms mapping to a vocabulary of terms that can be
exploited in order to specify monitoring conditions and event patterns leading to the firing of scalability rules via
CAMEL. In this sense, OWL-Q semanticallyannotates CAMEL and enables the lifting ofthe monitored information.
In this way, such semantically-lifted information can then be exploited for the evaluation of KPIs as the Evaluation
Environment employs a more semantic approach for supporting this and other types of analysis.

Toadd to the above discussion, we should also mention thatthe goal of WP3 is to research and develop interesting
research prototypes, which could be exploited by the implementation ofthe CloudSocket prototype in WP4. In this
sense, OWL-Q can be used in specific research prototypes covering the monitoring of BPaaS or their components
(see section 4.2.4), thus completelysubstituting CAMEL in this lifecycle activity. T o this end, the synergy between
OWL-Q and CAMEL will be surely exhibited in the main CloudSocket prototype while in WP3 we have the freedom
to use different types of languages in order to support different types of BPaaS lifecycle activities. This is also
evident from the fact that OWL-Q is proposed to cover SLAs in WP3 while in WP4 WS-Agreement is used for this
coverage due to the use of the SLAManager from AT OS.

2.3.1 Original Version

OWL-Q originally comprised eightfacets. In addition, its design evolved around the specification of detailed class
hierarchies in order to cover all possible sub-types of the basic quality term types. T his design also included the
specification of semantic rules in order to capture the respective domain semantics by supporting semantic model
validation and derivation of added-value knowledge. In the sequel, we shortly analyse each facet in order to
understand the main information aspects covered by OWL-Q. More details can be found in [23].

Connecting Facet. This facet had the main goal to connecta quality profile, whether it covers non-functional
requirements or capabilities, into the respective senvice for whichitapplies. Such a connectionregarded that OWL-
S is used for the semantic specification of the service functional part. We should highlight here that via this
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connection we were able to relate one service with many quality profiles mapping to the different levels of
performance that this service could support catering for different types or classes of consumers. T his facet also
covered the specification of different types of quality attributes.

Core Facet. T hisfacetspecified the main notions and their relationships for quality specification. It covered mainly
generic notions with some ofthem being further elaborated in aspect-specific facets. Some generic properties were
also covered like names and descriptions for anykind of notion. T his facet also covered the modelling of quality
specifications. Such specifications were categorised into qualityoffers and demands mapping to the description of
quality requirements and capabilities, respectively. Quality demands were actually included in quality requests
which also encompassed the specification of qualityselectionelements (i.e., preferences over qualityterm specified
by the requester). Any quality specification was mapped to a set of (simple) constraints that were expressed as
comparison expressions over one or two arguments (where argument was considered as a metric, attribute or
metric formula).

Metric Facet. This facet was used to specify metrics, which represent the main notions that encapsulate all
measurementdetails neededfor the monitoring of qualityattributes. Similar categorisations with respectto CAMEL
metric meta-model applied here which were however more sophisticated. Forinstance, metrics could be classified
as either dynamic or static or as either positively or negatively monotonic. Compared to the CAMEL metric meta-
model, the notion of metric contextwas not totally covered and only in an indirectmanner. Finally, we should note
that metric computation formulas in OWL-Q could be specified either explicitly via respective direct language
constructs or indirectly via the specification of such computational expressions in mathematical languages (e.g.,
OpenMath).

Function Facet. As indicated in the previous sentence, OWL-Q had two ways to specify metric computation
formulas. By focusing on the direct expression way, various notions were included which mainly concemed
differentiating between how the formula is represented and how it can be applied to a specific metric. Both
mathematical and statistical operators were modelled and could thus be exploited.

Measurement Directive Facet. T hisfacetincluded the modelling of necessary details for specifying measurement
directives to be exploited for obtaining measurements for raw metrics. Specific types of measurement directives
were modelled for this reason, like gauges and counts.

Schedule Facet. This facet included the modelling of schedules which focused mainly on the frequency of
measurement for metrics. Window-based information was not properly covered.

Unit Facet. This facet included the specification of all notions required for the modelling of units. T hree different
types of units were considered: basic, multiples and derived. A basic unit was associated to a system of units, a
multiple was a multiple of a basic unit, while a derived unit was a unit that could be computed from the division of
other units. Equivalence of units as a notion was also capturedin orderto cover mainlythe equivalences between
basic unitsin different systems of units. As in the case ofthe metric computation formulas, equivalence expressions
between two units could be expressed in two alternative ways (direct formulas or mathematic al expressions).

ValueType Facet. This facet included the specification of value types mapping to metrics. It included a quite
extensive classification. First, value types could be classified into Scalar, List-Based and NumericUnion. Scalar
were further classified into String and Numeric. Numeric could be further distinguished into constrained numeric
mapping to range-based numeric types with both or one limitexplicitlyspecified (i.e., mapping to a specific value).
NumericUnion in turn represented unions of non-overlapping numeric types.
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2.3.2 Extensions

Based on the aforementioned main issues, OWL-Q was extended accordinglyin orderto become compactas well
as cover different layers and the specification of SLAs as needed by the Cloud Socketproject. In the following, we
separately analyse the extensions into two main sub-sections covering: (a) OWL-Q necessary modifications not
related to a new aspect; (b) the OWL-Q update as a new sub-aspect of the specification aspectto cover the
description of SLAs.

OWL-Q was redesigned in order to become more compact. This haslead to the production ofonly 6 facets which
resulted in merging somefacets and in deleting others. In addition, the design rationale was modifiedfor each facet
In particular, more shallow classifications of concepts were maintained catering for the actual usage ofthe language
and not the coverage of extreme cases. Moreover, while previous OWL-Q version took the approach of enabling
users to explicitlystate all classesof a particularinstance, in the new version one classis usually enough. Thisis
due to the fact that the ontology class axioms have been enriched allowing to infer the rest of the classes on which
aninstance can belong. Finally, OWL-Q was enriched with a more extensive set of semantic (SWRL) rules covering
additional and more complicated validation scenarios as well as the generation of more extensive knowledge facts.

We should also mention that OWL-Q caters for differentmodes of modelling. The firstmode concerns the modelling
of anything via the use of sub-classing and more specific ontologyclass axioms. In this sense, metricslike Mean
Response Time would be modelled as subclasses of the Metric class. This mode can be quite convenient in
producing semantic quality models that can be exploited in order to semantically annotate, e.g., the parameters
involved in SLO conditionsin SLA languages like WS-Agreement. T he second mode concerns thatthe modelling
of more concrete things maps to the instance level, i.e., to the instances of the core classes. In this sense, following
the same example, Mean Response Time would be modelled as aninstance ofthe Metric class. T he advantage of
this type of modellingisthat it is more lightweightand can be used to model preciselyall ap propriate information
which can be needed in subsequentlifecycle activities from service/BPaaS discovery. Forexample, it can capture
specific details that can assist in the monitoring of the respective metric specified. A mixed mode could be also
supported enabling the instantiation of more specific metric classes andthe inheritance ofthe respective information
specified at the class level.

In the sequel, we shortly explain the contentofthe main facets of OWL-Q. More details can be found [6]. A snapshot
of the OWL-Q facet covering all of the facets (apart from the SLA extension) is depicted in Figure 10 and Figure
1.

Central Facet. In comparison to the previous OWL-Q version, this facet has been simplified and a specific partofit
was moved to the Aftribute facet. Now, this facet (with concepts colouredin white in Figure 10) onlycontains generic
notions, relationships between them (like compatibilityand dependency) and generic properties (like value mapping
to a value of specific XSD type). It also includes the specification of quality categories which representmeaningful
groups or partitions of other qualityterms (attributes, metrics ormore specific categories). We should highlighthere
the notion of an Argument (as in previous version) which explicates the different types of arguments that can be
used as inputin a metric computation formula. As such, an argumentcan be a quality metric, a quality attribute, a
service property, a value (see ValueType facet) or a formula (recursive definition).

Attribute Facet. T his facet (with concepts coloured with yellow) was also simplified with respect to the previous
version of OWL-Q. It now includes only a small shallow classification of quality attributes. In particular, quality
attributes can be further distinguished into composite, measurable and unmeasurable. A composite attribute
represents a more abstract or complex attribute that can map to simpler ones. For instance, the response time
attribute can be separated into execution time and network latency attributes. A measurable attribute can be
measured by one or more metrics. On the other hand, an unmeasurable attribute cannotbe directlymeasured. Ifit
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is composite/abstract, this means that probably its descendants can be measured. In some cases, however, such
an attribute, if itis concrete enough, can be associated to a specific unitand value type, thus representing a fixed
quality characteristic. Any attribute is also associated to the level it mapsto. Concerning the case of the extended
cloud computing stack (quite relevant also in the context of this project), the following levels are relevant: laaS,
PaaS, SaaS, WfaaS and BPaasS.
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Figure 10 - Five main OWL-Q facets

Metric Facet. Figure 10 depictsin a green colour the concepts of this facet. As in CAMEL, metrics can be considered
as raw or composite. Similarly, raw metrics can be computed from sensors or measurement directives, while
composite metrics from other metrics via computation formulas. Compared to the previous version of OWL-Q, we
now explicitly cover sensors and their configuration and we resort to just one way, the directone, to express
computation formulas. The mainrationale is that we allow any kind of interpretation and respective transformation
of such formulasinto different forms. For instance, such formulas could be translated into SPARQL queriesto be
posed on a semantic repository over (lower-level) metric measurements into order to dynamically compute the
value of a higher-level metric. Formulas are modelled similarly to CAMEL by applying a specific function over an
argument list. Functions can be statistical or mathematical and we provide respective classes to represent them.
Also the notion of a MetricContext has been partially included which was inspired actuallyby CAMEL. T his notion
is related to the notion of a metric which enables us to define multiple contexts of the same metric catering for the
variability in metric measurement exhibited in monitoring systems. As expected, this metric context covers
scheduling and window details concerning the frequency and size of measurements for metric computation. A
metric is also associated to a specific unitand value type as well as to a specific monotonicity (covered this time
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by a specific attribute). Finally, this facetcovers the modelling of metric measurements which are associated to a
specific value and timestamp. This allows us to use OWL-Q in order to populate semantic measurement databases
which can enable different types of analysis over the measurements modelled and stored.

Unit Facet. This facet (with concepts coloured in purple) was carefully redesigned in order to exclude details not
necessaryneeded from the previous OWL-Q version (like the capturing of units of systems and basic units) as well
as to improve some parts of the modelling. In this way, the basic root notion is again Unit whichis now classified
into Simple, Derived and Dimensionless. Simple are atomic units (like bytes) which cannotbe derived from other
units. Derived units (like bytes per second) are derived from the division of units multiplications. To this end, two
objectrelations were modelled to cover the nominator and denominator partof this division named as proportional
and inverseProportional as well as a factor mapping to a constantof double precision also required for the proper
specification of this division. While simple and derived units are associated to a specific dimension (named as
QuantityType), this is not the case for Dimensionless units (like percentage). On the other hand, any kind of unitis
associated to a specific quantitywhich is associated to a certain dimension (i.e., type). For example, the dimension
of speed canhave as quantities the network speed (with bytes persecond as unit) or the light speed. As such, the
quantityis the main differentiation or partitioning factor among units of the same dimension.

ValueType Facet. This facet (with concepts coloured in red) can be used to model value types. As the main
subclasses of Value Type are more or less similar with respectto the previous version of OWL-Q, we focus only on
the specific modifications performed. First, the Range class has been introduced which always have a lowerand a
upper limit,where a limitis a kind of Value. Specialised instances of values have also been modelled to represent
positive and negative infinity. In this way, arange can have eitherone or both limits open. Second, a ValueListnow
replaces the List-Based class in previous version to represent a list of values of the same type. Third, the Value
class, as already stated, has been modelled which can be classified into four main subclasses mapping to string,
double,integerand float-based values. Actually, there are restrictionsindicating thatthe value property that can be
associated to each Value sub-class should map to the appropriate XSD type.
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Figure 11 - The OWL-Q specification facet (with concepts coloured in blue)

firstArgument operator

Specification Facet. This facetis depicted in Figure 11. There have been particular updates with respect to the
previous version. First,an actual renaming of someclasses, like QoSSelectionbeingrenamedby PreferenceModel.
The preference model is a tree-based structure which indicates the preferences as nodes (named as
PreferenceElements) mapping to weights that the user has on certain quality terms. The main feature here is that
the weights are relevantin the contextof the same parent indicating the respective relative significance thateach
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term has with respectto a common reference point. Forinstance, by assuming that the currentparentnode maps
to the quality category of Performance, the child nodes of response time and throughput can take the weights of
0.6 and 0.4, respectively. These weights indicate their relative importance with respect to their category. This
hierarchical representation suits well the Analytical Hierarchy Process [113] and can be used for the ranking of
services after being matched againsta service request or in service concretisation problems to enable the proper
formulation of the optimisation formula. Any specification is now connected to a particular Service which can
comprise more simple senices and which has particular service properties. Each service property is a kind of
Argument, as already stated. Any senvice is also related to a specific endpoint(serviceURI) from which additional
information can be fetched about this senvice (e.g., a specific mechanism is employed to obtain the interface
specification ofa SOAP-based service). In this way, we connectthe non-functional specification ofa service with
the functional one without being tightly coupled with a particular functional service description language.

Any specification is associated to a Constraint. A constraint can be simple or complex. Complex constraints are
associated to a logical combination of simpler constraints by applying logical operators like AND and OR. Onthe
other hand, simple constraints are associated to a comparison operator (like GREAT ER_THAN), a threshold and
an argumentindicating the quality term on which the threshold (i.e., low or upper bound) should hold. Such
constrainttype is also associated toa ConstraintContextwhich indicates particular details concerning: (a) the URI
of the element/object/componentthatis measured again catering forlanguage independence butalso for covering
components in different layers; (b) similar information to CAMEL corresponding to the way the instance
measurement level should be addressed (see respective description in section 2.2.1).

Toconclude, we would like to stress that OWL-Q has been substantially extended to become more compactand
easy to exploit, it supports different modes of modelling, it covers additional validation and knowledge derivation
cases and more importantly covers all the layers in the extended cloud computing stack.

Inspired by the survey in [16] which indicates the inabilityof current SLAlanguages to cover the information needed
to supportmany of the activities of the service lifecycle as well as by considering the currentneeds of the project,
OWL-Q specification facet was extended [24] in order to include a sub-facet, named as Q-SLA, focusing on the
specification of SLAs. A snapshotof this facet is depictedin Figure 12. The design of this sub-facetrelied on the
main evaluation criteria ofthe SLAlanguagesin [16]. T hese criteria map to the informationthatneeds to be covered
in each activity of the service lifecycle. As advocatedin and shown in the following table, now Q-SLA outperforms
all the current state-of-the-art SLA languages.

Life-cycle Criteria WSLA | WS-A | WSOL RBSLA LUA SLALOM | Q-SLA
Activity [WSLA] | [WS-A] | [WSOL] | [RBSLA] [LUA] | [SLLOM] | [Q-SLA]
Description Formalism Informal | Informal | Informal RuleML Ontology UML Ontology
Ontologies

Coverage [p.y] [y.p] [p.p] [p.y] vyl [p.y] [p.y]

Reusability yes yes yes yes yes yes yes

Composability no fair no no no no fair

Matchmaking | Metric Definition yes no no yes no yes yes

Alternatives impl impl impl impl no no yes

Soft Constraints no yes no no no no yes
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Matchmaking no no no no no no yes
Metric
Negotiation Meta- poor fair poor poor poor poor good
negotiaton
Negotiability no part no no no no yes
Monitoring Metric Provider yes no yes no yes no yes
Metric Schedule yes no no yes yes no yes
Assessment Condition yes no yes no yes no yes
Evaluator
Qualifying impl yes no no yes no yes
Condition
Obliged yes yes yes yes yes yes yes
Assessment yes no no no yes no yes
Schedule
Validity Period yes no no yes yes no yes
Recovery yes no yes yes no no no
Actions
Setlement Penalties no SLO SL SL SLO SLO SLO
Rewards no SLO no SL SLO no SLO
Settement yes no no yes no no yes
Actions
Archive Validity Period yes yes no no yes yes yes

Table 1 - The evaluation of Q-SLA against more representative state-of-the-art SLA languages

Theroot level conceptof this facetis named SLA. This conceptisa sub-conceptof Specification highlighting that
an SLA is a kind of non-functional specification. An SLA template in turn is a specific kind of an SLA. An SLA is
associated to a validity period as well as a specific transaction and authentication protocal. It includes one more
service levels (SLs) which represent the different performance levels that can be exhibited by the corresponding
senvice and are relevant for this SLA. As such, SLs can be considered as a special kind ofa composite constraint
A special kind of SL called MaintenanceSL was also modelled to cover the performance level of a service during
maintenance periods. T he SLApermits the transitions from one SL to another. The transition to a maintenance SL
can occur in different ways: (a) on demand; (b) in certain periods; (c) both previous ways applying. On the other
hand, the transition from one normal SL to another can occur when either: (a) the respective signatory entity
requests this and is entitied to do so; (b) when certain conditions occur within a specific time period (such as a
violation of a numberof Service Level Objectives (SLOs)). Through this transitioning, we enable the specification
of more flexible SLAs, which do not have to be re-negotiated when certain critical circumstances occur. For
instance, when the service client needs to cover an additional load (e.g., due to an increase in the number of its
customers), then he/she can indicate his/her intention to upgrade the SL offered by the respective senvice. As
anotherexample, ifthe service provider cannot anymore guarantee the deliveryofa certain SL, he/she canindicate
that the currentSL is downgraded to a lowerone. T his downgrading will of course have an effect on the pricing of
the senvice that will be reduced.
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Figure 12 - Q-SLA sub-facet (with concepts coloured in light blue)

SLA usually includes a conjunction or a logical combination in general of SLOs. Each SLO is a kind of simple
constraint for which additional information is provided. This information spans the following: (a) a qualifying
condition indicatingwhen this SLO should hold and is valid. Such a condition mayinclude limitations on the side of
the requester, which caninclude bounds on the frequencyvia which requests are issued; (b) a settlement should
applyifthe SLOis violated or surpassed. A SLO violation should map to a penalty, which is expressed as a discount
over the normal service price while an SLO overpass to a reward expressed as a small percentage of increase in
the basic senvice price. We believe thatboth types of settlementshould be consideredin SLAs in order to encourage
service providers to increase the levels of service that they provide. T his will lead to additional competition between
the providers, resulting in better products and better prices for them; (c) the obliged party/entity which should be
responsible forthe satisfaction of the SLO; (d) the services or service parts for which the SLO should hold; (e) the
parties responsible for the monitoring and assessment of the SLO; (f) negotiation/discovery-oriented information
indicating whether the SLO is negotiable and/or soft. Negotiable SLOs are usually included in SLA templates
indicating those qualityterms for which the value can be negotiated. Soft SLOs are SLOsthat are not obligatoryin
the sense that the service client can tolerate a violation of them.

Speaking aboutservice clients, an SLAincludes a setof RoleAssignments which indicate the roles thatentities can
play in this SLA which map to certain responsibilities. In this way, we can specify that Org1 can play the role of
service provider in SLA; and the role of senice clientrequesterin SLA.. As such, we allow the same organisation
to playa different role in different SLAs. The types of entities that have been modelledinclude Organisations and
Persons. The main roles have also been modelled mapping to PROVIDER, REQUESTER and THIRD_PARTY
(mapping to an entity that might be obliged to perform particular tasks in the context of an SLA such as SLO
monitoring and/or assessment).
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A SL is also associated to a specific price model from which the price ofthe service can be derived. A price model
maps to a certain monetaryunit(e.g., EUROS) as well as to low and upper price bounds which indicate the highest
and lowest limits that the price of the service can reach, irrespectively of the way this price is calculated. A price
model is associated to one or more price components which explicate the way the price can be computed for a
specific aspect. In this way, the total price of the service would be the sum of the prices derived from these aspect-
specific components. Each price componentis associated again to lowerand upper pricelimits as well as to a price
computation formula which is a kind of metric formula. In this sense, price can be considered as a metric that can
be computed from other arguments, including particular features of a service. As a more concrete example, imagine
the price for an laaS seniice. This can include formulas over the computational, network and storage resources
exploited that each can map to different price components.

When an SLO is violated or surpassed, this violation has an effect on the price model of the respective SL and
especiallyon the corresponding price componentthatis affected. As already indicated, for the time being, a penalty
or reward is expressed as a percentage over the price derived from a price component. In the future, we will
consider other types or ways to compensate for an SLO violation or surpassing.

To caterforthe modelling of critical situations which need to map to the performance of correspondingactions, like
re-negotiation or SLA cancelling, a SL is associated to one or more Settlements which capture these critical
situations and the actions that need to be performed. Currently, we consider that setlements can be expressed for
lower-level SLs for which either a specific amount of SLOs has occurred in total or for a specific time period.

Finally, it has been decided that Q-SLA should follow a lightweight approach towards the capturing of SLA
hierarchies that can well occur in the case of BPaaS. For example, a SLA for a BPaaS can involve the BPaaS
brokerand the BPaa$S clientwhile the SLAfor the laaS/PaaS/SaaS senvices that provide supportto the BPaaS can
involve eitherthe BPaaS broker or clientand the providers of these lower-level services. This lightweightapproach
maps to the modelling of the related SLA object property which relates one SLAwith another one. T his approach
has been followed due to the increased complexityneeded to fully specify such hierarchical SLAs and especially
the various dependencies between the components and respective quality terms in the different levels. However,
this decision can be modified in the near future, possiblyin case a specific requirementis raised in the contextof
this project.

2.4 Future Work

The aforementioned sections have reported the current developments with respect to the modelling aspect for
BPaa$S allocation, execution, monitoring and adaptation. However, the project considers particular research
directions thatare going to be followed in the next period of the project. T hese research directions are now shortly
analysed in separate sub-sections, which are grouped according to the sole language thatthey concern (CAMEL).

241 CAMEL Adaptation

Until now CAMEL covers only an application's scaling behaviourin terms of scalabilityrules that can be triggered
to perform the respective scaling actions. However, in the context of this project, this adaptation type is restrictive
and we need to expand onitto cover higherlevels, i.e., the PaaS, SaaSand WFaaS|evels in the contextof CAMEL.
For these levels, different types of adaptation actions apply and different conditions mightneed to be captured. In
addition, as advocated by corresponding research results from other projects (S-Cube) and respective research
work [106, 114], adaptation should be performed in a cross-layer and not a layer-specific and individual manner.
Thisgives rise to the ability to interconnectconditions occurring atdifferent layers as well as the actions that have
to be performed to alleviate them. CAMEL can guarantee condition interconnection but this is not the case for
adaptation actions. In our view, adaptation actions mighthave to follow a more complicated workflow rather than a
simple one comprisingjusta sequence oftwo actions. In this sense, CAMEL needs to be extended such that it can
specify in a director indirect manner such workflows. It should also allow specifying actions that need to be
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performed at different layers. In case adaptation-based exceptions occur, it also need to supply alternative or
compensation logic. All aforementioned extension directions will be followed for CAMEL by extending the current
content of the SRL meta-model/language.

24.2 CAMEL Semantic Annotations

While not being a top priority for now, semantic annotations willgreatlyassistin two main BPaaS lifecycle activities:
(a) adaptation and (b) evaluation. Adaptation in sense of substitution or re-composition requires to know the
functionalityof a BPaaS workflow task to be replaced. T o enable an accurate substitution, this functionalityshould
be semanticallyannotated (with annotations spanning the I/O parameters and possibly the functionality itself). As
a SaaS usually points to an entry in the service registry, we believe that CAMEL does not need to be extended to
cover this type of annotations. On the contrary, we believe that the service registry should be semantically
annotated to support semantic service discovery by allowing the production of those semantic specifications that
are needed by a semantic service discovery algorithm (see section 3.2.1).

Concerning BPaa$S evaluation, measurement information needs to be semantically annotated so as to be
semanticallylifted to cater for the main analysis goals of the BPaaS Evaluation environment. Such an annotation
could be done in two different ways: (a) semantically annotating metrics when specified in CAMEL or (b)
semantically annotating the measurements. The first way enables to indirectly connect the annotation with the
respective measurementproduced via the metric identifier while the second waymaps to a directconnection. The
first way does not require modifying the measurement logic while the second way does as the respective sensor
should be configured with the URI of the semantic metric specification.

Based on the above, CAMEL is going to be extended mainlyas far as metric specification is concerned. Any other
kind of annotation burdens mainly the contents of the different types of registries that are available (especially
mapping to the descriptionof PaaS, SaaS and laaS services), provided that information atthe higherbusiness leel
is already semantically annotated.
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3 ALLOCATION ENVIRONMENT BLUEPRINT

The main goal ofthe Allocation Environmentis to produce a BPaa$S bundle out of a BPaaS design package thatis
given as inputto it. Such a BPaaS bundle should contain the concrete deployment plan which will be used in order
to guide the deployment of the BPaaS by the Execution Environment. Such a deployment plan indicates the
allocation decisions that have been taken. Such decisions concern the usual three layers in the cloud: (a) SaaS
services are mapped to service tasks in the abstract workflow of the BPaaS design package; (b) PaaS and laaS
services map to the deployment of Vs (laaS) or environments (PaaS) which will host the internal service
components ofthe BPaa$S. In this sense, these decisions concretise the abstract BPaaS workflow as well as cater
for providing an underlying infrastructure support to guarantee that enough resources are engaged for the
deployment and execution of the concrete BPaaS workflow.
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Figure 13 - Allocation Environment Blueprint

Figure 13 depicts the allocation blueprints, which will supportthe Allocation Environmentin the required decisions.
We believe that a step-wise approach should be followed whichinvolves four main steps: (a) the discovery of those
(SaaS) senvices that realise the functionalityof the tasks of the abstractworkflow in the BPaaS design package. In
case that no single service can realise the functionality of a task, then service composition is executed to find
suitable senice combinations that do realise it; (b) the discovery of PaaS or laaS senices that satisfy the
deploymentrequirements forinternal service components ofthe BPaaS workflow; (c) the selection of one candicate
SaaS seniice for each task in the abstractworkflow; (d) the selection ofone PaaS or laaS from the candidate ones
for each VM/environmentin the deploymentplan. We need to indicate here that the first two and the last two steps
can be executed in parallel where the execution of the first two should precede the execution of the last two.
Moreover, as the selection of services should reflect the satisfaction of broker non-functional requirements, we
actually advocate that one combined algorithm should be in place in order to realise the last two steps. This is
because the choices atthe laaS and PaasS level influence the QoS of the internal service components atthe SaaS
level and thus the overall high-level requirements that are posed at that level also influencing the selection of
external SaaS senvices. In this way, a combined algorithm can guarantee the optimalityofthe solution derived while
the execution of individual service selection algorithms at different levels will lead to a non-optimal solution.
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In order to facilitate the generation ofthe BPaaS Bundle, the DMN Mapping describes the idea of semi-automatically
generating parts ofthe CAMEL description for the actual service deployment. T his will reduce the required technical
knowledge aboutthe cloudprovider specific details and reduces the complexityfor creating of the technical CAVIEL
description.

In the following, we first provide a short state-of-the-art analysis concerning approachesin cloud service discovery
and composition. Then, we present the two research approaches that realise the four main steps in the BPaaS
allocation approach. The description of the DMN Mapping Blueprint follows before we conclude this section by
drawing directions for further research in the shortand long term. Shortterm directions will be followed and reported
in the next version of this deliverable while long term directions might be followed but is not expected to solve
completely the main research problem to be addressed.

3.1 State-of-the-Art

A comprehensive state-of-the-art analysis for cloud service discovery and composition has alreadybeen reported
in D3.1. In this section, we just shortly supply the main outcomes of this analysis.

Concerning cloud service discovery, we have indicated that there is a variety of approaches, which focus on
different types of cloud senices and on different aspects (functional and non-functional). For any kind of cloud
service, approaches thatemploy semantics can reach higherlevels of accuracy. T he most promising approaches
concerning functional SaaS service discovery[25] employa combination ofinformation retrieval and semantic web
techniques. On the other hand, concerning non-functional SaaS service discoverythe most prominentapproaches
come from the mixed category[26] in which QoS-based SaasS specifications are first aligned based on their QoS
terms and then constraint solving techniques are exploited in order to perform SaaS matching. laaS discovery
seemsto mapto an easier problem and requires just the use of constraintsolving techniquesin order to perform
the laaS matching. In fact, in our view, laaS matching looks similar to non-functional SaaS matching. This is
because the main features of an laaS offering can be seen as constraints on particular properties while the
respective laaS requests follow the same pattern. As QoS/non-functional capabilities and requirements are also
expressed as constraints over QoS terms, in principle the same approach as in SaaS matching can be used in
orderto perform the laaS matching. However, more sophisticatedapproaches can also be employed which map o
the semantic-aware matching of feature models. Such approaches consider feature models, which can be regarded
as more structured constraint models comprising constraints operating over the properties of features or across
features. Moreover, feature models map to feature hierarchies. As such, they seem to match the different parts
from which an laa$S offering can comprise.

Functional service composition has been applied mainlyin the contextof SaaS senvices. Thisis quite natural if we
consider that, there is no meaning in composing laaS senices as usually abstractdeploymentplans are employed
which comprise VM nodes mapping to a set of requirements thatare then used to discoverthe mostsuitable laaS
services. In this way, the concretisation of abstract deployment plans is similar to the concretisation of abstract
senvice plans where the selection of the bestcandidate laaS service is driven byglobal non -functional requirements.
Thus, by focusing on functional SaaS senice composition, the proposed approaches can be distinguished into
graph-based [27], model-based [28] and Al-based [29]. Model- and Al-based approaches are more automated but
usually also slowerthan graph-based approaches. In addition, graph-based approaches seems o be able to cater
for the variability in the workflow production byallowing the use of differenttypes of workflow control flow elements
apart from sequential ones. On the otherhand, especiallyAl-based approaches can also applysemanticsin order
to guarantee a more accurate senice composition result.

Senvice selection as alreadyindicated maps to the concretisation of a plan, whether this plan is an abstract workflow
or a deploymentplan. Concerning SaaS selection or concretisation, the approaches can be splitinto the following
categories: (a) semantic [30]; (b) heuristic-based [31]; (c) multi-tenant-based [32]; (d) variability and multi-criteria
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decision making (MCDM) [33]; (e) aspect-based (e.g., focusing on network issues and availability of multiple SaaS
instances) [34]. In the context of web senvice selection, the second and fourth categories have been mainly
exploited. Heuristic-based approaches enable the production of sub-optimal solutions in a faster way while MCDM
approaches are able to produce optimal solutions but suffer from performance problems. As advocated in [35],
many approaches, irrespectivelyof their category, suffer from particular disadvantages concerning: (1) following a
pessimistic or a optimistic approach covering the worstcase or the average one and not all possible ones; (2) they
consider that SaaS/web senvice offerings comprise single values for each QoS term while it is more proper,
especially in dynamic environments, to model offerings comprising a range of values per term; (3) user
requirements can be over-constrained leading to no solution - such a situation should be avoided by enabling to
violation of least possible amountofuser constraints in order to still propose a solution to the user; (4) usually there
are dependencies between the QoS terms (metrics or attributes) that are not captured. Based on these
disadvantages, a prominent approach [35] was proposed able to solve all of them.

In the case of laaS selection, most of the approaches have focused on the so-called placement problem that
regards the placement of VMs in a specific cloud. The approaches that do solve the exact problem that we are
facing actuallyemploysimilartechniques like those used for SaaS concretisation, which was also evident from the
above analysis. It is worth to mention thatfuzzy-based [36] and stochastic learningtechniques [37]have also been
employed. The formerattempts to map user-provided optimisation rulesinto an optimisation formula, catering for
the fact that some users are not experts in deriving such formulas by themselves. The latter relies on the fact that
insufficient information is considered for the laaS selection (e.g., high-level performance goals and how theyare
mapped to low-level ones are not taken into account), which maps to supplying results which satisfy low-level
requirements butare not suitable with respectto the expected application performance. This canbe because either
the laaS provider may not conform to its promises or the type of laaS senvice selected maynot be actuallysuitable
for hosting the respective application component. As such, the incremental learning approach learns from the
previous execution historyin order to improve the solutions proposed to the user.

3.2 Smart Service Discovery & Composition

In orderto deal with the first two steps as indicated in the introductorypart of this section, smart service discovery
and composition algorithms have been developed covering both SaaS and laaS seniices. In the sequel, we shortly
analyse the respective research approachfollowedforeach service lifecycle process byalso providing a respective
reference from which additional information and details can be found.

3.2.1 Smart Service Discovery

We have developed various smart service matchmaking algorithms, which focus on the coverage of the non-
functional aspect. These algorithms span the first (in the context of CloudSocket) [6] and third category of
approaches (previous work) [26] in non-functional SaaS matchmaking. To remind the reader, the first category
employs ontologies and uses subsumption reasoning in order to infer the matchmaking butis able to address only
unary-constrained non-functional service specifications. All the developed algorithms rely on OWL-Q (see section
2.3). So they do accountforthe semanticsin the description ofthe quality terms thus catering for higheraccuracy
levels as they are accompanied by a respective non-functional service specification alignment algorithm[38].

All the developed algorithms attemptto smartlyorganise the service advertisementspacein order to enable a faster
sernvice matchmaking. Theyalso relyon the matchmaking metric of conformance indicating that a non-functional
request matches the non-functional offer when each solution of the offer is included in the solution space of the
request. The algorithms of the third category transform the conformance matchmaking into constraint satisfaction
while the algorithmsin the first categorytransform it into ontology-based subsumption. In the first case, by having
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each non-functionalsenice specification transformed into a constraintmodel, conformance is expressed as fo llows:
match (PP, PO) « sat(P° A 1PP) = false. This means that the constraint model PP of the request matches the
constraintmodel P ofthe offer if and only if the constraintmodel constructed from the constraintmodel of the offer
and the negation ofthe constraintmodel ofthe requestis not satisfiable/feasible, i.e., it does not have any solution.
In the second case, the conformance is expressed as follows: match (SP, S°) «» SP 2 SO, where SP represents
the ontology specification of the request and S° the ontology specification of the offer.

In the following, we first shortly analyse the architecture ofthe research prototype developed and then we describe
each algorithm classified based on the two concemed categories. In the end, there is a discussion of which
algorithm to select for different circumstances.

3.21.1.1  Prototype Architecture

The architecture of the consolidated system is shown in Figure 14. The actual matchmaking and registration
processes are analysed in the following sub-sections as they map to details that are specific foreach category of
algorithms. The analysis now concentrates on the functionality exhibited by each component of the architecture.

Service
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Figure 14 - The architecture of the non-functional service matchmaking prototype

The Broker is the entry point in the non-functional service discovery system, which is responsible for the
orchestration of respective capabilities of other components in order to realise the service matchmaking and
registration processes. In case invalid requests are issued, this component raises an error to the user/client.

The Constraint Solver is responsible for checking the consistency/feasibility of constraint models and employs
different constraint solving techniques depending on the type of constraints involved [39]. Linear constraints are
handled by mixed-integer programming techniques while non-linear ones with constraint programming techniques.
Please note that constraint-based matchmaking is translated into constraint model consistency checking so this
componentis also exploited for matchmaking constraint-based non-functional service specifications.

The Semantic Aligneris responsible for aligning the non-functional senvice specifications issued by mapping their
terms to the terms of a basic Term Repository. After the mappings are derived, the alignment involves a
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transformation of the specification toinclude only basic quality terms which is performed by the Transformer. The
Transformer is also responsible for transforming an ontology-based specification to a constraint model.

The Reasoneris responsible for checking the syntactic and the semantic validity of the specificationsissued. Itis
also responsible for performing subsumption reasoning over an ontology (which can include two or more
specifications). Both normal and incremental subsumption reasoning is supported.

The Repository Manager is finally responsible for the storage and retrieval of various artefacts that are stored in
different repositories. These artefacts include semantic quality terms and semantic specifications stored in a
Semantic Repository as well as constraint models which are stored in a Constraint Model Repository.

3.21.1.2 Mixed Category Aigorithms

Four (existing) algorithms are exploited in this category. In the following, we first explain the main procedure
followed foreach algorithmin the context of advertisementmatching and registration and then we analyse the main
logic foreach algorithm. More technical details about the exactlogic, the complexityanalysis and the evaluation of
the algorithms can be found in [26].

The usual procedure for matchmakingis thatthe ontology-based user specification is first checked for validity. T his
means that an ontology reasoner is employed in order to check the syntactic and semantic consistency of the
specification. If the specification is not valid, an error is relayed back to the user. Otherwise, the user specification
is aligned [38] based on its quality terms againsta repository of basic terms that have already been encountered.
Thisavoids having to perform pair-wise comparisons of a requestwith all the offers currentlystored in order to align
it and reduces the possible term-to-term mappings that have to be considered in the alignment. Then, the user
specificationis transformed into a constraintmodel which is checked for consistency. If it is not consistent, an error
is sent back to the user. Otherwise, the constraintmodel produced is matched againstthe constraintmodels of the
offers stored in the senvice repository.

Concerning offer registration, the same steps as in matchmaking are performed in order to align and validate the
ontology-based offer specification. Then, this specification is just registered based on the logic of the respective
algorithm and especially the way it organises the service advertisement space.

3.2.1.1.2.1 Naivealgorithm

This algorithm does not conduct any specialised organisation of the service advertisement space. In this sense,
requests are matched againstall offers registered via pair-wise comparisons. In this sense, this algorithm has the
worst time in service matchmakingand the bestfor service registration as it does not have to perform anything else
apart from just storing the constraint model of the offer in the service repository. Thus, it actually represents the
main (performance) extremes in service matchmaking (worst) and registration (best).

3.2.1.1.2.2 Unary algorithm

The main logic of the unary algorithm is that it tries to organise the service advertisement space by using smart
structures which consider just the thresholds of each non-functional service specification. A set of same structure
instancesis actuallyemployed, each mapping to a different QoS term. As such, this means that this algorithm can
only operate on unary-constrained non-functional specifications.

In this algorithm, the matchmaking is performed by considering each constraint of the user request. In particular,
eachuserconstraintis checked with respectto those offers that satisfy it. T hisresultsin a sub-set of offers, which
have to be concatenated with the respective sub-set produced from the processing of the previous constraintin
order. In this way, through set concatenation, we can reach a point where either no offer is able to satisfy all the
constraints of the request that have been processed (so far) or all constraints have been processed and a set of
offers matching the request have been found. As the derivation of a sub-set based on a user request s fast and
this holds for the concatenation of sets, this algorithm is the fastest in service matchmaking.
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Concerning service registration, each constraint of the offer is processed at a time and leads to the update of the
structure mapping to the qualityterm thatthis constraintinvolves. T his again leads to a quite fast service registration
process but is not as fast as in the case of the naive algorithm.

3.2.1.1.2.3 Subsumes algorithm

Themainideahereisthatthe service advertisementspace is organised into a subsumption hierarchywhere atthe
root we have nodes which are not subsumed by any other node and at the rest of the levels we have nodes that
are subsumed by their parentwhile they subsume theirdescendants. An example of such subsumption hierarchy
can be seen in Figure 15, where offer O1 subsumes offer O, which in turn subsumes offers Oz and O.

Figure 15 - An example subsumption hierarchy

Through such a subsumption hierarchy, service matchmaking can be fast due to the following observation: if a
request subsumes a node, it also subsumes all the descendants of this node. In this way, we do not have to go
down in the tree hierarchyin order to perform pair-wide comparison of the request with each descendant node.

Senvice matchmaking follows the above rationale. We compare the request first with each root node. In case of a
match, we justcollectthe node's descendants and we include themin the matchmaking results (along with the root
node). Otherwise, we need to go down the tree of the currentroot node because there is a possibility that a
descendant mapping to a more strict constraint model matches the request. As such, in this case, matching is
performed in a recursive manner.

Senvice registration follows a similar process as in matchmaking by starting with the root nodes. However, the
difference now lies on the fact that we need to check all subsumption directions in a pair-wise comparison. This
maps to covering the following cases: (a) the offer subsumes a root node but is not subsumed byit. This means
that the offer becomes the parent of the root node and the processing continues; (b) the offer is equivalent to the
node. In this case, it enters the node's equivalence set that maps to all offers that are represented by this node.
The registration ends here; (c) the offer is only subsumed by the node. In this case, we have to recursively visit the
descendants of this node; (d) the offer is not related to the node - the processing goes to the nodes siblings.

This algorithm might have good matchmaking performance if the subsumption hierarchy has more than 2 levels
and certainly outperforms the naive algorithm in most of the cases. However, this algorithm has also the worst
performance with respect to service registration due to also to the need to cover both directions of subsumption.

3.2.1.1.2.4 SubsumedBy Algorithm

This algorithm has similarlogic with the previous one. The main differentiation lies on the fact that it relies on the
opposite relation, subsumedBy, in orderto organise the senvice advertisementspace. The main rationale is that if
the percentage of offers being matched is always low, then matchmaking will be faster than the Subsumes
algorithm. This is achieved by the fact that if a request does not subsume the root node of a tree in a hierarchy,
then it does not also subsume any of its descendants.

We do not shortly detail the service matchmaking and registration logic of this algorithm as itis equivalent to the
previous one. We just need to indicate that this algorithm wasindeed proven to be faster in service matchmaking
with respect to the previous one when the percentage of matched offers was equal or lower to 0.3.
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3.2.1.1.2.5 Discussion

Based also on the review in [26], the best algorithm isthe Unaryone as itis more scalable than the others in both
service matchmaking and registration are. However, as already stated, it only operates over unary-constrained
non-functional service specifications. Thus, in case thatn-aryconstrained specification are involved and registration
time is not very important, then it is recommended that the subsumes-based algorithms are exploited where te
SubsumedBy one seems to be more suitable based on the fact that it is more probable that a small percentage of
offers is always matched against user requests.

3.21.1.3  Ontology-based Categoryof Algorithms

Aimost the same procedure for service matchmakingand registration is followed by the categoryfor which we hawe
developed three main algorithms[116]. T he onlydifferentiation lies on the factthat the service specifications do not
needto be translated into constraintmodels butthey are matched or registered based on their original butaligned
form. Constraint feasibility is guaranteed via ontology reasoning in this case. In the following, we shortly present
the developed algorithms and then we provide a small discussion about which one to select in different
circumstances.

3.2.1.1.3.1 NaiveAlgorithm

The mainidea ofthis algorithm is that we use ontologysubsumption asitis. Thismeansthat: (a) a new offer is just
included in the existing specification of all offers registered -i.e.,one ontologyencompassing all offers; (b) a request
is temporarilyincluded in the former ontology and subsumption reasoning is just employed in order to discover
those offers that it subsumes. In this sense, we expect that service registration will be the fastest possible while
service matchmaking the worst possible with respectto the other algorithms proposed, especiallyas ontology
subsumption does not scale well when the size of the ontologyincreases. As in the case of the naive algorithm in
the mixed category of approaches, the same different extremes actuallymap to this algorithm, thus also justifying
accordinglyits name.

3.2.1.1.3.2 Incremental Algorithm

Thisalgorithm tries to solve the main problem exhibited bythe previous one. It considersthe idea that incremental
reasoning can be employed in order to decrease the matchmaking time. In this way, registration in this algorithm is
almost equivalent to the previous one with the sole difference that now when every X offers are registered,
incremental subsumption reasoning is performed. Matchmaking is performed as in the previous algorithm - we
temporarilyadd the requestto the offer ontologybut we now perform incremental reasoning. T he evaluation results
have shown that this algorithm isworse in registration time than the previous one butis betterin matchmaking time,
reducing this time to one third in some cases.

3.2.1.1.3.3 Subsumes Algorithm

Thisalgorithm has exactlythe same rationale asin the case of the equally named algorithm in the mixed category
of approaches. The only difference is with respect to the way conformance/subsumption checking is performed,
where now pair-wise ontology subsumptionis employed. Compared to the previous algorithms, this algorithm has
afar bettermatchmaking time. Its registration performance is worse than the naive is butbetter than the incremental
from a certain number of offers registered and above (450 in the experimental evaluation performed in [116]).

3.2.1.1.3.4 Discussion

Based on the above analysis, the best algorithm seems to be the subsumes one, if we especially consider that
matchmaking time is more important than registration time. This algorithm is also more stable and scalable with
respect to the previous ones.

3.21.14  Overall Discussion on Non-Functional Matchmaking Algorithms
While we have indicated the cases where one algorithm from those available in an approach category should be
selected, we need to also provide some global recommendations spanning both approach categories for which
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algorithms have been developed. In our opinion, the mixed-based approach seems to be faster and more scalable,
especiallyinthe case ofthe Unaryalgorithm. In this sense, if unary-constraints are onlyemployed in specifications,
we recommend the exploitation of this algorithm. In case that n-ary constrained specifications are involved, then
different algorithms can be preferred. This depends on various factors, including the implementation technology.
We expectthatif state-of-the-art constraintsolvers are used, then the SubsumedBy algorithm ofthe mixed category
will be the best, as it will reach a better performance level in matchmaking and registration than its respective
counterpart in the other category. However, in our evaluation, we have experienced some scalability and
performance problems when employing free constraintsolving components. Such problems lead to nominating the
Subsumes algorithm in the ontology-based category as the best when exploiting the Pellet state-of-the-art open-
source ontology reasoner [40]. Nevertheless, we expect that only unary-constrained specifications will be
considered in the projectand thus the use of the Unary algorithm will be the most appropriate and the one finally
recommended.

Currently, we supportfunctional service matchmaking byrelying on two main algorithms. T he firstalgorithm, called
Alive, has been proposed in [Alive] while the other algorithm, called Simple, has been developed in the contextof
this project. Both algorithms employ information retrieval and semantic web techniques to perform the functional
senice matching and return as a result categories of matches based on the classification in[25]. Both algoritims
require that senvices are functionallydescribed via OWL-S butin the future they could adopteven other formalisms
(by realising the respective processing or model transformation functionality needed).

Both algorithms attemptto organise the senvice advertisement spaceina smartway in orderto speed-up service
matchmaking. T he first algorithm employs smart graphs which enable in O(1) time to retrieve the subsumpfton
descendants of one node, where each node maps to a domain ontology concept. Both direct and indirect
subsumptionretrieval is supported. Via such graphs along with hash-based structures that map each I/O concept
to the senvice that features it, matchmaking can be performed byretrieving for each outputconceptof the request
the set of senvices, which produce output concepts that are subsumed by this concept. T his set is concatenated
with the respective set produced for the previous output request conceptin order of processing. Thus, we reach a
pointwhere eitherthe requestis not matched byany senice, as we end up with an empty concatenation result, or
it is output-matched by a set of services when all output request concepts have been processed. The final set, if
not empty, is then matched based on the user request input where the order of matching now is reversed. T his
means that we check if each input concept of the offer subsumes any input concept of the request. Now, input
checking is performed on the fly as we expect that a quite small fraction of services is matched.

The second algorithm follows a similar matchmaking logic with the first one. T he sole difference is with respectto
the type of structures exploited. In this second algorithm, instead of the smart graph, the whole subsumption
hierarchyof an ontologyis mappedintoa hash set which covers all directand indirect subsumption relationships
between pairs of domain ontology concepts. Compared to the graph structure, this second structure is static and
thus cannot handle domain ontology updates. As such, the first algorithm is more robust to changes in domain
ontologies.

Concerning offer registration, the procedure is quite similar for both algorithms. They first check if the offer is
valid/consistent, a prior step also for service matchmaking. Then, they process each I/O concept of the offer in
orderto update the respective structures. T he registration process takes usuallylonger time than the matchmaking
one as ontologies have to be loaded, reasoned and the respective subsumption hierarchies must be incarnated
into appropriate structure content. On the other hand, during the matchmaking process, only the specification
ontology is loaded while then the normal matchmaking takes place by relying on the subsumption information
already gathered.
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Due o its robustness as well as on the fact that the first algorithm is faster, itis selected by defaultin the prototype
and is highly recommended. Evaluation results for this algorithm can be found in [41]. We just need to note that
this algorithm has been modified to correct some minor issues that prevented it from reaching higher accuracy
levels. In this sense, the evaluation results concerning accuracy will be better than those in[41].

Currently, we follow the approach thatlaaS matchmaking is equivalentto non-functional service matchmaking. In
this respect, the algorithms provided in section 3.2.1.1 also function for this type of matching. Theyonlyrequirement
is that laaS offerings are described in OWL-Q in order to be matched. In the future, we will consider whether the
constraint-based matching is enough or more sophisticated approaches (like semantic feature model matching)
can be employed.

3.2.2 Smart Functional Service Composition

From those planning algorithms that have been proposed, we have selected the Al-based ones due to their
capabilityto also handle semantics. From this category, an algorithm developed by FORTH [42] has been chosen
whichisable to address service planning by also considering the frame, ramification and qualification problems in
senvice specifications. The latter problems have been acknowledged to lead to composition accuracy issues. As
such, the selected algorithm will certainlyreach higheraccuracylevels, provided that the service specifications are
richenough and are specified based on a specific XML-based language called WSSL (Web Service Specification
Language) [43] that has also been proposed by FORTH. However, even if service specifications are not rich
enough, the accuracylevels exhibited by the selected algorithm will be the normal ones as in other Al-based
planners. Other features that make this planner more appealing are that: (a) it supports service
validation/verification apart from service composition; (b) it is also able to produce plans, which are non-
deterministic; (c) itis able to address information incompleteness due to partially observed senvice states.

3.3 Simultaneous laaS & SaaS Service Selection Algorithm

As it has been indicated in the introductory part of this section, SaaS and laaS selection should be performed in
conjunction in order to take the best possible allocation decisions in all the levels involved that best satisfy the
user/broker requirements posed. To this end, a constraintoptimisation algorithm [115] has been developed able to
perform this type of combined selection. This algorithm has been implemented based on the Choco constraint
solver2and the Ibex constraint programming solver (for the internal handling of real variables). T he main features
of this algorithm are shortly explained below:

e ltis ableto considerglobal requirementson the overall performance ofthe BPaaS workflow as well
as local requirements mapping to specific workflow tasks or nodes of the abstract deployment plan
providing infrastructure support to this workflow.

e ltisable to consider both high-level and low-level security requirements and capabilities. High-lewl
security requirements and capabilities are represented by security controls while low-level security
requirements and capabilities are represented by constraints on security-based (quality) terms
(attributes and metrics). T he high-level securityrequirements enable a coarse-grained filtering of the
cloud senvice provider space while the low-level ones a more fine-grained filtering. Moreover, there is
a connection between high and low-level security constraints in order to be able to infer how well a
specific control is realised by a certain cloud service provider.

12 choco-solver.org

13 www.ibex-lib.org
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o |t is able to handle non-linear constraints as well as constraints on sets. The formerare appropriate
for addressing qualityterms like availability while the latter are suitable for handling qualityterms with
sets as their value type (e.g., coverage of areas for a map seniice).

e ltis able to address over-constrained user requirements through the introduction of utility functions
that enable the slightover-passing ofthe user-provided thresholds on qualityterms. As such, itis able
to produce solutions even for such (extreme) cases.

e |t considers functions, which enable the propagation of QoS from lower- to higher-levels (e.g., a
function thatindicates thatthe senice execution time depends on the underlying resource utilisation).

e ltisable to consider cloud senvice offerings, which promise a range of values for each quality tem
and not just a single value thus catering for better capturing the variation of service levels in dynamic
environments.

e It considers two different types of placement constraints (along with their opposite formulation): (a)
two components should (or should not) be placed in the same VW; (b) two components should (or
should not) be placedinthe same cloud. T hefirsttype of constraintis suitable when two components
have so frequent communication that s better to place them in the same VM. The second type of
constraints is suitable when two components have frequent communication, which can be well
supported based on the respective network characteristics ofthe same cloud in order also to reduce
costs.

e Lastbutnotleast: It can take interesting allocation decisions whenthere is a differentkind of variability
in realising a particular functionality. In case that one functionality is internally supported via
software/service components that have been already developed and externally by the existence of
senvices that can be purchased, the algorithm can check whether itis more appropriate to use the
internal componentand hostit in a specific well-suited cloud orto exploitan external service in order
to realise the respective functionality.

The inputto be given to this algorithm maps to the user global quality requirements as well as to local quality
requirements posed over the tasks of an abstract BPaaS workflow plus VM attribute constraints over the abstract
deployment plan supporting the BPaaS workflow. In addition, the algorithm needs to know all the possible
alternatives in terms of: (a) services realising the functionality of a task; (b) VMs supporting the hosting of internal
service/software components; (c) design choices with respect to some tasks based on the aforementioned
allocation variation in the last bullet. T he algorithm also needs to know the relative priority of one quality term over
the others. In order to achieve that, the Analytical Hierarchy Process [45] is followed in order to derive a set of
weights mapping to the desired global quality terms whose sum should equal to 1.

Based on all the above input, the algorithm creates a specific constraint problem and solves it via employing the
aforementioned constraint solvers. While multiple objectives are given to this problem, through the assistance of
the term-to-weightmapping, it can associateitto a single objective one whichincludes the following optimisation

Q

formula: maximize[ w, *uf, (valq )J (where q is the index of one quality term, Q is the number of all
=1

q
quality terms, w, isthe weightgiven to this term, uf; is the term's utility function and val,is the global value that this
term takes based on the selected solution). T his formulaindicates thatthe single problem goal isto maximise the
weighted sum of the application ofeach quality-term-specific utilityfunction to the global value that the respective
quality term obtains according to the specific solution selected. This global value relies on the respective quality
term values thatthe workflow tasks exhibit, the aggregation type ofthe qualityterm as well as the workflow structure.
In this way, as cost is additive and does not depend on the workflow structure; the global cost value will be equal
to the cost of all tasks. Onthe otherhand, as availabilityis multiplicative, by considering thatthe workflow maps to
one task execution sequence, the global availability value will be equal to the product of the availability values of
all tasks involved in this sequence. In overall, the derivation of this global value is regulated by the following
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equation: vaIq = fq (valiq) (where f; is a function mapping to the aggregation procedure of the g quality tem

and Va|i(|] is the value that this term takes for the i-th task in the workflow).

As already, indicated, utility functions are formulated in such way that they map to enabling a slight deviation with
respectto the range of values requested for the specific qualityterm. Depending on the term monotonicity, different
functions are used which have a similarform. The formulation of these utility functions was inspired by the work in
[35]. More details can be found in [115].

Three main decision variables are considered in this problem which also map to respective constraints. These
regulate: (a) whetherwe select an internal service componentoran external service to realise the functionalityof
a task; (b) whethera particular VM offering of a specific cloud provider from all candidate ones s selected in order
to hostan internal service component; (c) whether a particular service from the candidate ones is selected to realise
the functionality of a BPaaS abstract workflow (service) task.

As already mentioned, we need to have a mapping from the QoS of a low level to the QoS of the higherlevel. Such
a mappingis expressed via the following formula thatconnects a quality term of a workflow task to the QoS of the

componentused to realise it: \ g0 — y (core,,mem,, store, )+ (1— y')*[z z, *Valﬂ(where yi represents
I

the decision ofwhether we select the internal service component realising the functionality of the task, fiq is the

function mapping the QoS of the internal senice component to the QoS of the VM used to host it), corei, mem;,
store; representthe amountof cores,memoryand disk storage size of the VM used to host the service component,
zi represents the decision of whetherwe selecta particular external service to realise the functionality of the task

and Va|i(|‘ is the term value for this external service).
The amount of cores and the sizes of memory and disk storage are computed from the following formula (where

Xix represents the decision of whether k VM offering from cloud jwas selected to host the componentrealising the
functionality of task /):

core;, = E Xijk T core;,
jk

store, = > X, *store;,
jk

Thisformulaindicates thatthese characteristics are derived from the respective characteristics ofthe VM selected
to host the internal service component.
Pair-wise placementconstraints for the same VM are expressed via the following form: Xj;, = X.. ik where iand

i'are the indices ofthe components to be hosted on the same VM. T his expression indicates thatthe same allocation
decision concerns both components. The pair-wise placement constraints for the same cloud are expressed as

follows: Z X = Z Xi-jk . This expression indicates that a decision must be taken for two components
k Kk
which involves the selection of VMs in the same cloud.

More details about the whole formulation of the constraint problem can be found in [115] as we desire not to
overwhelm the reader.
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The algorithm has been also evaluated. T he initial evaluation results show that a more optimal solution is reached
with respectto solving two individual laaS and Saa$S selection problems. It also indicates that while the constraint
problem size is bigger with respectto the corresponding problem for laaS selection, the solving time of the combined
selection algorithm isless than that of an laaS selection algorithm. Finally, the evaluation indicates and validates
experimental results from other research propositions which signify that the more is the size of the placement
constraints, the less is the time needed to solve the combined service selection problem. This means that the
deployment plan should be rich enough in order to enable a faster selection time by including many placement
constraints,when such constraints can be applicable. However, please have in mind that the modeller should be
careful notto pose manyplacementconstraints as it also risks reaching the situation where the constraint problem
produced is infeasible.

Finally, we would like to mention that in case the low-to-high level mappings cannot be expressed, the algorithm
can still perform the different types of selection in an individual manner as this would make more sense. In this
sense, it can be configured to perform justone type of selection and the user will be then responsible on the exact
method to follow in order to coordinate the execution of the individual selections to be performed.

3.4 DMN to CAMEL mapping

Whereas the tool support in modelling and orchestration of cloud applications has been risen for the technical
experts, including DevOps tools like Chef or cloud orchestration tools like Cloudiator, business experts still require
technical assistance for consuming cloud services. Therefore we propose a novel approach to support business
experts in consuming cloud senvices based on higher-level business values. As introduced in chapter 2.2, CAMEL
allows the specification of cloud applications with respect to deployment, monitoring, scaling, cloud provider
offerings, and security. Whereas a technical experthas the required knowledge in these areas, a business expert
comes with a higher business view.

The Decision Model and Notation (DMN) [46] standard is a way to model decisions by the means of tree-based
decision tables.The novel approach is to integrate DMN into the modelling environment ADOxx™, in order to semi-
automaticallygenerate CAMEL models thatcomplyto the business requirements ofthe companyand allow to bring
dynamicity to the CAMEL models. Whereas several CAMEL models, along with the technical descriptions of the
services, may complywith the same business process, they are basicallyindependentand differ in the suitability
to different business requirements. The descriptionin the CAMEL is quite static and does not reflectdecisions that
has to be taken case-by-case for the business requirements of the companies. By having, a meta formatof CAMEL
that integrates DMN tables to dynamicallyreason aboutthe actual used services and their properties, it will be able
to ease the process of creating a BPaaS bundles that fit for a particular customer classes. This DMN-enabled
CAMEL format will be used to create complete CAMEL models that can actually be deployed.

Figure 16 shows the possible integration points for DMN into the BPaaS life-cycle. Point (a) is the mappingofa
task to a service or service composition. The parameters for mapping would be functional and non-functional
descriptions ofthe task and senvice. Point (b) is the mapping between a service and a deploymentdescription. For
this decision, the consideration ofthe SLAs of the customerand the properties of the cloud provideris necessary.
Point(c)is the mapping ofthe DMN decision tables to the rules of the deployed workflow thatdecide on the service's
behaviour on run-time.

14 https://www.adoxx.org/live/web/cloudsocket-developer-space/space

15 https://www.cloudsocket.eu/common-understanding-wiki/-/wiki/Main/CloudSocket+Process+Terminology
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Figure 16 - Integration points for DMN into the BPaa$S process.

Thefirstapproach forintroducing DMNinto the CAMEL creation focusses on (b). As business experts still requires
technicalassistance for consuming cloud services, our approach aims to create a wayto semi-automaticallyhandle
the senvice selection and configuration based on high-level parameters.

Our approach enables the modelling of cloud applications by using non-technical business values, which will be
mapped to a technical CAMEL model, by using Business Knowledge Model (BKM) in combination with Decision
Tables (DT).

We use a modelling environment to support the editing of DMN models, such as ADOxx'¢, in orderto programthe
application deployment. The modelling environment will allow creating a meta-model on top of CAMEL including
DMN referencesina CAMEL model. These DMN referenceslink to a set of DTs for each sub-set of CAMEL, e.g.
the cloud provider offering for a given senvice. Each placeholderreceives a set of business values as input for the
referenced DTs. Thereferenced DT spanatree of DT s connected bytheir in-and outputs. T he final output will be
putin that place in the CAMEL model.

That means business experts define parameters that are important for a given task from a business view, which
serve as inputfor the root DTs. A technical expert decides on how this influences the selection of senvices by
defining the correlation to the service offerings with respectto specifying the output of the DT sthat may serve as
inputfor higher-level DTs. Currently, we assume this as a manual task and leave the semantic annotations for the
semi-automatic generation of such DT's as future work.

In the top DT of such a tree, the output is the actual selection with respectto the CAMEL-part that was to be
reasoned about.

3.4.1 DMN Mapping Scenario

In the following we presenta sample scenario identifying an appropriate cloud provider bymappingbusiness values
to the concrete CAMEL specification for the cloud provider.

We have chosen the CloudSocket use case of the Christmas Card Designer. In our sample scenario, two
companies use identical workflows and services but with differentbusiness needs with respectto expected paralle/
customers and privacy level.

16 https://www.adoxx.org/live/web/cloudsocket-developer-space/bpmn-and-dmn-tool
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CompanyA wantsto serve upto 700 customers with a high data privacy level, whereas companyB wants to serve
up to 1000 customers with a low level of data privacy.

Abusiness expert defines the set of input variables, which mightalso be extracted from the knowledge space ofa
business requirementanalysis thatfeeds the decision tables. In the case of our scenario, the selected output values
will be mapped to the technical selection of the laaS provider to host the application.

While the selection ofan appropriate laaS provider typically requires a technical expert considering characteristics
like location, the cloud deploymentmodel orvirtual machine offerings, a business expert will consider higher level
parameters as privacylevel ornumber ofexpected customers. In order to selectan appropriate laaS provider model
for the card designer service, we combine multiple DMN tables to transfer the business needs privacy level and
expected customers into technical parameters, which map to the cloud provider model of CAMEL.

CAMEL Cloud Provider Model

t

Cloud Provider

T~

Cloud Deployment VM Offering
. Type )

1 T Service

Privacy :

Knowledee —* Cloud Type Decision L O]‘ffarlng Knowledge
8¢9 Decision Model

Model T ode

Number of
Customers

Privacy Level

Figure 17 - DMN-to-CAMEL mapping.

An illustration of this approach is provided in Figure 17 comprising the business needs as input, an exemplaryset
of DT with the BKMs. We only use the three decision tables, Cloud Type Decision, VM offering Decision and Cloud
Provider Decision, in orderto keep our approach comprehensible. Each decision table is defined bythe respective
BKM. Each BKM is reusable and needs to be defined beforehand by a technical expert.

A simplified DT in DMN notation'” is shown in Table 2.

Hit Policy Input Output
C Privacy Level Cloud Type Continent
1 Low public us
2 Low public Europe
3 Medium private us
4 Medium public Europe
5 Hight private Europe

Table 2 - Cloud Deployment Type DT

17 http://www.omg.org/spec/DMN/1.1/
Copyright © 2016 UULM and other members ofthe CloudSocket Consortium
www cloudsocket.eu Page 51 of 118



http://www.omg.org/spec/DMN/1.1/

Based on the passed privacylevel it mapsto a list of tuples (cloud deploymenttype, continent). T he resulting output
is combined with the output of the VM Offering DT and passed to the Cloud Provider DT, which will map to a
technical CAMEL model as depicted in Figure 17.

3.4.2 Identified Challenges

The presented approach covers a firstsetof necessities towards a dynamic description of cloud-based applications.
However, there are some challenges thathave to be examinedin more detail. Itis open, who creates the business
knowledge model to feed the respective decision table. In addition, how the correlation is determined between a
service (and its properties) and the available input parameters for a decision table.

In orderto work in a modelling environmentlike the one mentioned above, a metalanguage upon CAMEL has to
be defined, to handle the integration of DMN into CAMEL. A way is needed to transform from a non-runnable
CAMEL to a fully self-contained CAMEL model.

A definition of semantic annotations and their mapping to lower level requirementsis needed. For example, if the
modeller decides on the type of inputparameters, such as number of users or region, the system mustknow how
this relates to a certain service or a property of a senvice.

It is not challenging for the region, since you can obtain the meta-informationregion from the senvice asit s, so this
is a very simple mapping. However, for the number of users, it is more complicated to define the relation of this
parameter to the properties of a service. Having said that, there is a need to meaningfully annotate the services
and the properties that can be chosen as input parameter.

3.5 Future Research

While current research already performed in the context of BPaaS allocation can be considered quite fit to the
purposes of the desired functionality, there are still some pending issues that will drive the short and long-term
research to be pursued by the projectpartners. The issues are analysed in the following in separate sub-sections.

3.5.1 Combined Service Discovery

While senvice discovery algorithms focusing on a specific description aspect (functional or non-functional) hawe
been developed and can be integrated into a combined service discovery research prototype, it is still pending to
investigate the way these algorithms can be combined to realise a complete senice matchmaking functionality.
Thisis due to the fact that different combinations of aspect-specific algorithms can lead to different trade-offs
between matchmaking and registration performance.

3.5.2 Overall Service Concretisation Method

While this section has unweiled the pieces thatneed to be integrated togetherto supportthe abstractto executable
workflow mapping, there is a need to define a method that not only appropriately integrates them but also
coordinates them accordingly. This can be done by checking what are the cases to be covered (e.g., M-1 or 1-1
task-to-service mapping) and what can be the required interaction from users and the input than can be provided
by them. T his method can also benefitfrom extensions of existing algorithmsin orderto cover initiallynot planned
functionality as the one needed for service plan selection.

3.5.3 QoS Mapping Derivation

As indicated in section 3.3, the respective algorithm proposed requires that specific functions are derived indicating
how QoS at the lower levels (laaS) propagates to QoS at higher levels (SaaS). This mapping is valuable for
investigating those laaS senices that are better suited for hosting internal services components covering some of
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a BPaaS workflow's functionality. In fact, it has been increasingly reported that VMs with similar characterisfcs,
offered in different clouds, tend to map to different component performance. T o solve this problem, various type of
techniques have been proposed like benchmarking and performance model learning [117]. Thus, it has to be
investigated which techniqueis the mostappropriate oneto be exploited inthe combinedservice selection algorithm
and whether it needs to be extended accordingly.

3.5.4 PaaS Consideration in Discovery & Selection

Another direction to be pursued concerns how PaaS services can be exploited in service discovery and selection.
By considering that PaaS can cover the functionality of particular components, like databases, and component
hosting, it seemsthat PaaS is more appropriate to be considered as a potential replacement of laaS services. As
such, PaaS requirements can be inserted in abstract deployment plans to drive the infrastructure support to a
BPaaS workflow. We believe that the handling of PaaS is more or less similar to the way laaS services are handled.
However, special care must be placed at the selection algorithm due to the additional level inserted which can
further increase the complexity. Moreover, issues concerning how to derive PaaSs performance and mapit to the
performance of components hosted bythem are also relevant. Finally, the use of PaaS mightalso lead to employing
more advanced matching of features models for laaS and PaaS discovery.

3.5.5 Rich Service Specification

In the current situation at the service world, senices are described just based on their respective interface. This
leads to structural specifications which do not cater for high accuracyin service discovery and composition. To
solve this problem, after such specifications are gathered, there is a need for semantic annotators that map the
senvice I/0 and offered functionalityto concepts from a domainand task ontology. As such, we will investigate using
or extending an automated service annotation approach so as to cover both types of annotations.

3.5.6 Formalism Transformation

Each algorithm exploited for BPaaS allocaton relies on a certain service specification language. T he functional
senice matchmaking algorithm relies on OWL-S, the non-functional ones on OWL-Q while the senice planning
algorithm on WSSL. As senvice specifications canbe described in differentlanguages from those expected, it might
be decided to develop transformation functionality to enable transforming senvice specifications in the language
expected by the respective algorithm.

3.5.7 Service Filtering

There alreadyexistthousands of service specifications in the real world which can benefitthe realisationof BPaaS.
However, itis expected that not all available services suit the requirements ofthe broker as such services must be
offered only from reliable and trustworthy cloud service providers. As such, service filtering algorithms are needed
before service specifications enter the respective registries by considering suitable reliabilityand trustmetrics which
are derived based on: (a) the existence of formal contracts or SLAs guaranteeing a certain quality level for these
services; (b) past performance or feedback from users or cooperating partners with the broker; (c) certain
characteristics of the cloud provider (e.g., size, senvice variety, market share).

3.5.8 Semantic annotations for DMN Mapping

As mentioned above, a decision process via DMN, can also be applied to reason aboutthe mapping between task
and senvice, as well as using DMN as high-level language for the rule part of CAMEL, i.e., the SRL. For the first
mapping, itis required to have semantic annotations for the functional and non-functional requirements for both,
the task and the service, as describedin D3.1. For the latter usage of DMN, we need to specify semantics forthe
SLAs and their correlation to adaptation actions, in order to automaticallygenerate SRL rules and actions from the
definition of a DMN decision table.
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Semantic annotations will also supportto ease the process of realizing the integration of DMN into CAMEL by the
means ofamodellingenvironmentlike ADOxx. T hisis, because of the semi-automatic generation of decisiontables
by the available input parameters, generated from the semantics of the service, one wants to reason about.
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4 EXECUTION ENVIRONMENT BLUEPRINT

The Execution Environmentis responsible to orchestrate, monitor and adapt the execution of the BPaaS bundles
generated in the Allocation Environment, which have been published via the Marketplace. Hence, the main
functional capabilityis to guarantee the execution and the suitable behaviour of the deployed BPaa$S bundle. To
this end, the environmentis responsible to deploy, execute and re-configure the BPaaS Bundle to still satisfy the
service level promised. Orchestration, monitoring and adaptation relyon the provided BPaaS Bundle specification.
Figure 18 provides an ovenview of the Execution Environmentcomponents and the three main research directions.
By focusing on the Orchestration, Monitoring and Adaptation across all cloud services levels, we are able to
overcome currentlimitations and enable the execution ofa holistic BPaaS$ lifecycle. In the following, the individual
research assets for orchestration, monitoring and adaptation are presented. For the further components of the
Execution Environment, i.e., Workflow Manager, Workflow Engine and Process Data Mediator, we have not
foreseen any research challenges. Our focus lies on enabling the cross-cloud support for orchestration, monitoring
and adaptation.

BPaaS Execution Environment

I Web-Workspace

BPaaS Middleware adaptation
ieamnssssasssannnns -
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K SLA Manager || Adaptation £ @
% Engine 2%
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Figure 18 - Oveall architecture of the BPaaS Execution Environment

4.1 Orchestration

The evolution of Cloud Computing has led to a state where the cloud paradigm has reached the mainstreams of
software development and application operation. Nevertheless, many issues still have to be considered as
unresolved. In particularvendorlock-in and limited auto-scaling capabilities are considered the most pressing and
limiting aspects of cloud computing today [47]. Vendor lock-in avoids an easy migration from one cloud provider o
another. It also avoids the parallel use of multiple cloud providers and establishes a technical barrier between
operators and providers. In order to satisfy these demands, a powerful and reliable cloud orchestration and
operation platform is needed. Indeed, there are multiple commercial and open-source tools available that promise
to solve the aforementioned issues [48].

Whereas recent approaches focus on providing orchestration tools only for the laaS level, the Cloud Provider
Engine of CloudSocketaims to cover the orchestration across the laaS and PaaS level [49]. T he supportof service
orchestration over these cloud service levels enables the BPaaS paradigm via SaasS realise missing business
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process functionalities, [aaS and PaaS provide the infrastuctures and platforms to execute business process in the
cloud.

This section describes the CloudSocket approach in developing a Cloud Provider Engine that orchestrates and
abstracts cloud services not only for the laaS but also for the Paa$S level. First, an overview of the currentstate of
the art of laaS and PaaS abstraction layers and tools is provided. Second the Cloud Provider Engine, namely
Cloudiator[50], is presentedin its original state, as it was adopted from the PaaSage project. Based on this state,
an evaluation of Cloudiator againstother orchestrationtools is performed, deriving the required extension to enable
the BPaaS orchestration in CloudSocket. Finally, the required extension of Cloudaitor to enable the complete
BPaaS orchestration are presented.

41.1 State ofthe art

Afirst approachinto laaS abstraction is provided by laaS libraries. Common representatives are Apache jclouds’®,
Apache Libcloud or fog2. Apache jclouds is a java based API abstracting more than 10 laaS providers by also
mapping their VM offerings to generic templates. In addition, it also supports a subset of these providers' storage
APIs. Apache Libcloud is a Python based API abstracting the compute and storage APIs of more than 20 laaS
providers. Fogis based on Ruby and abstracts more than 15 laaS providers. All of these libraries provide a single
interface to users abstracting all the laaS provider specific characteristics. By using such an abstraction layer, the
provision and deploymentof laaS resourcesis facilitated which also eases the deployment of applications across
different cloud providers, i.e., a multi-cloud deployment.

Whereas the abstraction layer APls just focus on the resource abstraction and provisioning, cloud orchestration
tools follow a more advanced approach. T his approach combines the resource managementwith the full life-cycle
management of the applications that are typically described in a DSL. Besides the application deployment,
orchestration tools may also exhibit monitoring and adaptation features.

Apache Brooklyn?' is a framework for modelling, monitoring, and managing applications through autonomic
blueprints. Apache Brooklyn provides the following capabilities: deploying to cloud and non-cloud targets; using
monitoring tools to collectkey health/performance metrics; responding to situations such as a failing node; adding
or removing capacity to match demand?. A Brooklyn blueprint defines an application using a declarative YAML
syntax. Forexample, a basic blueprintmightcomprise a single process, such asa web-application server running
a WAR file or a SQL database and its associated DDL scripts. The types of supported entities are listed in the
Brooklyn catalog®. Currently, Brooklyn uses a YAML syntax which complies with the CAMP’s one and exposes
manyof the CAMP REST API endpoints. On the otherhand, an extension?* has been developed to manage TOSCA
blueprints, but this extension is not official yet.

Cloudify? by GigaSpaces T echnologies is offered in a free open-source as well as a paid Pro edition. Cloudifyuses
a TOSCA-aligned modelling language for describing the topology of the application which is then deployed to
allocated virtual machines in the cloud environment. As in TOSCA, Cloudify splits the blueprintin a type and a
template definition. Types define abstract reusable entities that are to be referenced by templates. The types

18 https://jclouds.apache.org/

19 https://libcloud.apache.org/

20 http://fog.io/

21 https://brooklyn.apache.org/

22 http://brooklyn.apache.org/learnmore/theory.html

23 http://brooklyn.apache.org/learnmore/catalog/index.html

24 https://github.com/cloudsoft/brooklyn-tosca

25 http://getcloudify.org/
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therefore define the structure of the template, by e.g. defining the properties thata template can have/must provide.
The template then provides the concrete values. This mechanism is used for nodes as well as for relationships.

Apache Stratos?® makes use of an abstract virtual machine description, named cartridge, with an applicaton
componenttype (named cartridge type) like an application runtime container (e.g. Tomcat). An application is
described bya single cartridge or/and a set of cartridges (groups), combined with deploymentand scaling policies.
The cartridges, applications and other configurations are represented in an Apache Stratos specific JSON format
Forthe installation, it solely relies on the DevOps tool Puppet. The application itselfis subsequentlycloned from a
Gitrepository. Stratos is installed as one central controllerand in all virtual machines by having a virtual machine
image prepared with the necessary software (Stratos and Puppet agents) installed.

The CloudML# approach [3]uses their DSL CloudML to describe the application. Based on the application
description CloudMF supports the deployment and adaptation of applications across multiple cloud providers.
Therefore they apply the models@runtime approach to align the actual application state with the desired CloudML
state.

The main goal of MODACIlouds? s to provide methods, a decision supportsystem, an open source IDE and run-
time environment for the high-level design, early prototyping and automatic deployment of applications on muli-
Clouds with guaranteed QoS. The MODACIouds IDE allows the specification of cloud providerindependentmodels
of an application, together with the QoS to be fulfilled at runtime. This model-driven development enables
applications to be deployed in multiple clouds —awoiding vendor lock-in—, to be monitored, and to be adapted in
order to maintain the desired QoS. MODACIouds uses CloudML, a project that provides a domain-specific
modelling language along with a run-time environmentfor the provisioning, deployment, and adaptation concems
of multi-cloud systems at design-time and their enactment at run-time. In the scope of the MODACIlouds project,
Tower 4Clouds was developed, a monitoring platform ready for the multi-clouds paradigm.

PaaSage is an open source integrated platform to support both design and deployment of Cloud applications,
together with an accompanying methodology that allows model-based development, configuration, optimisation,
and deployment of existing and new applications independently of the existing underlying Cloud infrastructures.
The deploymentapproach of PaaSage overcomes the vendor lock-in by supporting multi-cloud deployments and
abstracting the underlying cloud providers. In contraryto MODAClouds, PaaSage integrates the CloudMLDSL info
CAMEL, anew DSL for cloud requirements, deployment, adaptation and organisations. Further, PaaSage implents
an extensible cloud orchestration engine that executes CAMEL deplomynet plans. CAMEL and the cloud
orchestration engine are pursued and extended in the context of CloudSocket.

Whereas on the laaS level, there is a relatively high common sense of what the providers offer, i.e. mainly
computation, memory, storage and network in terms of virtual machines, the PaaS level encompasses a more
abstract offering, i.e. environments or containers.

There are two categories ofPaaS APIs [51]: (i) implementation APl that caters for data storage, message queuing
and similar capabilities and (ii) the deployment APl that handles e.g. the container creation and configuration.

Hossny et al. [51] describe an approach of generating adapters for a generic PaaS-AP| based on semantic
annotations of the specific PaaS API. T his approach focuses on the implementation APIs. T hisis an enhancement
of the approach of defining a single generic API that is manuallyimplemented for each provider API, and updated
when the specific provider APl changes. Also a common APlacross different database providers was proposed in

26 http://stratos.apache.org/

27 http://cloudml.org/

28 http://www.modaclouds.eu
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[52] In the remaining partofthe section, we will focus on abstractions of the implementation API, as thisis the focus
for PaaS abstraction in the firstinstance of CloudSocket.

A comprehensive taxonomy for comparing PaasS providers can be found in [53]. Kolb and Wirtz present also a
standard profile for common capabilities of current PaaS offerings. T heyalso propose a model for PaaS with three
layers: infrastructure, platiorm and management. Moreover, based on that, PaaS can be categorized in laaS-
centric, generic and SaaS-centric PaaS, depending on the level of provided managementand possible control of
the platform. T his will be used in the decision whether an application can be deployed on a certain provider, e.g.
since the application demands for hard requirements towards the infrastructure, that cannotbe guaranteed by all
Paa$S providers.

Sellami et al. [54] introduce (i) a unified description model allowing the PaasS provider independentrepresentation
of applications and (ii) a generic PaaS deployment API that is called COAPS API. It allows the specificationof a
manifest for the application and its environment, in a way that allows the deployment across multiple PaaS
providers. Moreover, it provides a REST -ful API for the management (createApplication, destroyApplication, etc)
that internally calls the APIs of the actual chosen Paa$S providers. Therefore, this approach provides a generic
PaaS life-cycle for the PaaS deployment. Similar proposal exists also for the implementation APls of PaaS
platforms, such as for persistent storage in [53]

Walraven et al. propose a middleware for multi-PaaS environments called PaaSHopper [55]. Here they introduce
an abstraction layer that offers a uniform API to the application componentto communicate to the underpinning
cloud senices via the middleware. The APlis defined for structured storage, blob storage and asynchronous
execution task; it therefore targets the implementation APIs.

Cloud4SOA2 provides an open semantic interoperable framework for PaaS developers and providers, capitalizing
on the Senice Oriented Architecture (SOA), lightweight semantics and user-centric design and development
principles. The Cloud4SOAsystem supports Cloud-based application developers with multi-platform matchmaking,
management, monitoring and migration by semantically interconnecting heterogeneous PaaS offerings across
different providers that share the same technology. Al this is done using a user-centric web interface. The
Cloud4SOA platform provides an APl to manage the lifecycle of applications in PaaS clouds; this API is not
implemented as a single library, but its architecture is composed of a local module with the main REST senvice and
a set of Remote Adapters, which handle the complexity of the interaction with the cloud provider. These Remote
Adapters were also in charge ofthe monitoring ofthe application, providing some basic metrics like response time
and availability.

SeaClouds® provides a platform to enable seamless adaptive multi-cloud management of complex applications,
by supporting distribution, monitoring and adaptation of application modules over multiple laaS or PaaS clouds.
The SeaClouds GUI allows the definition of an application and its QoS from a high-level and cloud-independent
view, and offers a set of clouds where the applicationcan be deployed. SeaClouds embraces TOSCA, and the final
deploymentblueprintis specified in this language. Apache Brooklyn is used as deploymentengine, enriched with
a TOSCAextension, to which SeaClouds collaborated in itsimplementation. Once the application is deployed, itis
monitored with the T ower 4Clouds platform, developed in the MODACIouds project. One of the results of SeaClouds
is the PaaS Unified Library®', a library and REST senvice that provides simple operations for managing applications
in Paa$S providers.

29 http://www.cloudwatchhub.eu/cloud4soa-%E2%80%93-bringing-interoperability-portability-paas

30 http://www.seaclouds-project.eu

31 https://github.com/SeaCloudsEU/unified-paas
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41.2 Cloud Provider Engine (Cloudiator)

The Cloud Provider Engineis responsible for the complete deploymentand lifecycle managementofall the required
components ofthe BPaa$, including the managementoftheir associated resources, e.g., VMs at the laaS level or
container/environments atthe PaaS level. These capabilities are managed by different subcomponents ofthe Cloud
Provider Engine to provide a modular, flexible and scalable architecture. T o exhibit these capabilities, the Cloud
Provider Engine is builtupon existing functionalities offered through the interfaces exposed by the cloud providers

The original version of Cloudiator [50] was developed during the PaaSage project with the focus on abstracting
laaS providers and enable the multi-cloud application deployment support.

Cloudiator®2is a cross-cloud deploymenttool thatalso supports adaptation and re-deployment. T he deployment of
Cloudiator features the capabilityto transform applications into application instances and store them in its internal
application component registry. The deployment specification is described in CAMEL (cf. section 2.2).

A general ovenview of Cloudiator is depicted in Figure 19 where the green entities mainly focus on enacting the
deployment, the blue entities provide the monitoring (cf. section 4.2.3) and the yellow component enacts the
adaptation (cf. section 4.3.2). Cloudiator consists ofa home domain for which Colosseumis the entrypointoffering
a JSON-based REST interface. This constitutes the background over a graphical Web-based user interface, but
canalso be used by adapters and automatisation tools. It also comprises various Cloudiatorinternal registries that
store information about Cloudiator users, cloud providers, user cloud accounts,and meta-information about cloud
offerings such as the operating systems of images. Moreover, the home domain contains a repositoryof application
components together with their life-cycle handlers as well as applications composed of these components. In
addition, the internal registries contain information about started VMs and the component instances deployed on
them as well as about the wiring between the componentinstances. Finally, the workers synchronize the internal
registries with the cloud providerinformation, and execute the provisioning ofvirtual machines or the installation of
application components on virtual machines. The Sword abstraction layer realises the communication with the
various cloud provider APIs based on Apache jclouds.
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Figure 19 - Cloudiator architecture

32 https://github.com/cloudiator
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The cloud domain comprises all VMs at various cloud providers as well as the componentinstances running on
them. In addition to that, it contains Cloudiator's Lifecycle Agent Lance on each of the VMs that the home domain
uses in order to distribute component instances over VMs and to poll the status of the componentinstances to
ensure a stable deployment.Lance manages the lifecycle ofeach application componentbased on an application
component description derived from the CAMEL file.

An applicationcomponentdescriptiondefines a setof lifecycle handlers thatdescribe how to provision the binaries
of the component, how to configure it, and how to run it. Otherhandlers capture the shutdown of the instance ofan
application runningin the cloud. T he lifecycle conceptof Cloudiatoris heavily influenced by Cloudify and CloudML
[3]. Thelifecycle can be specifiedas scriptfiles, command line instructions, ChefRecipes®, or Java commands. In
addition to that, Cloudiator supports two special handlers: The start detector serves the purpose of detecting
whetheran applicationhas started successfully. It is run afterthe componentinstance has been started and is used
to determine when itis readyfor wiring otherinstances. Once an applicationis considered running, the stop detector
is invoked periodically in order to find out whether the application has accidentally stopped. Beside lifecycle
handlers, a component description defines open ports that other components can use. Further, it defines ports a
component will consume from other components. For both, incoming and outgoing ports, the cardinality of
connections can be defined.

In the contextof CloudSocket, a thorough comparison of existing cloud orchestration tools [48] againstthe original
Cloudiator version was performed. T his comparison unveils the needfor a Cloudiator e xtension to enable the full
deploymentsupportfor the BPaaS paradigm, which is currentlynot considered byany of the existing orchestration
tools. In addition, the comparison has provided further input to the UULM Monitoring (cf. section 4.2.3) and
Adaptation (cf section 4.3.2) approaches.

The selection ofthe the analyzed tools is based on the particular requirements such as the availability of an open
source version, including a documentation and an initial guideline on how to setit up. Further, the selected tools
mightalso be used in other research projects, e.g. Apache Brooklyn in the SeaCloud project. We do not consider
tools that by design only support a single cloud platform such OpenStack Heat.

Thisled to four possible tools, namelyScalr, Stratos, Brooklyn, and Cloudifyfrom which Scalr was omitted to favour
mere open source projects (Brooklyn and Stratos) and due to the need to support modelling standards (Cloudify)
rather than custom formats (Scalr).

The versions of the evaluated tools are Apache Brooklyn (version 0.7.0-M2-incubating), Cloudify (community
edition 3.2), Apache Stratos (version 4.1.0-RC2)and Cloudiator(version 0.1). The comparison is based on feature
sets mapping to cloud-related aspects, application-related features and non-functional requirements. An overview
of the comparison is provided in Table 3 followed by detailed feature and result description.

33 https://www.chef.io/solutions/devops/

34 https://wiki.openstack.org/wiki/Heat
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Feature Tools

Brooklyn Cloudify Stratos Cloudiator
Cloud Features
Multi-Cloud
# of Cloud Providers jclouds 3 jclouds jclous +n
Abstraction Layer 4 x 0 v
Cross-Cloud v v v v
External PaaS x x x x
Cloud Standards x x x x
BYON v v x v
Application Features
Model Standards 0 0 x 0
Resource Selection
Manual Binding v v v v
Automatic Binding 0 x x v
Dynamic Binding x % % x
Life Cycle
Shell Scripts v v x v
# of DevOps Tools 1 3 1 1
Wiring & Workflow
Attribute & Event 0 v v v
Manual Workflow x v v x
Automatic Workflow x v x v
External Services x x x x
Non-functional requirements
Discovery x x x v
Authentication v v v v
Multi-tenancy v x 0 v
x = notfulfilled 0 = partially fulfilled v =partially fulfilled

Table 3 - Cloud Orchestration Tool Comparison

Multi-Cloud Support Feature: Supporting multiple cloud providers is one of the most crucial features for cloud
application managementtools, asit allows selecting the bestmatching cloud offer foran application from a diverse
offering landscape. Cloud providers often differ from each otherregarding their API. T his causes the user to suffer
from a vendor lock-in once he depends on the native APl of a cloud provider. For that reason cloud, deployment
and managementtools should offer a cloud abstraction layer that hides differences, avoids the need for provider-
specific customisation,and removes the vendor lock-in. Only this feature enables a seamless change ofthe cloud
provider.
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Apache Brooklyn uses Apache jclouds as cloud abstraction layer and therefore supports many public and private
cloud providers. Cloudify comes with plugins supporting ANVS®, Openstack3 and VMWare vCloud?. It also offers
a contributed plugin for Apache Cloudstack®. Nevertheless, Cloudify does not support an abstraction layer and
eachmodel needs to explicitlyreference cloudprovider specific features. Apache Stratos utilises jclouds as a cloud
abstraction layer, supporting multiple providers. Yet, the abstraction is imperfect as application specifications stil
need to refer to cloud specific entities. The Cloudiator abstraction layer is built on jclouds with additional cloud
provider support (e.g. Flexiant Cloud Orchestrator®) provided by UULM. Cloudiator allows the cloud provider
independent resource specification.

Cross-cloud support Feature: Enhancing the multi-cloud feature such that the user is able to deploy a single
applicationinthe way thatits componentinstances are distributed over multiple cloud providers. Forinstance, the
database may be deployedin a private cloud on the user’s premises while numerousinstances ofthe application
server run in a public cloud. T he advantages of cross-cloud deploymentare three-fold: (i) It allows a sophisticated
per component instance selection of the best-fitting offer; (ii) it enhances the availability of the application as it
introduces resilience againstthe failure of individual cloud providers; {iii) it helps coping with privacy and security
issues (private vs. public cloud).

Apache Brooklyn supports cross-cloud deployments on a per-componentlevel: Each componentcan be bound to
a separate cloud provider by referencing its configuration. Cloudify offers cross-cloud support. For each virtual
machinedefined in the model, the user can reference a different cloudprovider. Apache Stratos allows the definifion
of network partitions that are logical groups of laaS resources such as regions or availability zones. Network
partitions enable cross-cloud scaling and deployment using policies like round robin through available network
partitions. As Cloudiator does notlink application specific entities with cloud provider specific entities a cross-cloud
deployment can easily be achieved, i.e. an application description is completey independent from the underlying
cloud provider.

External PaaS Support Feature: In addition to supporting laaS clouds, the support of PaaS clouds (e.g.
GoogleApp Engine®)is desirable. Paa$S offers ready-to-deployapplication containers, thus reducing the complexity
compared to laaS as well as the managementeffortfor the user. On the downside, it comes atthe costof reduced
flexibility as the provider defines the container configuration.

None of the four tools allows the usage of external Paa$S clouds.

Supportof Cloud Standards Feature: In addition to supporting multiple cloud provider APIs, the adoption of cloud
API standards such as CIMI [18] and OCCI [56] enables supporting any cloud provider conforming to such
standards. None of the four tools supports any cloud API standard.

Bring Your Own Node (BYON): BYON captures the ability to use already running servers for application
deployment. It enables the use of servers not managed by a cloud or virtual machines on unsupported cloud
providers.

Apache Brooklyn supports BYON by providing an IP address and login credentials for the server. Cloudify supports
BYON through an externally installable Host-Pool Service that works as a cloud middleware mock-up. When
enabled, Cloudify requests IP addresses and login credentials from this service whenever it needs to provision a

35 htip://aws.amazon.com

36 htips://www.openstack.org/

37 htip://www.vmware.com/de/products/vcloud-suite

38 https://cloudstack.apache.org/

39 https://www.flexiant.com/flexiant-cloud-orchestrator/

40 https://cloud.google.com/appengine/
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new server. Apache Stratos does not support BYON, despite the general abilityof jclouds to do so. Cloudiatorcan
support BYON with the main requirement that Lance (cf. section 4.1.2.1) has to be installed on the server.

Model Standards Feature: Supporting open standards such as TOSCA [57] and CAMP [58] for modelling the
application topology, the component life cycles, and the interaction with a cloud management tool facilitates the
usage of such tool and further increases the reusability of the topology definition, as it avoids moving the vendor
lock-in from the cloud provider level to the managementtool. Moreover, itreduces the initial effortand costs to leam
anew DSL.

Apache Brooklyn’s YAML format follows the CAMP specification, but uses some custom extensions. Yet, it is
possible to deploy CAMP YAML plans with Brooklyn and via the separately provided CAMP server. Support for
TOSCAis planned for a future release. While Cloudify’s DSL for the deploymentdescriptionis stronglyaligned with
the TOSCAmodelling standard itdoes not directlyreference the standard types, but instead definesits own profile
following the TOSCA Simple Profile in YAML [2]. Apache Stratos does notimplement any standard. Cloudiator's
conceptdoes not follow one specific standard butdue to the modularapproach followed, the support of a specific
standard is simple to realise via adapters. Currently CAMEL is supported and for future releases,a TOSCAadapter
is planned.

Resource Selection Feature: The resource selection is part of the application topologydescription. It defines the
resources used for the deployment of a componentinstance in an laaS cloud. Hence, a resource will commonly
refer to the virtual machine type/flavour, an image type, and a provider specific location: <hardware ; image;
location>. A tool has mainly three possibilities to define or derive such a tuple: (i) in a manual binding the user
provides the concrete unique identifiers ofthe cloud entities; (ii) in an automatic binding the user defines abstract
requirements regarding the defined tuple (e.g. number of cores). These are then bound to a concrete offer atruntime
by the tool; (iii) dynamic binding offers a solving system that enables changes to the binding based on runtime
information, e.g., metric data collected from the monitoring system (see section 4.1.3.1).

Apache Brooklyn supports manualas well as basic automatic binding. For the latter it supports resource boundaries
for the hardware. The resource selection happens either in the global or in the component-specific parts of the
blueprint. Cloudify exclusivelysupports manual binding of the resources used for a virtual machine. T he reference
to a cloud provider specific node type (e.9. cloudify.openstack.nodes . Server forOpenstack) has
to be defined by the user. Due to this shortcoming, automated and dynamic bindings are also not possible. The
resource selectionin Apache Stratosis amanual process when configuring cartridges byreferencinganimage and
a hardware description in an laaS cloud. Cloudiator supports the manual and automatic binding of resources by
providing concrete and abstractdescription mechanisms. Further more sophisticated resource selection concepts,
i.e. facets and generic boundaries, will be enabled in future releases of Cloudiator. [59]

Life Cycle Description Feature: T helife cycle description defines the actions thatneed to be executed in order to
deploy the application including all its component instances on started virtual machines. The basic approach for
the life cycle description of the application is to provide shell scripts that are executed in a specific order. T his
approach can be extended to support DevOps tools such as Chef that offer a more sophisticated approach to
deployment management and ready to use deployment descriptions.

In Apache Brooklyn each defined type provides basic life cycle actions called effectors. These can be configured
in the concrete application component definition. The configuration can happen either with shell scripts or by
referencing Chef Recipes. Cloudify relies on the interface definition of TOSCA for defining life cycle actions. The
base node type defines multiple life cycle actions as interfaces that are executed during deployment. T he actions
are defined as shell scripts or by using Chef and Puppet. Apache Stratos’ life cycle description software setup is
delegated to Puppet. Cloudiator supports basic shell scripts and the supportfor Chef Recipesisin process. Furter
concepts of holistic lifecycle handling is discussed in section 4.1.2.3.
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Wiring and Workflows: Mostcloudapplications are distributed applications where components reside on different
virtual machines, e.g., the application server resides on a compute-optimised host, while the database is on a
storage-optimised host. Hence, the modelling language needs to supporta way to configure those communication
relationships between the components by offering a way to pass the endpoint, either before the start of the
dependant component (database starts before application server) or after (application server is added to already
running load balancer). A straightforward approach to resolve those dependencies s attribute and event passing.
Thatis, the tool allows the user (life cycle scripts) to lock/waitfor attributes to become available or register listeners
on topology change events. This is commonly achieved by a global registry shared between all component
instances of an application. Obviously, this approach offloads most complexity to the user, who needs to, e.g.,
make sure that the database URL is only available when the database is already started. An improvementis a
manual workflow definition. Here, the user defines a workflow taking care of the deployment order. Finally, the
easiest way for the end user is an automatic workflow deduction, where the modelling language is sufficiently
verbose to allow the system to automaticallydeduce the correctworkflow from the defined life cycle actionson the
virtual machines and their relationships.

Apache Brooklyn supports wiring by attribute-and-event-passing. It offers a locking action that waits until the
dependent senice provides a required attribute. The reverse way, where a later starting senice needs to
reconfigure arunning senvice, is not supported out of the box. Instead, the user has to implementthis functionality.
Apache Brooklyn supports neither workflow scenarios nor access to external sernvices. Cloudify uses the
relationship mechanism of TOSCA. It defines a generic relationship type that offers the execution of custom actions
on eitherthe source orthe target ofthe relationship on specific events. Combined with a shared configuration space
available via, e.g., a shell extension, this allows the userto configure endpoints before or after the start of a senvice.
The user canimplementcustom workflows, making sure thatthe life cycle actions are executed in the correctorder.
If the user only uses the basic life cycle actions, Cloudifyis capable of automaticallydeducingthe correctexecution
order. Cloudify does not support external senices by default. Cloudiator uses an extended approach of attribute-
and-event-passing that supports the reconfiguration of running senices if services are added later at runtime. n
order to ease the deployment for the user, Cloudiator automatically derives the deployment workflow from the
modelled communications between the senices. T herefore a manual deploymentworkflow is not supported. The
support of external services is currently not supported by Cloudiator but as outlined in section 4.1.2.3 this is a
planned feature for the next release.

Discovery Feature: Discovery means that the given tool is able to automatically retrieve the different offerings
such as images, hardware flavours and locations from the cloud providers. Having the different offers directly
discovered by the system is beneficial to the user: It reduces the initial effort of “manual” discoveryand it is less
prone to errors such as typos. Moreover, it can be kept up to date automatically.

Apache Brooklyn, Cloudify and Apache Stratos do not support automatic discovery. Hence, the user has to set
cloud-specific unique identifiers by hand. Cloudiator retrieves images, flavours and locations automatically and
updates them in its local registries in case the state changes at the cloud provider.

Authentication and Authorisation: The cloud management tool offers a single point of attack. It stores cloud
provider authentication informationand entirelycontrols the application. T his offers the possibilityto, e.g., shutdown
or even delete the application, but also to access the virtual machines. To protect sensitive information, the tool
should at least offer authentication. As multiple persons in general maintain an application, it should also offer a
multitenancymechanism. Finally, a fine-grained authorisation mechanism, allows defining roles within the system,
giving different privileges to different users. For instance, this allows that only a limited set of persons can shut
down the application, while others can only retrieve monitoring reports.

Apache Brooklyn supports authentication for the dashboard and its REST API being enabled by default. Multi-
tenancy and authorisation have been recently integrated via the Entittement Manager. While Cloudify has all
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security features disabled by default, it offers ways to secure the communication with its manager. The REST API
of the manager can be secured by either password or token based authentication, securing the access via
command line and Web GUI. Multi-tenancy is currently not supported. Apache Stratos provides users, roles and
tenants through the Web GUI and the API. Moreover, the credentials of the underlying used laaS cloud provider
are only stored in configuration files and are not visible, or editable, directly through Stratos. Authentication and
Authorisation in Apache Stratos exists, butpresumablyduring developmentsomefeatures were disabled (e.g mult-
tenancy, roles etc.). Cloudiator supports authentication for the dashboard and its REST API, both enabled by
default. Further, Cloudiator supports multi-tenancy.

4.1.2.3 Extension: PaaS orchestration and abstraction layer

As seen before, PaaS abstraction is still an open and on-going topic in currentresearch. ltcan drasticallydecrease
costs, by e.g. sharing infrastructure of public PaaS providers to host an application. T herefore, the integration of a
Paa$S abstraction into the Cloud Provider Engine is of major interest for CloudSocket.

Relying on our use case of a card designer ofthe Greeting Cards BPaaS Bundle, we can decrease the costof the
deployment, since the costof a virtual machine (laaS level) per hour s higher than the costof an application serer
(PaaSlewvel). Therefore, in this use case, we canrunthe WAR file, i.e. the actual application, on an Apache Tomcat
of a public PaaS provider instead of the laaS provider. Of course, this comes with several restrictions, such as the
limited means of monitoring and configuring the actual senvice.

Figure 20 - Unified Life-cycle Handling in the Cloud Provider Engine

In the current Cloud Provider Engine, there is already an abstraction layer for laaS providers called Sword. Our
approachis (i) to extend the state machine ofthe life-cycle managementto cover also PaaS-specific actions and
events, such as the creation of an environment, and (ii) to overload the description of the components as is
described in section 2.2.3.2). This is enabled by using application manifests, instead of e.g. deployment scripts.
Figure 20 shows an excerpt of the unified cross-layer life-cycle for Cloud providers.

We call this PaaS abstraction layer Dagger. T he life-cycle managementof Colosseum is then capable of executing
the respective calls in a provider-agnostic way as it is in Sword. Figure 21 shows the architecture of the Cloud
Provider Engine after the integration.
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Figure 21 - Cloudiator with 1aaS and Paa$S abstraction layer

As Sword heavily relies on jClouds to implementcalls, we target on the integration of one of the following tools to
be used in the PaaS abstraction layer: (i) the PaaS Unified Library or (i) the COAPS API.

The PaaS Unified Library*' from the SeaClouds EU projectis a librarythat provides simple operations for managing
applications in Paa$S providers: deploy, undeploy, start, stop, scale and bind service. It also includes an optional
REST interface on top of the library, allowing the use of the library as a standalone application. The current
supported providers are CloudFoundry v2 based providers, e.g. Pivotal, Bluemix or Canopy Cloud Fabric,
OpenShiftv2 based providers, e.g. OpenShift Online, and Heroku. It relies on the official Java clients for each
platform. T he CloudFoundryand Heroku implementations are able to deploysupplied artefacts, while the OpenShift
implementation requiresa URL to a git repository. Finally, Heroku is restricted to Java web applications. T he Life-
cycle part of a specific application isimplemented in the methods to start, stop and remove an application. Scaling
is done via an additional methods thatallows to change the amountof instances that are associated to a module.
Additionally, the CloudFoundryimplementationis able to scale disk and RAM. T he values have to be provided by
the user. A service managementAPI allows binding existing services to an application where applicable. The PaaS
Unified Library does not use a unique credentials for each cloud provider. On the contrary, each library session
needs the credentials to be provided by the user. T his allows the implementationofa service that is able to manage
PaaS applications from multiple users, butitisless convenientifthis service is supposed to actas the PaasS broker.

The (M-)COAPS API#2% js an specification for an abstraction interface of common PaasS provider deployment APIs.
It comes asanindependentapplication thatisrun inan applicationserverand provides a REST -ful APl in terms of
a proxy for several Paa$S platforms. The supported providers are currently OpenShift, Amazon Elastic BeansTalk
and Cloud Foundry. Implementations forthe Google App Engine and Appscale are currently under development
The core life-cycle actions are very similar to the ones of the PaaS Unified Library. Table 4 shows the common
methods of both APIs. In addition, the Unified PaasS Library has some more specific methods for the management
of users, service bindings, securitypolicy, scaling, monitoring and so on that are not available throughoutall PaaS
providers and therefore not considered in our very general approach forintegrating a PaaS abstraction. Scaling is
not explicitly as own methodsin the COAPS API, butit is possible to change the number of instances (horizontal
scaling) and the description of the environment (vertical scaling) in terms of updating the specific entities. In
addition, service management, in respectofbinding services of given providers to the application,is notan integral
part of the COAPS API. However, as this is always application specific, the credentials to the senice mightbe

41 https://github.com/SeaCloudsEU/unified-paas

42 http://www-inf.it-sudparis.eu/SIMBAD/tools/COAPS/

43 The specificationis released as COAPS APl and later implemented and continued as M-COAPS API.
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Paas$ Unified Library

Create Container
Update Container

Delete Container

Retrieve Container

Create Application

Update Application

Get List of Applications

passed via environment variables. The credentials are not managed dynamically, but have to be provided in a
config file, that can be changed throughout instantiations of the COAPS APl application.

COAPS API

Creating Environment
Updating Environment
Destroying Environment
Finding Environments
Describing Environment
Getting Information

Getting Deployed Applications
Creating Application

Updating Application

Finding Applications

Manage Application Starting Application
Stopping Application
Restarting Application
Retrieve Application Describing Application
Delete Application Destroying Application
Destroying Applications
Create Deployment Deploying Application
Delete Deployment Undeploying Application

Table 4 - Life-cycle Actions of the Generic PaaS Deployment APls

The outcome of the analysis of these APIs is that we target for the Cloud Provider Engine, the integration of the
methods of the COAPS API in our life-cycle actions. This means the current abstraction layer, formerly solely
represented by Sword, is extended by another componentcalled Dagger thathandles the communication with the
PaaS providers. T he state machine ofthe lifecycle managementextended to cover all possible states; even some
of them only needs triggering when a PaaS-layered component is involved. By that, when the state of the
componentis at install, it will call the install-method for laaS-based components and in the case of PaaS-based
components it will enact the following chain of commands: create environment, create application, deploy
application.

In respect of the final integration in the Cloud Provider Engine, there are several implementation aspects to be
considered. The COAPS-API is stand-alone applications thatruns independentlyof the Cloud Provider Engine in
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an application server and is accessed bya REST interface. The PaaS Unified Library also offers a REST fagade
and it supports the usage as a plain library. By a prototypical implementation thatis currently under development,
we checkthe feasibility of the integration of the COAPS API into the Cloudiator framework. If this would not work
as needed, we consider the plain integration of the methods in a novel abstraction layer with the abilities of the
Cloudiatorframework. As was already proven in the laaS abstraction, the framework provides a rich set of features
that handle the communication with and the management of Cloud providers in a stable and reliable way. By the
means of the watchdog system, the advanced and sophisticated scheduling and registry components, we most
likely achieve better results by a native integration. However, to proof the feasibility of integrating this cross-layer
life-cycle, the first step is the integration of the COAPS API.

Further, on, we extend the meta model of Colosseum, i.e. the main part of the Cloudiator framework, to allow
instances to be run on containers (i.e. environmentin the notation ofthe COAPS API). T he description of containers
features attributes, also found in the flavour part of the virtual machine entity, like RAM and Storage, but with
additional fields, we extract from the environmentmanifest. In this manifest, configurationslike the runtime of the
environment (e.g. Java 7) is defined

41.3 Future Research

While a deployment plan might explicate deliberately which laaS services are going to be instantiated and host
respective BPaa$S internal senice components, there can be scenarios that such a plan is not complete. For
instance, imagine thatone laaS offering is available in multiple cloud locations. In this respect, we mightdesire to
selectthe offering instance, whichis more close to the BPaa$S clientin order to reduce the overall execution time
of the BPaaS workflow. To this end, in orderto coversuch more dynamic scenarios, we plan to investigate a more
dynamic laaS selection approach where the specific VM offering or even the actual cloud location for such an
offering is selected. To enable such type of selection, we could rely on different types of criteria. One criterion,
already mentioned, could be the location with respect to the BPaaS client. Another criterion could consider the
previous performance ofthe respective componentthat needsto be hosted in the respective cloud. As such,one
issue thathas to be dealtwith concerns the suitable determination of the criteria thatneed to be used in the selection
and can cover the dynamic scenarios thatwe are aiming at. The second issue is how to perform the laaS selection.
We can rely on a QoS-aware service matchmaking approach like the one mentioned in section 3.2.1.1. This is
because this kind of selection includes the matchmaking of constraint-based specifications over functional
properties of the laaS offering as well as non-functional terms (qualitymetrics and attributes). Above all, of course,
we also need to define exactlythe dynamic scenarios that we need to cover. Apart from endpoint/cloud | ocation
selection, we can also imaginethatwe mightrequire to dynamically selecting a cloud offering atruntime in order o
address prospective problems like offerings not existing any more or offerings that have become problematic due
to various reasons. By relying on a static selection approach, such problems cannotbe really addressed and can
lead to the need of performing adaptions at the laaS level in order to properly confrontthem resulting in lost time
and increased cost. Based on the above analysis, the dynamic laaS selection at runtime is considered as an
interesting research direction that could be followed in the forthcoming project period.

4.2 Monitoring

Monitoring of a BPaa$S or any kind of service is crucial for evaluating the performance ofthis service and be able
to adaptit in case deviations from the expected performance behaviour are detected. T o this end, the respective
mechanisms and metrics should be in place in order to realise such monitoring by being coupled also by a
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corresponding distributed monitoring framework. Distribution is necessary in order to handle an increased
monitoring load especiallyoriginating from the lower layers of abstraction as well as to be able to overcome failures,
thus paving to addressissues concerning single points of failure. The metrics to be measured should be carefully
designedinorder to cover all possible requirements that can be posed on the different layers. Such metrics could
be drawn from a repository of widely used and common metrics (i.e., the Metric Registry) while new metrics might
needto be specified. In any case, the monitoring framework should be able to measure all the respective metrics
needed and be extensible to address the needs of incorporating new metrics on demand. In addition, it might be
required that such a framework is automaticallyreconfigured in order to address unforeseen load or modifications
to corresponding requirements or the unexpected failure of some monitoringnodes. Finally, to address cross-layer
adaptation (see section 4.3) and ensure the computability of all the metrics required, the monitoring framework
should be able to propagate and aggregate measurement information across different layers by exploiting metic
models thatcoverthe dependencies between the differentlayers. Such metric models could take the form of metric
trees, which explicate the way low-level measurements can be propagated up to the highest level producing te
respective measurements of metrics at that level.

4.2.1 State ofthe art

In the scope of CloudSocketthe monitoring applies to the three areas: (i) Quality Models, covering the monitoring
of QoS termsin general, (i) Service Monitoring, covering the monitoring of services and service-based applications
and (i) Cloud Monitoring with the focus on the cloud related monitoring challenges.

Various quality models have been proposed in the literature. Theycan be distinguished in general to those that are
layer-specific, thus focusing on one layer, or cross-layer, focusing ontwo or more layers. Quality models can also
be separated into those covering one or several aspects. In particular, we can see in the literature quality models
that focus on security, scalabilityor elasticityaspects ormodels thatattemptto cover them all. Based on the survey
in [16], the quality models can be evaluated across different criteria. These criteria include the
extensiveness/richness ofthe model, the coverage of both provider and requester views, the coverage of domain-
independentand dependentqualityterms, the coverage of QoS and QoE qualityterms, the association of attributes
to metrics from which they can be computed, the layers covered, and the type of quality term dependencies
captured. The analysisin this survey revealed that there is a trend towards providing more rich models which tend
to covermanylayers and not just one as well as to cover mostof the comparison/evaluation criteria. Our analysis
now focuses shortly on reviewing some layer-specific and cross-layer (cloud-based) quality models.

The qualitymodelsin [60], [61]focus mainlyon the service and infrastructure layers but noton cloud services. T hey
actuallycover mainlythe service provider view and domain-independent QoS metrics. T heydo provide a mapping
between qualityattributes and metrics while the structuring ofthe se models canbe consideredto be ata good level
with moderate or good detail level.

Cross-layer quality metrics have been proposed in [39], [62]. Compared to the previous quality models, they are
better and cover both provider and requester views, both QoS and QoE terms as well as map to a high level of
detail. Some trade-offs exist between these models. The model in [63] has a better detail level than the one in [64]
but does not cover dependencies. On the other hand, the modelin [62] has the best performance in all criteria but
does not cover the specification of metrics and respective computation formulas.

The CLOUDQUAL qualitymodel has been proposed in [65] which covers dimensions and metrics for cloud services
in general. This model comprises 6 well-known main quality dimensions: usability, reliability, availability,
responsivess, security and elasticity. However, the coverage of metrics mapping to these dimensionsis quite low
where a one-to-one mapping between dimensions and metrics is captured.
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In [66] a cloud-based quality model is proposed which focuses on the coverage of non-functional, economic and
technical aspects. Foreach aspect, a different set of dimensions and respective metrics are specified. T his quality
model seemsto cover all senice layers. However, we believe that the categorisation ofthe qualityterms is more
or less inappropriate and some quality aspects like scalability, security and elasticity are not well-covered.

Li et al. [67]have performed a survey over metrics that can be used to evaluate cloud servicesand have come up
with a quite extensive quality model. The quality dimensions covered are partitioned into two main parts: the
physical and the capacityone. The physical one includes the dimensions of communication, computation, memory
and storage, while the capacityone includes the dimensions of transaction speed, availability, latency, scalability,
reliability, variability and data throughput. In addition, the authors show the dependencies between the properties
in each partand across these two parts. Furthermore, the proposed model also covers economic, elasticity and
security dimensions, attributes and metrics. For each quality dimension covered, multiple quality metrics are
defined. However, many of them are benchmark-oriented and cannot be directly used by a monitoring system.

The SMlindex is proposed in [68] which can be used to express KPIs and enable their respective assessment
over cloud-based services. T his SMlindex focuses on 8 main qualitydimensions: accountability, agility, assurance
of senice, cost, performance, security, privacy and usability for which 13 quality attributes are defined, covering
response time, accuracy, availability, reliability, stabilityand costand elasticity. For each qualityattribute, few quality
metrics are defined. For instance, for response time, we have average and maximum response time as well as
response time failure. T he quality model proposed seems generic enough to cover the 3 main layers in the cloud
abstraction stack but does not provide enough details for particular dimensions and attributes.

Various research approaches have focused on defining meaningful scalability and elasticity metrics as well as
providing formal definitions for these two quality terms.In [69], the authors distinguish between application and
platform scalability. Application scalabilitybears on an application's abilityto sustain particular performance levels
when its workload increases, while platform scalabilityis similarlydefined as the ability of the execution platform o
provide as many resources as needed. On the other hand, elasticityis defined as the degree to which a system
candynamicallyprovision and de-provision resources in an autonomic manner to cover as closely as possible the
current demand. Then, the authors defined two elasticity dimensions, namely speed and precision that were
mapped to two main metrics to measure them. In [70], a new elasticity metric is defined which covers well the
aspects of scalability, accuracy, time and cost and is computed from a function which takes into account these 4
aspects. The function includes more simple metrics which can be computed from SLAand/or historical information.
The authorsin [71] evaluate elasticityas a financial penaltyrelated to the under- or over-provisioning of resources
in the context of the cloud service customers. The survey in [72] reviews various approaches focusing on the
definition of quality metrics covering scalability, elasticity and cloud service efficiency. The approaches are
evaluated according to whethertheycover all three aspects, whether theycater for the service provider or requester
view and whetherthey cover the three main layers in the cloud computing stack. Another criterion for evaluation is
the consideration/coverage of different scalability concepts. Finally, the authors in [73] follow the goal-question-
metric approachin order to come up with metrics measuringcloud senice scalability, elasticityand efficiency. The
final quality model produced includes two metrics for scalability, namelyspeed and range, two metrics for elasticity,
namelymean-time-to-quality-repair (MTQR) and number of SLO violations, and two metrics for efficiency, namely
resource provisioning efficiency and marginal cost.

Concerning the workflow layer (WfaaS), one of the most prominentworkis the one in [11] which defines a quality
model thatcovers both the workflow and task level. T his qualitymodel considers three main dimensions: time, cost
and reliabilityand defines respective quality metrics for them. The metrics defined for the task and workflow level
are equivalent but the main intuition is that the workflow-level metrics can be derived from the task-level ones by
also considered the workflow structure. For the time dimension, the parent/rootmetric is task response time, which
is broken downinto a tree of more simple metrics where at the second level we have the task process and delay
time. The task cost is the root metric in a shallow metric tree hierarchywhere in the second level the total task cost
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is splitinto the enactment and the realisation cost. Concerning reliability, two main metrics were defined: system
failure rate and process failure rate.

An interesting quality model which focuses mainly on properties and aspects that need to be measured but not
metrics hasbeen proposed in [74]. T his qualitymodel seems to applymostly on the laaS and possibly PaaS layers
and includes the aspects of scalability, elasticity, reliability, adaptability, timeliness, autonomicity,
comprehensiveness and accuracy. T his quality model captures those properties that have to be exhibited by a
monitoring system in the cloud. T hus, thisis yet another perspective with respectto the usual one thatconcentrates
on capturing the service provider and/or requester views.

In this sub-section, we present research work that has focused mainly on the monitoring of services. T hiswork is
not accompanied by a senice adaptation sub-system. On the other hand, in section 4.3.1, we will also analyse
approaches that are able to both monitor and adapt services.

[75] presents an event-based monitoring approach, developed within the Astro project, which also extends the
ActiveBPEL engine and defines RTML, an executable monitoring language to specify SBA properties. Events are
combined by exploiting past-time temporal logics and statistical functions. Monitors run in parallel with the BPEL
process as independent software modules verifying the guarantee terms by intercepting the input or output
messages received or sentbythe process. T his work does notallow for dynamic (re -)configuration of the monitoring
system in terms of rules and meta-level parameters.

In [76] the authors present an approach towards extending WS-Agreement. T his approach supports monitoring of
functional and non-functional properties. EC-Assertion is introduced to specify service guarantees in terms of
different types of events, which are defined in a separate XML schema and itis based on Event Calculus (EC). By
proceeding in parallel with the business process execution, it leads not only to less impact on performance, but
also to a smaller degree of responsiveness in discovering erroneous situations.

A platform for developing, deploying and executing SBAs is proposed in [77],incorporating tools and facilities for
checking, monitoring and enforcing service requirements expressed in WS-Policynotations. T he Colombo platiorm
comes with a module that manages policy assertions. Apart from evaluating the assertions attached to particular
senice-related entities at both design and run-time phases, the framework provides the means for policy
enforcement, e.g., it mayapprove a delivery of a message, a rejection of it, or defer further processing.

Lifting monitoring to the cloud comes along with various requirements compared to traditional server monitoring
[74]. The monitoring of cloud stack encompasses differentlayers that need to be monitored, i.e., operating system,
middleware (PaaS) and the actual application. Further requirements defined by|[x] are scalabilityand elasticity, i.e.,
the monitoring system has to handle a large number of probes and has to cope with dynamic changes of the
monitored entities. Tools provided by cloud providers, such as Amazon's CloudWatch# or CloudMoniox* suffer
from vendor lock-in. In addition, further tools are required when data from different cloud providers shall be
aggregated. Established open source monitoring tools such as Ganglia* or Nagios* are designed to monitor large
distributed systems, but struggle with the dynamicityof cloud environments. More cloud-aware monitoring systems
such as DARGOS [78] offer a scalable architecture with the focus on OS and customisable application specific
metrics. Additional service levels like PaaS or SaaS are not considered inthe DRAGOS approach. Further, cross-

44 http://aws.amazon.com/en/cloudwatch/

45 http://cloudmonix.com/

46 http://ganglia.sourceforge.net/

47 https://www.nagios.org/
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cloud monitoring and respective challenges are not addressed at all. The PCMONS [79] approach focuses on
private cloud infrastructures with an extensible architecture to overcome the vendor lock-in on the laaS level.
Higher-level as well as cross-cloud monitoringis notconsidered byPCMONS. T he monitoring system proposed by
Konig et. al. [80] targets the monitoring of all cloud service levels by combining service layer specific solutions in
anintegrated monitoring system. Its architecture is based on a peer-to-peer system to provide scalabilityand offers
a set of aggregation levels for the gathered monitoring data. T hisaggregation is provided in a static way and does
not allow to be changed dynamically at run-time.

The realisation ofa scalable and elastic cloud monitoring system also depends on the applied storage backend of
the monitoring systems. With the evolution of NoSQL databases and their scalability capabilities [81] which
constitute a widely discussed topic in academia, various monitoring solutions rely on such NoSQL databases for
performance and scalability reasons [82]. In the context of NoSQL databases and their usage for monitoring
systems, a more monitoring centric database type ewolved in the recent years, i.e., the time-series database
(TSDB). TSDBs typically build upon a NoSQL database and add further monitoring related functionalities like
statistic-based queries, aggregation capabilities and a monitoring optimised data structure [83]. T ypical opensource
TSDB representatives are KairosDB*, OpenT SDB*, InfluxDB% and Druid®!.

Tower4Clouds®, developed in the context of MODACIlouds European project is a monitoring platform able to
monitor multi-clouds applications. Its main capabilities are: (1) the user defines the QoS constraints, in the form of
monitoring rules, which need to be assessed at runtime. T hese rules are cloud-providerindependent; (2) the Data
Collectors that are deployed together with the application send the monitoring data to a central Data Analyzer,
according to the installed monitoring rules, which specify what and how resources should be monitored. No
reconfiguration is required after scaling or migration activities. For PaaS applications, an application data collector
is implemented, which is able to collect response times and throughput measurements; (3) The Data Analyzer
processes the data gathered bythe data collectors, performing aggregations and/or verifying conditions as specified
inthe monitoring rules. Some predefined actions can be definedin a monitoring rule and executed when a condition
is satisfied. Tower4Cloudsis the monitoring platform selected in the SeaClouds project The SeaClouds platiom
is in charge of automaticallydeploying the data collectors and configure them once the applicationis dep loyed. An
additional data collectorwas developed to measure the availability of PaaS applications;itis an external module,
deployed along with the Tower 4Clouds platform.

A survey paper, which evaluates manycloud monitoring solutions, both proprietaryand open-source, can be found
in [74]. These solutions are evaluated based on the quality model that was referencedin section4.2.1.1 covering
the monitoring system performance/quality. T his paper provides a nice conceptualisation of the monitoring research
problem by indicating 4 main aspects applying to it: (a) the need for monitoring; (b) the basic concepts; (c) the
properties to be measured; (d) openissues and future directions. Concerning the latter aspect, we can clearlysee
some directions thatare considered quite relevant with respectto the research that we intend to perform on cloud
monitoring. T hese highly-research directions include: (a) cross-layer monitoring; (b) monitoring of federated clouds;
(c) effectivess; (d) efficiency.

In [84] a monitoring data distribution architecture is proposed which enables cross-site compatibility through the
employmentof semantic annotations. In particular, semantic annotations are used for the lifting of the monitoring
information drawn from differentmonitoringsources. The ending resultis a distributed semantic repository providing
SPARQL endpointvia which SPARQL queries can be posed on the semantically lifted monitoring data. Such
semanticallylifted data are also distributed to potential subscribers via a distribution hub. Anice feature of the latter

48 https://kairosdb.github.io/
49 http://opentsdb.net/
50 https://influxdata.com/

51 http://druid.io/

52 http://deib-polimi.github.io/tower4clouds/
Copyright © 2016 UULM and other members ofthe CloudSocket Consortium
www cloudsocket.eu Page 72 of 118



https://kairosdb.github.io/
http://opentsdb.net/
https://influxdata.com/
http://druid.io/
http://deib-polimi.github.io/tower4clouds/

hub mapsto its ability to properlydistribute the semantic data according to their type (public/private) thus satisfying
respective data policies.

The authorsin [85] propose the CASVID monitoring architecture, which stands for Cloud Application SLA Violation
Detection and focuses on supporting not only infrastructural but also application-level monitoring. However,
connections/dependencies between different-level metrics are not actually considered and thus layer-specific
monitoring is actually supported. An interesting aspect of the respective monitoring system proposed is that it
enables the automatic detection ofthe monitoring/measurementinterval through the application of a novel algorithm
that can be exploited bycloud providersin an individual basis to detect this internal for each application that exploits
their services. T hisalgorithm considers differentsampling intervals until the pointof convergence in the provider's
utility which results into the respective internal to be selected.

In [86] a fine-grained cloud monitoring solution is proposed which relies on an in-network switch design (by
employing alow-complexityencoding scheme) in order to compress atthe network level the monitoring data (mainly
status information) that are exchanged. As a proof of concept, the authors highlight the ability of their monitoring
solution to early detectstragglers. T he authors conclude byindicating thatthe switches complying to the proposed
design can constitute a compressed status information place to be exploited for both the application and
infrastructure-level monitoring.

The authors in [65] propose a combined push and pull model for cloud computing monitoring which intelligently;
switches from one individual model to another one based on user requirements and monitored resources status.
The authors claim that this combined model leads to better monitoring performance and caters for different
privileges and access styles for the virtualised resources to be monitored. Concerning the latter advantage, the
authors also indicate differenttypes of components and how they more efficiently map to one of the models orthe
combined one.

In [87] awindow-based state monitoringframework for cloud applications is proposed whichis more robust to value
bursts and outliers and follows a respective distributed architecture with two main versions. In the first version,
centralised parameter tuning is supported while, in the second version, a decentralised one which enables the
monitoring system to scale to multiple monitoring nodes as these nodes rely on the local information to tune their
parameters. Two optimisation techniques are also introduced which enable to reduce the communication cost
between a coordinator and its monitoring nodes: the first enhances the effectiveness of the global push procedure
atthe coordinator side while the second one targets the reduction of unnecessaryglobal polls through enabling the
performance of local polls when needed.

A framework for collecting application-level measurements in proposed in [88] which exploits the Complex Event
Processing (CEP) paradigm. T his framework caters for the proper mapping of metrics to event streams as well as
their correlation to enable the computation of aggregated measurements mapping to complex metrics. While a
simplified monitoring architecture is proposed with no mentioning ofhow it can be distributed, an interesting event
hierarchy s proposed via which correlation can be achieved at the levels of host, resource pool and metric.

A senvice for estimating, monitoring and analysing cost for scientific cloud-based applicationsis proposed in [60].
In this senvice, different cost models are associated to different application execution models and some of the
models are combined in orderto produce costfor advanced scenarios. T his service exploits various techniques o
measure cost for scientific applications which also take into account application component dependencies.

In [89] a runtime model for cloud monitoring is proposed that concentrates on common monitoring concems.
Through this model, monitoring data are collected via various techniques and used to construct the performance
profile of a cloud. Based on the proposed runtime model, a distributed monitoring framework has been developed
with centralised collection/aggregation capabiliies which addresses the trade-off between monitoring
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overhead/load and monitoring capability via adaptively managing the cloud facilities. T his monitoring framework
and model seem to be able to cover different levels in the cloud abstraction stack going up to the application level.

4.2.2 Scalability / Elasticity Evaluation of Distributed Databases

Typically, cloud senices are on-demand, highlydistributed, elasticand scalable. T herefore, the monitoring systems
has to cope with these characteristics, leading to similar requirements for the storage backend of the monitoring
engine. In the context of CloudSocket, an increasing amount of deployed BPaaS Bundles with scalable services
will also increase the amountof monitoring sensors accessing the monitoring engine. Hence, in the context of cloud
monitoring, the storage and processing of time-series data becomes one of the common challenges. As the
monitoring engine itselfis a cloud service, the advantages of the cloud, i.e., scalability and elasticity, should be
highly applied.

Especiallyin the context of cloud computing and distributed databases, the semantics of scalability and elasticity
need a more detailed explanation. Following the definition in [90] scalability means supportfor huge datasets and
very high requestrates. As cloud systems are architectedto scale-out, large scaleis achieved using large numbers
of commodityservers, each running copies ofthe database software, i.e., database nodes. Elasticity builds upon
scalability, that provides the abilityto have large scale systems. Elasticity meansthat you canadd more capacity
to arunning system by deploying new instances of each component, i.e. database nodes, and shifting load to them.

Traditionaldatabases like Relational Database Management Systems (RDBMS) were originallydesignedto provide
high performanceand consistencyin a centralised setup [67]. A new database categorycame up with the evolution
of NoSQL databases that promise to be ready for the cloud by providing scalability and elasticityin a distributed
setup [91]. In contrastto RDMS, NoSQL databases do not rely on a fixed schema butfocus on performance whie
offering a less strict consistency. Building upon NoSQL databases as storage backend another categegory of
databses ewoloved in the last years, the time series databases (TSDB) [83], [92]. T SDBs store sets of large
monitoring data, i.e., ime series data and provide enhanced aggregation operators and a graphical visualisation of
the time series data.

Gaining a common knowledge over the scalability and elasticity capabilities of NoSQL databases will lead to
producing/developing TSDBs which constitute the most suitable scalable and elastic storage backend for the
monitoring engine. Further, this database scalability/elasticityknowledge canbe integrated in further environments,
e.g., database aware adaptation rules or by enriching service descriptions with non-functional specifications of
database scalability ratings. As a starting point three commonly used NoSQL databases®, namely Apache
Cassandra®, Couchbase® and MongoDB?, were benchmarked in the OpenStack infrastructure in order to
evaluate their capabilities as storage backend for T SDBs.

As NoSQL databases can be categorized in four differentgroups, namelykey-value databases, documentoriented
databases, column family databases and graph databases [93]. In the focus of a TSDB storage backend, graph
databases are not considered due to their data structure. A short description of each evaluated database is
provided.

42211  ApacheCassandra
Apache Cassandra belongs to the column familydatabases. It has column groups, updates are cached in memory
and then flushed to disk, and the disk representation is periodically compacted. Data partitioning and replication

>3 http://db-engines.com/en/ranking

54 http://cassandra.apache.org/

55 http://www.couchbase.com/

>6 https://www.mongodb.com/
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are supported. The architecture of Apache Cassandrais builton the multi-master paradigmthatis inspired by peer-
to-peer systems [94]. Therefore, each Apache Cassandra node is equal, handling all type of operations. With this
architecture, Apache Cassandra promises linear scalabilityon commodityhardware orin the cloud%. The evaluated
version of Apache Cassandra is 2.2.6.

42212 Couchbase

Couchbase belongs to the documentoriented databases; however, the usage as key value store is also possible.
Couchbase relies heavily on in memory caching as it uses Memcached® before the data is asynchronously
persisted to disk. As Apache Cassandra, the distribution architecture of Couchbase follows the multi master
paradigm. T he evaluated version of Couchbase is 4.0.0 community edition.

42213 MongoDB

MongoDB belongs to the documentoriented databases. While former releases of MongoDB relied on caching only
the index in memoryand persisting data synchronously to disk, the new 3.X release changed to an extended
caching mechanism and asynchronous persistence to disk. In contraryto the architecture of Apache Cassandra
and Couchbase, MongoDB relies on three different node types: (1) Router nodes actas endpoints for the clients,
processing theirrequests; (2) Config Server nodes store the metadata ofthe cluster. The Router node retrieves the
actual location of the request dataset from the Config Server node. (3) The actual datasets are stored at Shard
nodes. The evaluated version of MongoDB is 3.2.0.

The de facto standard tool in academiaand industry for benchmarking NoSQL databases is the Yahoo Cloud
Serving Benchmark® (YCSB) [95] which was originally developed for benchmarking Yahoo's own PNUTS
database [96] and compare it with existing NoSQL databases.

Figure 22 shows the modulararchitecture ofthe YCSB where the Workload Executor and DB Adapter can easily
be modified or even replaced by custom modules. The Client Threads and Statistics modules are the core
components of the YCSB and offer various configuration options. As input, the YCSB requires a workload file,
describing the actual workload to execute. YCSB supports the CRUD (create, read, update, delete) operations per
default and can be extended for operations that are more complex. A workload file contains the actual number of
records, the number of operations to execute a distribution of CRUD operations perworkload and an algorithm for
the record selection propability. In orderto achieve comparable results we relied on these basic operations as more
complex operations mightdependon the actualqueryimplementationofthe respective database. The YCSB allows
running multiple YCSB in parallel to generate an arbitrary amountof load. The benchmarks were performed with a
custom version® of the original version of YCSB release 0.8. The custom version includes updated client drivers
for the selected databases.

57 http://techblog.netflix.com/2011/11/benchmarking-cassandra-scalability-on.html

58 https://memcached.org/

59 https://github.com/brianfrankcooper/YCSB

60 https://github.com/seybi87/YCSB
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Figure 22 - YCSB Architecture

Theoretical evaluation and actual benchmarks have been performed in order to evaluate the performance and
scalability of distributed databases. [97] benchmarks different NoSQL databases with main focus on the
performance bymeasuring the overall execution time ofa particular workload. However, the evaluation is performed
in an artificial environment without considering the cloud context. A more on scalability-oriented approach is
presentedin [98] Different Apache Cassandra clustersizes are evaluated by measuring again the execution ime
for different workload sizes. The results show that Apache Cassandra scales as the execution time reduces with
an increasing amountofnodes. The cloud contextis taken into accountby[99] by distributing databases acrossa
cloud infrastructure. Their benchmarks used different VM configurations to analyse the possible influence on
throughput and latency. The results led to a first version of a database scalability model.

The elasticity aspect is not deeply investigated in the outlined academic publications and also in industry [97].
Typically, the benchmark setup encompasses static database cluster configurations where the workloadis applied.
In the context of cloud computing also the elastic provisioning of resources, i.e., database nodes, requires a
thorough evaluation of the elasticitycapabilities of distributed databases. More preciselythe elasticity is defined by
adding nodes to a database cluster during (workload) runtime.

The actual benchmarking methodology comprises two setups: (1) a static database cluster configurations,
benchmarked bytwo YCSB clients. The static cluster configuration foreach database is alternativelyformulated by
a 1-node cluster, a 2-node clusterand a 4-node cluster. T his approach will provide the basic scalability results by
comparing the average throughput (operations per second) for each configuration. In addition, it will provide a
general performance comparison between the evaluated databases. (2) The elasticity will be benchmarked by
producing aoverload situation for the 1-node cluster with multiple YCSB clients and adding an additional node to
the clusteratruntime, measuring the throughput progress during all steps. An overload situation isreached as soon
as the throughput drops with an increasing number of client. T he overload situation is experimentallyinduced for
each database.

As Figure 23 depicts for both benchmarks setups, all YCSB clientVMs and database nodes (VMs) are located in
the OpenStack cloud of UULM to simulate the typical cloud context. It is ensured that YCSB clients and database
nodes do not rely on the same physical machine. Further dedicated physical servers are selected to perform the
benchmarksin orderto reduce the risk of whether other cloud services will affect the results. Al benchmarks are
run multiple times to ensure stable results. Each database VM is configured with 4 cores, 8GB of memoryand
80GB of disk as such a configuration is recommended by the Couchbase and Apache Cassandra
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documentations®'®2. Each YCSB clientis configured with 4 cores, 2 GB of memoryand 10GB of disk as the YCSB
mainly consumes CPU to generate the load.
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Figure 23 - Benchmarking setups

The scalabilitybenchmark setup encompasses three differentworkloads: create-only, read-update and read-heavy.
The specific CRUD ratio for each workload is shown in Table 5. The create-only inserts 1.000.000 records in te
database for read-update and read-heavy workloads, which execute 10.000.000 operations on the records. All
workloads use the Zipfian distribution for load generation [95]. T he elasticitybenchmarkis performed with the read-
heavyworkload. All databases are configured to use 6GB of memoryand the lowest replication degree. In order to
have a comparable setup no further database specific configurations are applied.

Workload create-only read-update read-heavy
Create 100 0 0
Read 0 50 95
Update 0 50 5
Delete 0 0 0

Table 5 - YCSB workloads CRUD ration in %

61 http://docs.couchbase.com/admin/admin/Install/install-resourceRegs.html

62 https://wiki.apache.org/cassandra/CassandraHardware
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In the following, the results for the scalability and elasticity benchmarks are presented. The scalabilityresults are
presented as a comparison table of the three databases for each workload. The elasticity benchmarks are
presented as time series for each database separately and finally compared in the conclusion.

42241 ScalabilityResults

Table 6 shows the throughputresults for the create-onlyworkload as a comparison between the three databases.
For each database, Table 6 contains the three different database cluster configurations. Regarding the overall
throughputonly none of the databases increases the througpuhtsignificantlywith an increasing cluster. Moreover,
MongoDB even decrease their throughputin a 2- and 4-node cluster. Regarding the scalability, none of the
databases scales with a growing amount of nodes for the create-only workload.

Cluster Configuration = Apache Cassandra Couchbase MongoDB

1- Avg.

Node Throughput 21800 21700 26100
(ops/s)

9. Avg.

Nodes Throughput 17200 24400 13400
(ops/s)

4. Avg.

Nodes Throughput 17000 22300 14700
(opsls)

Table 6 - create-only workload results

Table 7 presents the results for the read-update workload. Whereas MongoDB and Apache Cassandraachiewe a
similar throughput in a 1-Node setup, Couchbase achieves a significant higher throughput (across all
configurations). Regarding the scalability Apache Cassandra achieves an 11% throughputimprovement from the
1- to the 2-node cluster and a 30% improvement from the 2- to the 4-node cluster. Couchbase improves its
throughput from 1- to 2-node cluster of 10% and to the 4-node cluster again of 14%. Scaling MongoDB does not
improve the throughput, it even decreases the throughput.

Cluster Configuration = Apache Cassandra Couchbase MongoDB
1 Avg.
i Throughput 14400 41200 16400
Node
(opsls)
9. Avg.
Nodes Throughput 16100 45700 13900
(opsls)
4. Avg.
Throughput 23000 52600 12800
Nodes (opsls)

Table 7 - read-update workload results
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Cluster Configuration = Apache Cassandra Couchbase MongoDB

1- Avg.

Node Throughput 15500 45800 32000
(ops/s)

9. Avg.

Nodes Throughput 15500 50000 14300
(opsls)

4. Avg.

Nodes Throughput 21000 54900 14000
(opsls)

Table 8 - read-heavy workload results

Table 8 shows the results for the read-heavyworkload. As in the previous benchmark results MongoDB achiewes
a lower throughputthan Apache Cassandra and Couchbase. Forthe scalability, Apache Cassandraincreasesits
throughput with the 4-node cluster of 27%. Couchbase achieves a throughput improvement from the 1- to the 2-
node cluster of 9% and from the 2- to the 4-node cluster again 9%. Couchbase improvesits throughputfrom 1- to
2-node cluster of 9% and to the 4-node cluster again of 9%. However scaling MongoDB up to 4 nodes does not
improve the throughput, it even decreases the throughput.

The benchmark results show that there are significant performance (throughput) differences in general between
different types of NoSQL databases, where MongoDB achieves the lowest throughput for all workloads, Apache
Cassandra and Couchbase achieve similar throughputfor the create-onlybenchmark and Couchbase achieves the
highestthroughputs forthe read-update and ready-heavy workloads. Regardingthe scalability, MongoDB does not
benefitfrom scaling its cluster. lteven decreases the throughput. For the create -onlyworkloads Apache Cassandra
and Couchbase only achieve a slight throughput improvement. For the other workloads Apache Cassandra and
Couchbase, achieve a throughputincrease byadding more nodes to the cluster, where Apache Cassandra reaches
the highest rate of increase.

Forall results, it is taken into consideration, that Apache Cassandra and MongoDB do not allow a configuraton
with no replication factor, whereas Couchbase allows running without replication. T his leads to a slightly better
benchmark starting position for Couchbase.

42242 ElasticityResults

As introduced in section 4.2.2.3 the elasticity benchmark will produce an overload situation for the respective
database and willadd a node to the cluster while the load is continuing. For each database, the overload situation
is determined individually to determine the required amount of YCSB clients to produce an overload situation.

Figure 24 presents the resulting time series of the elasticity benchmark for Apache Cassandra. The overload
situation for the 1-node clusteris reached after approx. 40s by starting up to four YCSB clients running load on the
Apache Cassandranode. The operations per secondstartto decrease and afterapprox. 100s a new node is added
to the Apache Cassandra cluster. InternallyApache Cassandra starts to redistribute the data across the two nodes
while the YCSB clients still produce load. As the throughput stabilises at 200s as time series indicates, the
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redistribution is finished. This result shows that adding nodes to Apache Cassandra at runtime overcomes the
overload situation. However, the 2-node cluster does not achieve the peak of ~ 16000 operations per second.

18000
16000
14000
12000
10000

8000 added second

6000 node

current operations per second
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2000

0
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720 740

timestamp in seconds

Figure 24 - Apache Cassandra Elasticity Benchmark

Figure 25 shows the time series of the Couchbase elasticitybenchmark. Again, multiple YCSB clients overload a
1-node cluster. Similar to Apache Cassandra, it requires also four YCSB clients to overload Couchbase. As Figure
25 depictsis the overload situation reached after approx. 60s. A second node is added to the Couchbase cluster
and Couchbase internallyredistributes the data. The second node is sufficientto handle the overload situation and
as the time series shows the redistribution is finished at approx. 90s. T he resulting time series also shows that the
throughput has increased with the 2-node cluster compared to the starting 1-node cluster.
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Figure 25 - Couchbase Elasticity Benchmark

Figure 26 shows the time series of the MongDB elasticitybenchmark with multiple YCSB clients overload a 1-node
cluster. As Figure 26 depicts the overload situation is reached after approx. 60s and a second node is added. The
time series shows thatthe overload situation cannotbe overcome as the throughputdrops multiple times significant
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and a 2-node cluster does notincrease the throughput. Regardingthe scalabilityresults of MongoDB, this behaviour
could already be expected.
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Figure 26 - MongoDB Elasticity Benchmark

42243 Conclusion

The scalability results of 4.2.2.4.1 and elasticity results of section 4.2.2.4.2 have shown that are significant
differences between the evaluated databases scalability and elasticity. In general, Apache Cassandra and
Couchbase achieved a clearly higher throughput than MongoDB in all evaluated scenarios. Regarding the
scalabilityApache Cassandraincreases its throughputwith larger clusters. However, the elasticity benchmark has
shown that extending the Apache Cassandra cluster under load will solve the overload situation but the throughput
increase is not significant. Couchbase also achieves scalabilitywith a growing cluster size but the throughput
increase percentage is not as high as with Apache Cassandra. Regarding elasticity, Couchbase shows the best
results of the three evaluated databases by overcoming the overload situation and increasing the throughput under
ongoing load.

These results show thatthe selection ofa scalable and elastic storage backend for monitoring engine is nota trivial
decision due to the varying scalability and elasticity capabilities. As the results show, Apache Cassandra or
Couchbase mightbe a first appropriate solution to provide scalabilityand elasticity to the monitoring engine. This
gained knowledge mightalso be further used to enrich the semantic descriptionof services relying on one of these
databases, e.g., defining a scalability and elasticity grade on the service description level.

With the gained knowledge of the scalabilityand elasticity benchmarks in a rather small and artificial setup, a
starting point for more complex and use-case centered benchmarks is provided. The evaluation of a larger scale
distributed database cluster (>20 nodes) constitutes one aspect of further benchmarks. In addition, more monitoring
related operations, i.e., aggregation operations, will be included in the benchmarks. With a further extension of the
YCSB it will also be possible to benchmark specific time-series databases (T SDBs) which are typicallybuilt on top
of NoSQL databases.

4.2.3 UULM Approach

As explainedin section 4.1, the vendor lock-in not only affects the deploymentof applicationsin the cloud, it also
affects the monitoring of applications across multiple cloud providers and across differentservice levels. T his leads
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to the challenge of supporting not only multi-cloud butalso cross-cloud monitoring. For pure multi-cloud systems,
the monitoring tools of the currentlyselected cloud operator can gather the monitoring data. While basic monitoring
data may come free on some cloud providers, often more advanced metrics either cost (Amazon, Rackspace) or
require the operator to set up additional monitoring tools. For cross-cloud monitoring, using the providers'
monitoring infrastructure is technically feasible, but it increases tremendously the effort, as multiple tools have to
be used in parallel. Moreover, it is difficult to assess metrics thatinvolve the crossing of provider domains (such as
network traffic from provider A to provider B). Furthermore, it is hard to assess application-specific metrics. In
addition, a sophisticated and configurable aggregation on the metrics is currently not easily possible.

The monitoring approach followed by UULM provides a generic andextensible monitoring engine, offering the
capability to reduce the cross-cloud provider network traffic and hence reduce costs, enabling a powerful API to
customize the monitoring at run-time and a self-scalable architecture [100].T he monitoring system is part of the
Cloudiator framework. The following sections describe the UULM approach with its main components and features.

In order to be able to gather the raw monitoring data on the laaS level from the VMs and component instances,
Visor® is introduced as a monitoringagent. Visor is deployed on every VM orchestrated by Cloudiator and provides
a remote interface in order to configure a particular Visor instance at deployand at run-time. Figure 27 depicts
Visor's main functionality. T he dynamic configuration of Visor allows the close mapping to the application by also
only collecting the required metrics, thus saving space and bandwidth. Visor supports the capturing of data on a
per componentinstance basis as well as on a per-VM basis. The formeris achieved by sensors monitoring basic
system properties on virtual machine level, e.g. by accessing system properties such as CPU load. The latter is
performed byexploiting the factthat all componentinstances run inside a Docker container (cf. section4.1.2.1) and
the resource consumption can be retrieved on a per-container basis. By default, Visor offers various sensors
supporting system metrics such as CPU load, memoryconsumption, disk I/O, and network I/O. In order to support
custom metrics, like the request rate of a web server, Visor supports the implementation of custom sensors, by
providing an easy-to-implementJava interface. It exploits the dynamic classloading properties of Java in order to
be able to add those implementations at runtime.

. VM

ul request_rate
—_—

buffer data
Visor —
E cpu_load
. memory_utilisation

registersensors
name: cpu_load, type: system, interval: 1s

name: memory_utilisation, type: system, interval: 1s

name: request_rate, type: custom, interval: 1s, class: regest_rate.class

Figure 27 - Visor
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In orderto provide the various raw metrics gathered byVisor to further consuming entities like the SLAEngine, the
raw metrics need to be aggregated. Aggregation includes for instance the computation of average, minimum,
maximum or simply the normalisation of values. In addition to that, aggregation mayinclude merging of metrics,
e.g., when computing the average of averages. Hence, aggregation is always BPaa$S bundle specific, depending
on the specified metric modelinthe CAMEL file. In order to satisfy the requirementfor minimum network traffic and
scale of the monitoring system, the aggregation is preformed as close to the data source as possible. Table 9
provides an overview of the different aggregation levels with their respective input, aggregation locationand output

Scope Input Aggregationlocation Output

host single VM local VWM local storage

cloud Wsin cloud A any W in cloud A shared storage (inside cloud A)
global W s from at least two home domain storage at home domain

(cross-cloud) clouds

Table 9 - Aggregation Levels

All aggregations thatrequire input data from a single VM will be performed on this VM. We refer to this computation
to happeninthe host scope. Forthis approach, onlya local storage is accessed and no communication is required
which further reduces latency. Aggregations that need input only from VMs from a particular cloud are performed
in the cloud scope. Such computations exclusivelyaccess the shared space (shared T SDB in Figure 28) spanning
a cloud. While itis desirable to distribute all computations of a particular cloud scope amongst the affected VMs,
the definition of a suitable algorithm is currently work in progress. Finally, computations that require input from
multiple clouds happen in a cross-cloud scope (or global scope). These are performed in the home domain of
Cloudiator.

Figure 28 provides an overview of the general distributed monitoring architecture with a sample applicaton
consisting of two Vs at cloud provider A (Amazon) and another VM at cloud provider B (Openstack). Each \M
contains a Visor and Aggregator®instance besides the actual application components; the respective aggregation
level explicated in Table 9 is indicated by the colouring scheme.

A key elementwhen computing higher-level metrics especiallyover largertime-windowsis the need to buffer raw
monitoring data. TSDBs have been designed to store timestamped data in an efficientway and also to provide
quickaccessto the stored data. Many T SDB implementations support applying functions on stored data right out
of the box what makes them a perfect match not only for buffering, but also for aggregation [83]. The TSDB
approach needsto be able to work with limited resources to not limitthe actual application and increase available
resources when more Vs are being used. In order to cope with these requirements, the following approach is
followed: from each VM acquiredfor an application, we reserve a configurable amountof memoryand storage (e.g.
10%) thatwe further splitbetween alocal storage area and a sharedstorage area. Both storage areas are managed
by a TSDBinstance running on the VM. T he Visor instance running on this VM will then feed all monitoring data to
the TSDB. The T SDBwill store data from its local Visor in the local storage area and further relay the data to other
TSDBswhere such data is stored in the shared storage area. T his feature avoids that a TSDB becomes a single
pointof failure, but still enables quick access to local data. In order to keep network traffic between cloud providers
low, any TSDB will only selectother TSDBs running in the same cloud to replicate its data. Hence, this concludes
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to a ring-like topology that has been introduced in peer-to-peer systems [101] and is also used by distributed
databases [94].

EQP s%r%i‘.::)e'gv openstack
VM
Aggr.
[_‘ VM o Share(J Local
D m‘ TSDB TSDB
' + Tocal |_Shared A
Visor 1SDB TSDB 1-»—'

Home Domain Aggregator Visor
v
TSDB

Figure 28 - Distributed Monitoring Architecture

Thisapproach leads to an automated scaling ofthe monitoring infrastructure with the increasing amountof VMs as
the size of the TSDB cluster in each cloud grows with the amount of VMs. Therefore, the TSDB provides for
scalabilityand elasticity. As a first approach, KairosDB65 with Apache Cassandraas storage backendis employed
as the TSDB for all domains.

As the benchmarking results of section 4.2.2 have shown there are significant differences in the scalability and
elasticity of the analyzed distributed databases. As the current monitoring architecture is currently bound to one
specific TSDB, KairosDB, a more generic TSDB integration will be beneficial for the distributed monitoring
architecture. Abstracting specific T SDBs through a generic TSDB API will allow the usage of different T SDBs for
the respective aggregation level and the resulting requirements. Whereas on the host aggregation level a low
resource consumption is desirable (preferablein-memoryoperation), on the cloud aggregation level scalabilityand
elasticityare added to the requirements. For the global aggregation level, more complex aggregation functionalies
on the T SDB side are beneficial to support the aggregation component in the home domain.

Currently the design and implementation of such a generic TSDB abstraction layeris an ongoing process at UULM
with the focus on the scalability/elasticity capabilities of the T SDB storage backend and the actual aggregation
capabilities of the TSDB. Regarding the scalability/elasticity capabilities, the results of section 4.2.2 provide first
basic knowledge, which will be extended to more specific time series related benchmarks (cf. section 4.2.2.4).
Regarding the aggregation capabilities, an analysis of common TSDBs (cf. Table 10) has shown that basic
statistical operations like min, max, average, median, sum are widelysupported bythe T SDBs considered; however
the supportof more complex operations and the combination of multiple operations depends on the specific TSDB.
Further, the support of the automated reduction of outdated monitoring data and continuouslyrunning operations
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is only supported by a subset of TSDBs. T able 10 shows an architectural and feature comparison of four common
TSDBs.

Name KairosDB OpenTSDB InfluxDB Prometheus
Version 1.0.0 210 0.13 0.19.1
Datastore | H2 | 0N | ppache Hpase | PTOPTEV(SM Tree | Proprctany (e
Distributed No Yes Yes Yes No
Replication No Yes Yes Yes No
In-memory  Yes No No No Yes
Reduction No No Yes Yes
e O ombinatonof | operaions, e
operations processing

Table 10 - TSDB feature comparison

Thefirstversion ofthe T SDB abstraction layer will bring together the specific aggregation operations ofthe analysed
TSDBs in one API. This APl will be built in a modular way to provide an easy integration of further T SDBs. In
addition, the API will also integrate common NoSQL databases like Couchbase and use them as a TSDB. As
common NoSQL databases do not offer aggregation capabilities in the extent of T SDBs, the missing aggregation
capabilities have to be implemented in the abstraction layer.

4.2.4 FORTH Approach

FORTH has developed a distributed cross-layer monitoring framework [102] which is part of its overall cross-layer
adaptation framework. In the contextof this project, this framework is updated while a particular cross-layer quality
model has been devised. The latter quality model can be used for selecting those metrics that can be exploited to
form user/BPaaS requirements as well as for explicating the way metrics can be computedin the same as well as
across different layers. Both contributions are now shortly analysed in the following two sub-sections.

The cross-layer monitoring framework of FORTH was designed mainlyto cover all layers and be able to exploit
cross-layer quality models. Its mainidea was that measurements at different layers are encapsulated by sensors
attached to respective layer-specific components and that these measurements are stored in a highly efficient
complexevent processing engine like Esper. Then, this event processing engine could take care of aggregations
and enforcing the respective cross-layer dependencies. As measurements directly map to events if their value is
compared to conditions, the event processing engine was also employed in order to notonly reportsimple butalso
complex event patterns that could be used to trigger corresponding adaptation rules. For this kind of reporting, a
publish-subscribe mechanismis used to also enable the distribution of the adaptation functionalityenabling different
instances of an adaptation engine to subscribe to different partitions of events. For example, a particularinstance
of an adaptation engine could focus only on rules involving events covering the security aspect.
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While the original version of the framework was able to enforce measurabilityvia the respective cross-layer quality
model exploited along with the respective sensing mechanisms deployed, its architecture was considered simple
and not fault-tolerantin the sense that the event processing engine constituted a single-point-of-failure. In addition,
it did not focus on addressing layer-specific scalabilityaspects, thus actuallyprescribing onlya high-level coarse-
grained monitoring architecture. T o this end, in the context of this project, this architecture has been refined and
sucharefinementnow guides the update to the developmentofthe respective research monitoring prototype. This
refinement exactly attempts to address the shortcomings of the initial architecture.

First, the refined architecture does notinvolve a single point of failure. Thisis enabled by replicating components
as needed and where possible. Second, the architecture now considers layer-specific scalability aspects by
attempting to scale the monitoring system when needed as well as to replicate the information stored in order to be
more fault-tolerant. Third, the event production has been decoupled from the measurement aggregation while
measurement aggregation has become more focused by being applied only on the layer it maps to.

An overview of the architecture is provided in Figure 29 - T he logical architecture of FORTH's monitoring framework.
As itcanbe seen, the architecture is splitinto 5 main parts: (1) an event production and publishing part; (2-4) three
layer-specific parts focusing on the sensing and aggregation at the same layer; (5) a cross-layer dependencypart
facilitating the propagation of dependencies on the different layers. The event production and publishing part
retrieves the measurements from each layer via a publish-subscribe mechanism, assesses the respective
conditions and produces events thatare stored in an event database whichis replicatedbacked-up. This partrelies
onan event processing engine to produce complex eventpatterns. It also enables the retrieval ofall types of events
produced via a publish-subscribe mechanism.

The layer-specific parts have the freedom to exploitany kind of measurement database that can assist in the
respective storage and measurement aggregation. As such, the UULM effort over providing an API, which
integrates the functionalityof different T SDBs, could be quite advantageous here (See section4.2.3.4). Thus, both
TSDBs or complex eventprocessing engines could be used or any other kind of suitable database. Apart from the
measurementdatabase itself, each layer employs respective sensors as well as an aggregation componentthatis
able to aggregate the information produced by the sensors and being stored in the database. The implementation
of this component depends on the level of automation that exists in the respective database. In the case of a
complexeventprocessing engine, the role of this componentis limited. It could take the responsibilityto transform
sensormeasurements to events as well as to initiallyproduce and load the aggregation rules into the engine. Thus,
aggregationis more or less performed automaticallyby that engine. In case of a TSDB, this depends on the level
of automation offered by the respective implementation (See section4.2.3.4). In Kairos T SDB, for example, only
measurements can be stored and thus the aggregation functionalityhas to be totally performed by the aggregator.
In other T SDBs like InfluxDB, some aggregation mechanisms are in place so the aggregation could be moreor less
automated with few exceptions. In any case, we considerthatin some cases, the aggregation functionalitycan be
limited with respect to the aggregation functions that are available. In this sense, the aggregator will act as a
complementary counterpart that offers the missing aggregation functionality and has the responsibility to realise
the respective aggregationsthathave to be performed. Finally, we should note that each layer-specific partoffers
a publish-subscribe mechanismin order to propagate information to interested subscribers which can take the fom
of the event generation and publishing part and the cross-layer dependency part.

The cross-layer dependency part has the responsibility to subscribe to measurements of one or metrics and
propagate them to the respective layer-aspectpartby considering the QoS dependencies ofthe cross-layer quality
model. The propagation maps just to storing the respective measurement on the corresponding layer's
measurement database.
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Figure 29 - The logical architecture of FORTH's monitoring framework

On the physical level, the mapping of logical components to respective instances depends on the layer involved
and to the nature ofthe components. On the laaS layer, we take the view that monitoring is performed in an intrusive
manner by placing sensors over the user VMs in order to measure low-level metrics (similarto UULM approach -
see section4.2.3). These sensors then report measurements on measurementdatabases coupled with respective
aggregators. T he latter couple of components could be mapped to the physical level in two alternative ways. We
could have 2 (or even more) measurementdatabases and respective aggregatorsin so called ManagementVMs
that are placed in each cloud. In this sense, the aggregation overhead is splitbetween the aggregation components
and we enable arespective degree of replication betweenthe measurementdatabases. T his mappingleads to high
communication needs as each sensor is configured to report all measurements in a respective measurement
database. Another mapping approach is to have a more distributed architecture where the triangle of sensor,
measurement database and aggregator is deployed on each user/BPaaS VM. This of course creates some
overhead, which should not be significant, to the corresponding VM but has the main advantage that the main
sensing and aggregation logic pertaining to a specific VM stays mainlyon that VM and is not moved to other triangle
placements. Eachtriangle in a cloud can replicate some information on other triangles. However, this information
could be only specific to our analysis and aggregation needs, which can mean replicating only meaningful
measurements like aggregations over CPU metrics. This alternative mapping reduces the communication overhead
and can be controlled to exhibit different replication levels. T herefore, it seems to be more suitable than the first
one. In orderto caterfor the aggregation at a global level in the laa$S layer (e.g., to calculate average CPU in one
cloud or all clouds exploited by a BPaaS), enabling the computation of composite laaS metrics at the same or
across clous, the database-aggregator couple needs to be deployed in 2 VMs, one constituting the centralised
aggregation couple forthe layer and the other its back-up. To thisend, we enable the calculation ofthe composite
metrics via the replication of the relevant information produced in each cloud by storingit in the centralised level.
As such, we also enable to have a stable publish/subscribe mechanism, which can be offered to interested
components.

Concerning the SaaS layer, we actually have two main types of services, which can lead to different physical
deploymentoptions. External senices are out of control of the system. In this respect, they can only be measured
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when the Workflow Engine performs the respective calls. As such, it seems that their measurement could be
handled at the same place where a Workflow Engine is hosted. On the other hand, an internal service component
is placed on user/BPaaS VMs. In this respect, it coincides with such VMs and could be handled in a similarway. In
this respect, our proposal includes the following. Internal service measurements are handled by measurement
database of the user/BPaaS Vs and are produced by sensors, which are placed on those VMs. Thus, respective
aggregations can take place inside the same measurement database with respect to laaS metrics. As such, we
have one measurement database, different sensors (as they capture different type of information) and logically
speaking differentaggregators to split the aggregation functionalityand exploitthe advantages that multi-threading
provides. Concerning external service measurements, these can be handledbysensors thatare attached or placed
in the VMs hosting the Workflow Engine(s), which execute the BPaaS workflows. As we will see lateron, in these
VWs, a measurement database for workflow metrics as well as respective aggregator will be involved. Thus,
similarly to the case of the internal service measurement, the measurement database will be in common but the
sensing and aggregation functionality will be split.

Tohandle againthe global level at SaasS layer (e.g., to calculate mean response time ofa service over all BPaaS
workflow executions), we expectthat again we need 2 VMs. These VMs could be the same as those for the laaS
global level thus leading to the sharing of the measurementdatabase and the splitofaggregation functionality. The
same can hold for the global level at the WfaaS layer onlyin case workflows and tasks are shared between many
workflow engines and not just one.

Concerning the Wfaas layer, things seems to be similar. We deploy a triangle in each VM hosting a workflow
engine. Replication ofinformation between engines can take place to cater for the appropriate back-up/replication
of the information stored. T he overall physical deploymentarchitecture can be seenin Figure 30. As it can be seen,
there are as manyVMs as the number of user/BPaaS Vs and VMs hosting the workflow engines plus VMs catering
for the global and the event publishing levels (along with their respective back-up for the latter). As such, the extra
cost of monitoring is small, as we actually need only four additional VMs to cover the global level and the event
publishing one. In case the load at the global level is big, leading to a reduction of the respective aggregation or
evaluation performance, then new VWs could be deployed on demand with which a split of the respective
functionalitycould be achieved to better load balance the monitoring framework. Moreover, we need to stress that
the architecture is quite fault-tolerantin the sense that the global and reporting/evaluation level is backed-up.The
failure of a user/BPaaS or Workflow Engine VM will usually lead eitherto its re-start or the generation ofa new VM
by the adaptation BPaaS system/framework while the measurement data will not be lost as they will also be
replicated on other VMs.

A quality model is a specific ofa set of quality terms along with their relationships. Such qualityterms span quality
groups, attributes and metrics. Groups (e.g., performance) enable a specific partitioning of the term space, while
metrics (e.g., average response time) provide the necessary details in order to measure specific attributes (e.g.,
response time) of components (e.g., BPaaS, workflow, task, etc.). In this sense, a group encompasses various
terms, while an attribute can be measured byone or more metrics. Moreover, attributes can be composite or simple
mapping to more abstractor concrete properties. Attributes can also be measurable or not. In addition, metrics can
be raw or composite. Raw metrics (e.g., raw response time) can be directly measured from sensors or the
component's instrumentation system. On the other hand, composite metrics (e.g., mean response time) can be
computed by applying specific formulas (e.g., mean) over metrics, attributes or constants.
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Figure 30 - Physical architecture of the FORTH's cross-layer monitoring framework

Cloud 1

Based on the above analysis, it is apparentthat quality models actually explicate how measurements can be
performed either at the same or across different levels as they explicate how values obtained from sensors can be
aggregated in order to produce measurements in respective higher-levels. Quality models can be considered o
include metric derivation trees, which enable this kind of propagation. As such, quality models are the main
instruments to guarantee measurability.

Quality models can be specified at different layers of abstraction. Indeed, we have seen layer-specific quality
models proposed for the WfaaS, SaaS, PaaS and laaS layers. However, as they include relationships and
dependencies between qualityterms, they can also be used to guarantee cross-layer measurabilityby connecting
quality metrics defined at different abstraction layers. As such, cross-layer along with layer-specific qualitymodels
canleadto the production ofa global quality model that can guarantee the measurabilityacross all the layers that
are relevantin the context of BPaaS services.

Such a global quality model has been recently proposed by FORTH in the context of this project. Its overview is
depictedin Figure 31. Thismodel covers three main layers, WfaaS, SaaS and laaS, and includes a limited number
of dependencies among these layers, where some dependencies apply between WfaaS and SaaS and others
between SaaS and laaS. This model has been derived by considering the literature with respectto different layers
as well via the devising of new quality termsto coveraspects nottouched orimproperlyaddressedin the literature.
In the following, we shortly analyse the contentof this quality model foreach layer and then we explainin shortthe
nature of the cross-layer dependencies that have been defined.

Concerning the workflow layer, the quality terms have been split according to the quality groups of time, reliability
and cost. Foreach group, the terms defined map to both the workflow and task level. In many cases, metrics atthe
task level are used to compute similar metrics atthe workflow level. In this computation, the structure ofthe workflow
canplay a role (this has also been witnessed in service research where senice concretisation involves particular
aggregation formulas, which explicate the way the performance ofthe senice selected pereach task propagates
to the performance at the workflow or composite service level).
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Figure 31 - Overview of the cross-layer quality model

Time-based metrics involve the whole processing time of the workflow which can be splitinto the total execution
time and the total delay time (covering intra-task as well inter-task (transition) delays). Reliability metrics involve
attributes mapping to workflow availability, reliabilityand fidelity [103] as well as respective metrics able to measure
them (such as mean time between failures, MT BF). Special attention was putto definition of the fidelity metric that
assesses how wella component/service satisfies the requirements posed toiit. It has been decided thatthis metric
should be first computed independently between the two main levels, workflow and task, as the amount of
requirements posed on the latter level could be less than those on the former one (as focus is usually on overall
performance and notindividual one). Via this rationale, the workflow fidelity is c omputed bycheckingwhether a set
of measurements mapping to the execution history of a BPaaS workflow satisfy the requirements posed on that
workflow. The average measurementdegree of satisfaction is then computed to produce the overall fidelity value.
A similar procedure is followed for the task level where the focus is now on respective task requirements and
measurements only. In the future, fidelity computation formula couldbe slightlymodified to accountfor the age/time
of the measurements. Finally, cost metrics are proposed for both the workflow and task level. For the workflow
level, the costis computed from the cost of all the tasks involved plus the managementcostof the workflow. The
task cost is then split into cost concerning the services and resources exploited to support the respective task
execution.

Concerning the 1aaS layer, the respective terms have been grouped into the following 6 groups: networking,
utilisation, storage, bandwidth, scalabilityand elasticity. Networking metrics considered span packettransfer time
and mean packetloss frequencywhile utlisation metrics currentlyinclude statistical measures over CPU utilisation
for single or multi-core architectures. Utilisation metrics will be expanded towards covering the storage aspect
Storage metrics include speed of read and writing and RAM access time. Bandwidth metrics map to statistical
measures of bandwidth like maximum bandwidth. Scalability and elasticity metrics have been mainly drawn from
respective literature. Concerning elasticity, the metrics considered are the precision ofscaling [69] and the mean-
time-to-quality-repair (MTQR) [73]. Scalabilitymetrics on the other hand include [73] scalability range and speed.

The SaaS layer was covered by considering some state-of-the-art models [62], [64], [104]. T he following groups
areincluded: (a) performance, (b) stability, (c) scalabilityand (d) elasticity. Performance attributes include executon
time, response time and throughputwhere also the dependencies between some ofthem are also outlined. Some
of the metrics involved are also mapped to more fine-grained metrics that can be easily computed from sensors.
Stability is considered to cover both service ability to provide a certain level constantly as well as a stable interface.
It includes attributes like reliability and availability, which are measured by respective metrics like MTBF and raw
availability. Scalability maps mainlyto the metrics of scaling utilisation and precision while elasticity is associated
to metrics of mean-time-taken-to-react (MTTTR) and performance-scale-factor.
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The cross-layer dependencies currentlyconsidered are of the following nature: (a) similar metrics, which go from
the SaaS to the task level in the Wfaa$S layer. For instance, service response time directly mapsto the execution
time of aworkflow (service) task. As can be easilyunderstood, the metrics are similarand have amore orless one -
to-one directmapping butjustconcern differentlayers. It has to be noted, though, that this is an over-simplification
by assuming that each service task maps exactly o one service. However, in other case, one task couldmaptoa
composition of services. In this respect, we would then have to define a specific computation procedure similar to
one proposed to cover the gap between the task and workflow level for similar metrics like execution time. In this
respect, the task execution time would equal to the aggregated response time of the service composition which
would depend also on the structure of this composition; (b) similar mainlyelasticitymetrics thatgo from the laaS to
SaaS layer. Again, we have relied on an over-simplification to cover such dependencies butour main goal was to
identify the mapping and not formulate itin a respective computation formula. In this way, the MTTTR could be
equal to the scalabilityspeed depending also on the resources needed to be scaled (thus mapping to a one -to-one
mapping or a mapping that also depends on the amount of resource to be additionally reserved).

We acknowledge the fact the cross-layer dependency model is minimal. In addition, some aspects have been
neglected as well as layers. In this respect, the cross-layer quality model proposed will be expanded and this is
indicated in more detail in section 4.2.6.1.

4.2.5 Integration/Synergy of Approaches

The main idea for synergy of the two approaches that have been presented in the previous two sections is that
eachapproachfocuses on differentlayers and then there is a global layer covering the generation of the respective
events derived from these measurements. T he corresponding architecture of the proposed cross-layer synergic
approachis depictedin Figure 32. In this respectand byconsideringthe factthatthe laaS and PaaS layers generate
most of the monitoring load, it is advocated that the distributed monitoring architecture of UULM is exploited to
perform the monitoring at these layers by also employing a distributed T SDB which has been proven quite robust
in handling the respective huge amount of measurements that have to be stored and aggregated. Distribution in
this case is addressed by: (a) employing monitoring nodes on different clouds; (b) employing replication
mechanisms inside the architecture to address single point of failure.
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Figure 32 - Combined cross-layer monitoring architecture

On the other hand, by considering that the SaaS and Wfaa$S layers do not produce a heavy m onitoring load and
that the respective dependencies are well covered, the distributed monitoring of FORTH can be exploited.
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Distribution in this case is addressed by: (a) employing monitoring nodes atthe same hostor near Workflow Engine
instances with the rationale that mostof the monitoring is produced by these instances or sensors either attached
to them or exploiting log information provided by them; (b) employing similar redundancy mechanisms as in the
case of UULM framework application.

The integration itselfis confronted via employing publish/subscribe mechanisms between the differentframeworks
and of course considering the cross-layer metric models which highlighthow propagation canbe performed across
(all) layers. When one measurementatthe laaS or PaaS layer needs to be propagated to the SaaS or Wfaa$S layer,
then the monitoring framework of FORTH would have already subscribed to the metric mapping to this
measurement. In this sense, it will be able to refrieve it and proceed with the propagation/aggregation of the
monitoring information.

All monitoring events that map to SLOs or events in adaptation/scaling rule event patterns are reported on the
globallayer. Thismeansthatthe same propagation mechanisms can be employed also in this case. In particular,
the event consuming components of the global layer subscribe to metrics, which are involved in the conditions of
the events that need to be generated and stored for further analysis and more composite assessment. The event
assessmentcan proceed based on the approach of UULM as reportedin section4.3.2.1. Replicationis enforced
also for this layer, mainlyin terms of the event database being exploited in order to address the single point of
failureissues. The global layeris the part of the architecture thatcommunicates with the rest of the componentsin
the Execution Environment. T o enable such communication, again the publish-subscribe mechanism is employed
with the sole exception thatnow the reporting/publishing concentrates on events and not measurements of metrics.

4.2.6 FutureResearch

The cross-layer quality model (see section 4.2.4) from FORTH still needs some expansion as cross-layer
dependencies must be enriched to cover additional metric dependencies in different layers while the Paa$S layer
must also be covered. In parallel to this expansion, the model must be fully specified in a quality specificaton
language, such as OWL-Q, CAMEL or a combination of these languages. OWL-Q is supported by FORTH's
monitoring framework while CAMEL by UULM's monitoring framework. As such, we foresee that OWL-Q is mainly
used and then its specifications are transformed, when needed, to produce CAMEL specifications to be exploited
by the UULM monitoring framework. Such transformationwill be semantics preserving and lossless as OWL -Q and
CAMEL are more or less compatible and we foresee including semantic annotations (in OWL-Q) in CAMEL (see
section 2.2).

The cross-layer quality model needs to be exploited by the monitoring framework via realising those leaf-level
metrics that can guarantee that measurability of the whole quality model hierarchy. For this realisation, sensors
should be developed for such metricsand be embedded in the respective monitoring frameworks proposed such
that they can then be attached to those components that need to be measured. Such realisation canrelyon re-
using and possibly extending existing tools and mechanisms.

Some qualitydependencies mightbe BPaaS-specific so theycan take a differentform depending on the respective
BPaaS and the corresponding infrastructure on which this BPaaS is deployed. As such, there should be
mechanisms in place to derive such dependencies according to the current BPaaS and its context. Such
mechanisms are actually covered by the research direction detailed in section 3.5.3.
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The approach highlighted in section 4.2.5 is still in development. Therefore, it might be modified and adjusted
accordingly. In addition, this approach needs to be thoroughly evaluated to check its ability to satisfy respective
monitoring requirements covering aspects like measurementand eventaccuracy, measurementtimeliness, as well
as the performance and scalability. Such an evaluation couldbe used as a further feedback to adaptthe framework
that could also lead to a great degree of state-of-the-art advancement. We believe that this synergic approach will
lead to a successful research outcome that could result in common publications and could be adopted by the
CloudSocket implementation prototype.

As indicatedin the introduction of section 4.2, any monitoring framework should be robust and flexible to address
different situation types, whether foreseen or unexpected. As such, the monitoring frameworks proposed mustbe
able to adapt themselves to address such situations. Such adaptation could involve scaling the framework to
address additional load, replacing failing nodes with back-up ones, creating the necessary redundancyor even
modifying the measurementfrequency, if this is allowed based on the requirements posed, to be able to address
the increased monitoring load. Based on the above, research has to be performed resulting in appropriate
architectures and methods which appropriately organise the monitoring framework, explicate the way re-
organisation can be performed and include smart structures and redundancy mechanisms to guarantee system
robustness. For instance, service-oriented architectures could be exploited along with respective adaptation
mechanisms proposed for service-based applications and systems to enable the monitoring frameworks to become
self-adaptive and robust.

4.3 Adaptation

The capabilityof a service-based system to adapt itself when critical situations occuris of crucial importanceand
has a major effect on the gains of a service provider as well as its reputation. For instance, if a senice provider
provides an unreliable service thatconstantlyviolates its SLAs, then it is quite possible thatthe gains ofthis provider
will be reduced due to SLA penalties as well as due to a reduction in its market share because of customer
dissatisfaction and reputationdecrease. Maintaining an SLAis notan easybusiness especiallyifa service is offered
indynamic environments. T his requires sophisticated monitoring and adaptation mechanisms thatare able to even
detectwhen a problem (i.e., a SLO violation) will happen and then perform respective actions to prevent it. By
focusing on adaptation and the contextof BPaaS, it is apparentthat in the offering of a BPaaS m ay different layers
areinvolved including differenttypes of BPaaS components thatcould fail in a functional or non -functional manner.
Such a failure can sometimes occur either concurrentlyor an ordered mannereven across different layers. In this
respect, even if layer-specific mechanisms are in place to handle a specific failure or fault, if these mechanisms are
not coordinated in a cross-layer manner, then the desired adaptation effects will not be achieved. On the contrary,
it is highly probable that either similar actions are used to alleviate the problem or event conflicting ones, where
one action diminishes the effectof the previous one. Tothisend, there is a need to develop cross-layer adaptation
systems that can coordinate the layer-specificlogicin a suitable manner. By focusing on this issue, we first analyse
the state-of-the-art for specific layers as well as for cross-layer adaptation and then we analyse the respective
research approaches that have been proposed by two mainresearch partnersin the project, UULM and FORTH.
As each approachseems to have a differentfocus, a synergy ofthe approaches is also proposed whichwill certainly
lead to jointresearch results. Finally, we conclude with interesting research directions thatmightbe followed in the
next project period that can possibly lead to research results, which are incarnated in the next version of this
deliverable.
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4.3.1 State ofthe Art

The need for monitoring different functional and non-functional requirements, as well as for taking adaptation
actions is widely recognized by industry and academia, as a means of improving Senice -based Applications
(SBAs). In recentyears, acouple ofapproaches towards monitoring and adaptation of SBAs have been proposed.
The aim of this subsection is to analyze these approaches, especially the ones featuring cross-layer and Cloud
aspects, and present their main drawbacks. Our focusis on approaches, which deal with both service monitoring
and adaptation as these processes are usuallycoupled in a specific framework or system. Pure service monitoring
approaches have been analysed in 4.2.1.2.

The authors in [102] present an approach for self-healing of BPEL processes. This approachis based on the
Dynamo [105] monitoring framework along with an AOP extension of ActiveBPEL and a monitoring and recovery
subsystem using Drools Event-Condition-Action (ECA) rules. A composition designer provides assertions for
invoking, receiving or pickingactivities in the business process. Theseassertions can be specified using two domain
specific languages (WSCoL and WSReL). The problem of selecting alternative services and dealing with possible
interface mismatches when forwarding a request to an alternative endpoint recovery is not explicitly addressed.
Additionally, the recovery rules cannot be changed dynamically, as they need to be compiled offline.

The VieDAME environment [75] extends the ActiveBPEL engine to enable BPEL process monitoring and parter
senvice substitution based on various strategies. The services are selected according to defined selectors.
VieDAME requires senvice registration to a repository, marking senices to be monitored and eventuallysubstituted
as replaceable. It uses an engine adapter to extend the engine’s functionality, but does not explicitlyaddress fault
handling.

The authors in [106] introduce an architecture and a DSL, named MONINA (Monitoring, Integration, Adaptation),
that allow to integrate functionality provided by different components and to define monitoring and adaptation
functionality. It is similar to FORTH approach, as monitoring is carried out by complex-event processing queries,
while adaptation is performed by condition action rules performed. However, it differentiates regarding its scope,
which aimsatthe specification of platformsintegrated into a Virtual Service Platform (VSP) that provides a unified
view on the functionalityof the integrated service platforms that are connected by control interfaces. In addition, it
lacks cross-layer and multi-cloud features, as well as experimental analysis of the implemented approach.

43111 Cross-Layer Approaches

In [107]the authors propose a methodologyfor the dynamic and flexible adaptation of multi-layer applications using
adaptation templates and taxonomies of adaptation mismatches. Templates are exposed as executable BPEL
processes that may encapsulate adaptation techniques. T he template developers are in charge of associating the
templates they develop with adaptation mismatches based on the types of mismatches they can cope with. For
eachapplication layer,one or more taxonomies of adaptation mismatches, whichmayeither be generic or contain
domain information for particular application domains. T he authors use tree-based taxonomies and is-a relationship
between children and parent mismatches, as well as for the scaled degree of matching between adaptation
mismatches. The cross-layer dimension of this approach is achieved by linking adaptation templates,
corresponding to layers where adaptation is needed, either directly or indirectly. In the former case, a BPEL
adaptation template invokes the WSDL interface of another BPEL adaptation template. In the latter case,a BPEL
adaptation template raises an event that will trigger the selection, deploymentand execution ofanother adaptation
template. This can be achieved by using standard BPEL activities that are invoked to generate events and receiwe
or pick branches to receive events. Within each layer, the authors assume the availability of several adaptation
templates, some of which are linked and which are associated with different taxonomy mismatches.
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In [108]the authors presentan integrated approach for monitoring and adapting multi-layered SBAs. T his approach
is based on a variant of MAPE control loops thatare typical found in autonomic systems. All the steps in the control
loop acknowledge the multi-faceted nature of the system, ensuring that they always reason holisticallyand adapt
the system in a cross-layered and coordinated way. The proposed methodology comprises four main steps: (i)
Monitoring and Correlation, where sensors capture run-time data aboutthe software and infrastructural elements,
(ii) Analysis of Adaptation Needs, in which the framework identifies anomalous situations and pinpoints where it
needsto adapt, (iii) Identification of Multi-layer Adaptation Strategies, in which the framework uses the adaptation
capabilities that exist within the system to define a multi-layer adaptation strategy as a set of software and/or
infrastructure adaptation actions; and (iv) Adaptation Enactment, where differentadaptation engines atthe software
and infrastructure layer enacttheir corresponding parts of the multi-layer strategy. T his approach comprises a set
of mechanisms to provide multi-layer monitoring and adaptation. Its main drawback is that it does not feature
proactive adaptation capabilities. In addition, it does not provide in detail how cross-layer monitoring is performed
in which the various events are synchronized.

Finally,[109] proposes a holistic SBA managementframework, called CLAM, which can deal with cross-and mult-
layer adaptation problems. Thisis achieved in two ways. On the one hand, CLAM identifies the applicaon
capabilities affectedbythe adaptation actions and on the other hand, it identifies an adaptation strategy that solves
the adaptation problem by properly coordinating a set of specific adaptation capabilities. T his work addresses the
cross-layer adaptation problem. The tree-based approach for defining adaptation paths seems very interesting
althoughit can be time-consuming. In addition, during the ranking process of the adaptation branches, costis not
taken into consideration. Adrawback ofthis approach is thatitdoes notelaborate on cross-layer monitoring. Finally,
this approach has neither proactive adaptation, nor functional aspects handling capabilities.

As presented in the previous chapter, adaptation efforts mainlyon detecting a critical situations and the target state.
The description of this state transition mostly unclear or simplified. Cloudiator targets to be open for various
approaches thatis why its adaptation component Axe is not tied to a specific language.

In other Cloud orchestration tools such as Apache Brooklyn the rules are simple threshold-based on single metrics.
Any more complexrules orevent patterns have to be defined and implemented in an external monitoring tool. Axe
goesbeyond this, as it provides an integrated and easy-to-use solution that even allows changes of the scalability
configuration at runtime.

Several projects deal with integrated auto-scaling mechanisms for cloud services. One of them is the EU project
CELARS, The language SYBL that specifies elasticity in terms of monitoring, constraints and strategies in multi-
level approach describes the adaptation. There are just a few predefined strategy actions, e.g. scalein and scale
out, but with the possibility of the specification of user-defined strategies in terms of scripts, which can be called
with parameters in a SYBL elasticity description. This is an interesting use-case for Axe, but in respect of
CloudSocket, we will aim for an approach thatincludes (i) a more sophisticated workflow ofthe actions, and (ii) an
awareness of the success of the operation to be able to define fallback strategies, that should lead to a lower
violation rate of SLAs.

Bracevac et al. [110] propose the Cloud Platform Language (CPL) that unifies the programming of deployments
and applications into a single language as opposed to current provider- and domain-specifc languages as e.g.
CloudFormation. The adaptation plans that the Cloud Provider Engine will be capable of should be able to cover
the main semantics in which the CPL describes such activities: server spawn, snapshot, image replacement,
migration and parallelism.
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In the EPICS EU project, Chen etal.[111] propose to have the auto-scaling system in a self-aware and the decision-
making in a distributed way. This means to include the utilization of other services into the own local decision
process. Modelling the impactofa scaling actionon to the other components, mayinfluence the actual auto-scaling
process, e.g. if the replication of a component would heavily increase the communication between another
component, the adaptation plan would in this case migrate the latter componentto a location near the other
component. In addition, the auto-scaling process should be aware of the targeted goal and in case of an opposite
results, e.g. undo the scaling action. Another pointis the awareness of the interaction, such as that e.g. a scaling
action that destroys componentx is not executed simultaneouslyto a scaling action that replicates componentx.
This awareness should be reflected in the adaptation plans that can be specified in the terms of CloudSocket, in
order to assure having less SLO violations.

The OASIS TOSCA standard defines the Cloud applications structure as topology and its management as
workflows, so called plans. TOSCArelies on existing languages like BPMN or BPEL to describe those workflows.
Kopp et al. [112] propose extensions to BPMN, called BPMN4TOSCA, in order to cater for Cloud-specific tasks
and data objects, that eases the use of the language for application modeller. Selecting user-defined actions and
allowing specifying branches and gateways for the adaptation plan, is also necessary Adaptation Engine in
CloudSocket. Importantfor CloudSocketis, among the other key benefits of such an workflow approach [113], to
be able to cater for fault-handling, and parallelism. Both are crucial for a financially successful and efficient
deployment.

The ScalabilityRule Language (SRL) was developed in the course of the PaaSage EU projectin orderto specify
the elasticity behaviour of an application. Concerning the adaptation plan,a scaling rule triggers the execution of
an unordered setof scaling actions. T his will be improved in the course of the CloudSocket project.

4.3.2 UULM Approach

The adaptation approach of UULM focuses on the auto-scaling of services in a multi-cloud context. As monitoring
and adaptation are complementary functionalities, the UULM approach relies on functionalities provided by the
Cloud Provider Engine and the UULM monitoringapproach. T he adaptation framework, namely AXE, is part of the
Cloudiator Framework (cf. Figure 19) and processes the aggregated monitoring data (cf. Table 9) of the UULM
monitoring approach to enable its auto-scaling capabilities.

UULM'’s adaptation approach AXE® is the first implementation of the Scalability Rule Language (SRL) [4] The
conceptof SRL was developed in the PaaSage project,amongstothersby FORTHand UULM. SRL s a provider -
agnostic description language. It provides expressions to define the monitoring raw metric values from VMs and
componentinstances and mechanisms to compose higher-level metrics from raw metrics. Moreover, it comprises
mechanisms to express events and event patterns on metrics and metric values. Finally, SRL captures thresholds
on the events and actions to be executed when thresholds are violated. A simple SRL rule in prose may be: add a
new instance of this distributed database if (i) all instances have a 5 minute average CPU load > 60%, (ii) at least
one instance has a 1 minute average CPU load > 85%, and (iii) the total number of instances is < 6.

Auto-scaling can be categorised in different classes [114] . SRL, used by AXE, mainly belongs to the threshold-
based rules as well as time series analysis class. SRL links a set of threshold-based conditions with each other
using binary operators. In addition, any set of thresholds can be linked to the values produced by the metrics. So
far, Axe supports the triggering of scale out and scale in actions over application components. Yet, the
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implementation of further actions, like migration, is an ongoing process. The triggering of rules leads to an
invocation of the Cloudiator functionality to bring up a new or shut down an existing VM.

The auto-scaling functionality of AXE builds on top of the monitoring capabilities (cf. section 4.2.3). In particular,
any of the conditions connected via Boolean operators is considered a metric on its own taking the values 0 or 1.
When the metric value equals to 1, the respective action will be triggered and forwarded as request to the other
Cloudiator tools, in particular Colosseum (cf. section 4.1.2). These tasks are executed by the Scaling Engine
component.

The Scaling Engine (cf. Figure 19) is the central managing environment of AXE that controls the distribution and
outsourcing of the computation-heavy work to highly scalable and loosely coupled components, the Aggregators.
Nevertheless, itis possible to scale the Scaling Engine up to having one instance per scaling rule.

As already mentioned, the Cloud Provider Engine employs the AXE tool of Cloudiator, which implemented the SRL
and therefore was in the integral state only capable of execution a set of scaling action, defined as scale up and
down, but not the execution of more complex, user-defined workflows.

As seen before, adaptation plans are necessary to realize more complex workflows for highly dynamic and
distributed applications. T hisis of great importance for CloudSocketas the target group are the SMEs. Theyneed
to benefit of a lightweight IT resource management, as the business process of such an SME lead to very short-
term, dynamic workflows, the resources consumptionhas to be aligned with this business strategy. In order to allow
such plans, we extend the current adaptation engine in Cloudiator by the following adaptation items.

The adaptation actions can now be defined as a sequence, i.e. each action has a specified order in which the
engine will execute it. This caters also for parallelism; since an action can'tbe executed before, the connected
previous actions are finished. An action can be attached to an alternative plan, in case it failed. By that, it is
possible to change the strategy on run-time. In case no alternative is available, the whole workflow will be rolled
backand an error s propagated to the administration. Cool-down interval, migration and user-defined scripts extend
the types of actions. T he cool-downis the time; the rule engine waits until going over to the next action. Conceming
migration, also the life-cycle model has to be extended by import and export action, which have to be implemented
by the user. The return value of export is the input parameter of import, in terms of a URI. The Colosseum wil
provide the means of storing data from the entity that exports its data and therefore the URI will link to the home
domain of Cloudiator. Still, this is not a fully automatic approach, as the user has to implement the respective
actions. The same applies to the user-defined scripts thatcan be associated to an action ofthe adaptation plan. By
this, it will be possible to have very specific configurations ofthe Cloud application thatare handled throughoutall
the deployments in an automatic way. The adaptation part of the currentinterface of the Cloud Provider Engine
enablesthat scaling actions as well as adaptation plans can be directly executed and notonly by attachingitto a
certain condition (threshold to monitoring data). T his allows having a convenientmanagementof the scaling also
by third-party tools. Adaptation plans, that might block each other, are not executed simultaneously. For this, the
highly distributed AXE instances will be aware of the on-going activities in other instances. Concerning service
substitution, itis possible to change the communicationofa componenttowards another component, which results
in an extension of the life-cycle actions by a wiring command, which can be called independentlyin an adaptation
plan.

Figure 33 shows an example adaptation plan that verticallyscales up a component x, but before that it horizontally
scales out the same component in order to have no downtime due to the restarting of the vertically scaled
component. This might be necessary, if the user has a very strict SLA concerning downtime. It also shows an
alternative plan that, in case the scaling failed, describes the substitution of the service (represented by component
x) with another one (here on component z) that is hosted somewhere else and already running. T his can be the
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case if two senices are capable of the same functionality but logically separated for some reasons, e.g. avoid
overload or justa componentto enable fault-tolerance. In this example component yis for a short time connected
to component z, while component x is scaled up.
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Figure 33 - Example of an adaptation plan with component scaling and short-term service substitution

The concept of adaptation plans is currently work in progress for which the theoretical basis was achieved and
worked into the model entities of Cloudiator and later in CAMEL. The implementation and feasibility check is
scheduled for the upcoming period of CloudSocket.

4.3.3 FORTH Approach

As already mentionedin section 4.2.4, FORTH has developed a cross-layer monitoring and adaptation framework
[99, 114]. By focusing on adaptation, the framework's architecture can be seenin Figure 34. T his architecturehas
been adopted in the context of this project. It comprises mainly seven main components: (a) Rule Engine, (b)
Adaptation Engine, (c) Transformer, (d) Rule Derivator and (e-g) layer-specific senices (for WFaaS, SaaS, and
laasS layers). The Rule Engine is responsible for detecting whichadaptationrules are fired based on the events that
have been delivered from the Monitoring Engine. These adaptation rules currently take the form of a mapping
between event pattern names to names of adaptation strategies and are specified via the Drools respective
language, as Drools is the implementation technology behind this engine. In case two or more rules are fireable,
the currentpractice is to selectthe one with the highestpriority. Such practice could be modified in the near future
to more dynamically select the best possible alternative accordingto the current context. Once the respective
adaptation strategy name is identified, then the Adaptation Engine, being a normal Workflow Engine with additional
capabilities, isinvoked with that name in order to create a specific adaptation workflow instance and execute it. In
this sense, there is a fixed mapping between adaptation strategynames and adaptation workflow descriptions. The
respective workflow comprises tasks, which map to specific adaptation actions that are layer-specific and map to
specific layer-specific services, which deliver the adaptation functionalityin each layer. It is the job of the workflow
modeller to know which adaptation actions are currentlyinvolved in the system/framework in order to specify the
respective workflow by mapping the corresponding tasks to those services or pieces of software code that map to
these actions.
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Figure 34 - FORTH's Adaptation Framework

Following the above analysis, there is a need for a set of adaptation senvices that include the respective adaptation
actions needed. In this respect, as the Cloud Provider Engine could be seen as a service, it could be involved in
order to perform adaptation actions atthe laasS layer (like scaling or migration ones). Apart from these seniices,
sometimes there will also be a need to include adaptationsoftware code into the Adaptation Engine to be involved
in respective automated adaptation workflow tasks. T his code is notdepicted in Figure 34 as itis considered intemal
to the Adaptation Engine.

The mapping betweeneventpatterns and adaptation strategies s derived in a semi-automatic manner byfollowing
a logic-based event pattern discovery approach [118] over the execution history of the BPaaS workflow. This
approachisencapsulated in the Rule Derivator. In particular, by considering a set of SLOs that musthold for the
BPaaS workflow, the Rule Derivator attempts to find those event patterns thatlead to the violation of one or more
of these SLOs. As soon as new event patterns are discovered, they are mapped to specific adaptation strategies
that need to be performed to alleviate the respective SLO violations. Such strategies are derived in a semi-
automatic manner via simple adaptation rules that are manually provided by the expert. These simple rules take
the form of a mapping between single events to one adaptation action to be perform to address it. Then, by
considering the set of events included in the respective event pattern discovered, the corresponding adaptation
actions mapping to these events are combined in orderto produce the relevant adaptation strategy. The space of
possible action combinations can be filtered by knowing which actions have similar effects or contradictory ones
and which actions can be parallelised or executed only in sequence. In the end, actually a set of adaptation
strategies are derived, as workflows of adaptation actions, thatneed to be selected in order to specify the more
complex adaptation rule. The selection currently mainly relies on considering the priorities put on the simple
adaptation rules from which the more complex candidate ones have been derived. The candidate adaptation rule
with the highestmultiplication ofinvolved priorities is selected. Please note that apartfrom the final generation and
modelling of the complex adaptation rule, the respective workflow has to be constructed mapping to its name. In
this respect, the internal structure of the adaptation strategy, as produced from the Rule Derivator, has to be
automatically transformed into a workflow. This is actually done by the Transformer.
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4.3.4 Integration/Synergy of Approaches

By considering the analysis of the two adaptation approaches in the previous two sections, we regard that these
approaches are more orless complementary. In fact, one of the approach could be considered as partof the other.
In particular, as the Cloud Provider Engine currently covers the laaS layer and the performance of scaling plus
migration actions on this layer, then it can be considered as a composite service that offers the respective
adaptation functionalityin this layer. By following then the approach of FORTH, we could exploitthis service along
with others provided in the rest of the layers in order to completely cover complex adaptation scenarios cross all
the possible layers.

Toenable this composition ofapproaches, the Cloud Provider Engine should be offered as a senvice that needs to
expose the respective adaptation functionality. The current prototype of FORTH does not need to be heavily
modified apart from the fact that it also needs to be offered as a senvice that could be exploited by a BPaaS
Execution Environment. However, also other details need to be fixed which can have an effect on the respective
prototype implementation code. Section 2.4.1 highlights the need for introducing a specific adaptation rule DSL as
asub-DSL of CAMEL which will enable the specification of the cross-layer adaptation behaviour to handle advanced
adaptation scenarios. As such, once this extensionisin place, itwill have to be adapted bythe adaptation approach
of FORTH. One thoughtof how this could be performed would be to modify the Rule Engine in orderto be able to
process CAMEL adaptation rules. Here we have mainlytwo possibilities: (a) the Rule Engine implementation is
modified - for instance, itcould be argued thatthere is no need for an actual rule engine butfora system which can
identify which rules are triggered based on specific events. Different techniques could then be exploited like the
onesemployed by the UULM approach in the case of scaling rule triggering; (b) the Rule Engine implementationis
not modified but an additional component is added in the overall architecture responsible for translating CAMEL
adaptation rules to Drools rules. Apart from possibly adapting the Rule Engine, the Transformer mightalso need o
be adapted suchthatitis able to transform the action partsin the CAMEL adaptation rules to respective adaptation
workflows.

4.3.5 Futureresearch

Apart from the pending combination of FORTH and UULM adaptation approaches to covera complete cross-layer
BPaaS adaptation, there are also certain research directions thatare worth investigating, followed and implemented
in the respective research prototypes. These directions are analysed in the following sub-sections.

A system may not have stable adaptation capabilities. Systems evolve and respective capabilities have to be
updated and expanded. As such, by considering the case of adaptation workflows, it is better not to be fixed but
dynamicallyderived on demand, when the need to perform the respective adaptation is raised, basedon the current
adaptation capabilities of the system. In this sense, the same adaptation rule can be realised in different ways at
different time points and different realisations mightlead to better adaptation performance. Performance does
matter as the longer an adaptation workflow takes to finish, the higher is the risk that the respective adaptation
actions are not performed in time such that the corresponding SLO violation is avoided.

Concerning the way the abstractto concrete adaptation workflow concretisation can be achieved, the same logic
can be followed as in the case for abstract BPaaS workflow allocation via exploiting semantics to accurately
discover those actions that map to a certain adaptation workflow task. Moreover, the same techniques as in
(composite) service concretisation can be exploited to select the best alternatives for each workflow task in order
to satisfy global quality constraints overall adaptation workflow.
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While the priority ofan adaptation action over the handling of a specific eventcan enable the respective composition
of actionsto formulate an adaptation strategy, it still mapsto a subjective approach as such priorities are given by
the rule expert and can reflect only common situations. In this sense, a more dynamic approach mustbe followed
which handles the cold start problem via the originalapproach butthen dynamicallymodifies the adaptation strategy
selection decisions according to actual runtime/execution knowledge. For example, if one adaptation strategy
consistentlyfails to remedy the problem (e.g., a SLO violation) to be solved, then an alternative strategy needsto
be employed. Moreover, byconsidering individual actions in each strategy, similar derivations canbe reachedabout
which individual actions should be preferred over the others. As such, by following the execution knowledge, the
system reaches more optimal points, whichenableitto better address the various problematic situations that occur
or are aboutto occur. Relevant work on this subjectincludes [88], which could be adopted in the context of the
project and the respective frameworks that are exploited.

Toaddress complexadaptation situationsin a cross-layer manner, respective adaptation functionalityin each layer
mustbe in place. T hus, there is a need to equip the adaptation system with a collection of such functionalities and
advance research over particular types of functionalities. For example, while horizontal scalingis well supported by
both existing research and commercial prototypes, this is not the case for stateful componentmigration. As such,
the research work currently performed in UULM attempts to address this kind of migration for specific types of
stateful components, i.e., databases, is a very nice starting point.

Concerning the SaaS level, existing functionality delivered by FORTH already exists including components
supporting dynamic senice discovery and functional as well as non-functional service composition. Such
components could then be easilyoffered as a service and included in the respective combined adaptation system.
Some of these components mightneed to be slightly updated, e.g., the service composition to adapt just a part of
a currently running workflow and not the whole workflow.

Concerning the WfaaS level, research work, to be adopted, has focused on addressing mainly the instance
migration problem. However, the workflow re-composition problem should be also addressed as is relevant in
different cases: (a) critical service functionality mapping to one or more tasks ceases to exist; (b) non-functional
requirements are changed and this leads to no possibility for concretising the current structure of the workflow.
Similarprinciples asin service re-composition could applybutthe issue here is that we are dealing with a different
level with each own peculiarities. Fortunately, the same or similar problems asin the determination ofan abstract
workflow in the context of a BPaaS also apply here.

Copyright © 2016 UULM and other members ofthe CloudSocket Consortium
www cloudsocket.eu Page 101 of 118



Copyright © 2016 UULM and other members ofthe CloudSocket Consortium
www .cloudsocket.eu Page 102 of 118



5 INTERACTION WITH OTHER ENVIRONMENTS

5.1 Required Input

The previous sections have shed light on particularresearch items or approaches thathave been mainly pursued
by the research partners of this project. However, these approaches or items require particular forms of input in
order to function as expected. In the sequel, we focus on each of the items and indicate the kind of input that is
required from those environments that map either to a phase before the allocation one (i.e., the Design
Environment) or to cross-environment functionality (like the registries offered by the Marketplace).

Smart service discovery and functional composition. As indicated in section 3.2, the respective algorithms proposed
work over OWL-S and OWL-Q semantic functional and non-functional specifications, respectively. However, they
could be modified to obtain respective input from a semantic or semantically annotated service repository. In this
case, the majorissue here is to have some sorts of semantics thataccompanythe description of services whichever
is the place on which these descriptions are stored. In this sense, what is actuallyexpected from these algorithms
is a semantically-enhanced service repository which can then exploitin order to produce theirown structures that
assistin the speed-up of the service discovery and composition processes.

Non-Functional Service Composition/ Concretisation. The respective algorithm needs to have a semantically
annotated workflow structure covering all possible requirements posed over this structure. These semantic
annotations are needed for service discovery purposes, i.e., to discover those senvices that functionallyand non-
functionally match a particular workflow task. Theyare also needed in order to properly format the optimisation
problem on which the senice concretisation algorithm relies. As alreadyindicated in the previous paragraph, the
respective senvice discovery and composition algorithms could function even in the non-presence of specific
semantic service description formalisms. However, there is a need to deliver a formalism which enables the
semantic annotation of BPaaS workflows in a global and local (task) level. Such an annotation can rely on the
different annotation mechanisms asindicated in D3.1. The respective tools support to produce these annotations
is already in place as indicated in D3.2 (with the sole exception of OWL-Q annotations that are still not possible).
Functional annotations should relyon the use of domain concepts while non-functional annotations should rely on
the use of semantic quality models which need to be specified via OWL-Q. Please note that these annotations
should concern the technical and notthe business level. T his means that, for instance, non-functional annotations
can refer to more technical quality terms rather than business ones (e.g., workflow processing time instead of
business process duration - while it is apparentin this case that the latter is equal to the former). T hisis suitable in
order to be able not only to perform BPaaS workflow concretisation butalso assist in the specification of SLAs as
well as for the subsequent BPaaS workflow monitoring. Concerning functional annotations, different ontologies
mightbe involved with respectto the businesslevel. In particular, a business process model can be annotated via
concepts representing business objects while a workflow model should be annotated via concepts representng
more technical concepts.

Monitoring Approaches. Semantic annotation on technical non-functional requirements should be in place. T hisis
exactly whatis also demanded bythe previous algorithm. The mainissue, however, here is the compositionality of
the qualityterms as this enhances the monitorabilityofthe requirements. In particular, while technical requirements
at the workflow level caninclude high-level quality terms like metrics, there should be a way to decompose these
termsinto terms that can be computedin case thata sensor is not available for the measurementof the high-lewel
quality term. To assistin this matter, it is suitable to have a semantic metric repository/registry, relying on OWL-Q,
via which high-level qualityterms are completelydefined, includingthe ways that they can be computed from lower-
level metrics. Apart from this, in terms of technical requirements that are specified via CAMEL, we need to stress
here the need to enable semantic annotations on the CAMEL's metric meta-model. This can be of course
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considered as an internal (based on the context of this deliverable) input requirement thatis demanded by the
Execution Environment and has to be provided by the Allocation Environment.

Deployment Plus Adaptation Approaches. Both deployment and adaptation need to benefit from existing
deployment/selection and adaptation rules thatare provided by experts. Such rules could be based on a high-lewel
specificationlanguage like DMN and be provided by the Design to the Allocation Environment. T hen, by following
the approach sketched in section 3.4, DMN specifications can be mapped to adaptation rules specified in CAMEL
as well as to deploymentknowledge (rules) that can assist in the production ofthe most suitable deploymentplan.
While not yet explicated, deployment rules could be specifiedin CAMEL or via any other formalism. They could
also lead to a small extension of the BPaaS workflow concretisation algorithm in order to transform them info
respective constraints ofthe optimisation problemto be solved. However, another use for them would be to enable
more dynamic deployment scenarios where some deployment logic is not concretely specified in the deployment
plan but has to be concretised during deployment by the Cloud Provider Engine.

Deployment Approach. T he Cloud Provider Engine requires the existence of a service registry which can indicate
the senvices available at the laaS and PaaS layers. Such a registry could be exploited to drive the dynamic
deploymentbehaviour based on the aforementioned scenariosin the previous paragraph. Moreover, it could also
be the case that the deployment plan refers to respective entries of this registry from which the Cloud Provider
Engine will obtain information that can support the instantiation of the respective components (software or VM).
This would lead to a more lightweight approach in deployment plan specification.

5.2 Exploitable Output

Based on the currentlogicalinteraction order between the differentenvironments, it is apparentthat the Allocation
Environmentproduces outputthatis mainlyexploited by the Execution Environmentin aindirectmanner (i.e., after
the purchase of a specific bundle). However, there is an additional case which needs to be accounted. This
concerns the fact that the Allocation Environment would not be able to define a BPaaS bundle out of a specific
corresponding design package due to various technical reasons. These can include: (a) over-constrained
requirements at the business level that cannot be satisfied at the technical level (e.g., performance requirements
not met by any service composition); (b) missing technical requirements or technical observations/facts that could
also influence business decisions (e.g., high cost of the bundle). In such a case, an interaction with the Design
Environment should take place in order to either change the high-level requirements or to provide new ones to
cover the missing technical ones. We can possibly consider either a kind of notification mechanism employed in
order to inform the Design Environmentaboutthis problematic case and enable the adjustmentofthe re quirements
or the interchangeable usage of the environments by the same individual (e.g., a technical expert, hired by the
BPaa$S broker, involved in the design of the workflow and its allocation).

The main exploiter of the Execution Environment is the Evaluation one which needs to retrieve the most suitable
knowledge from the execution of one ormore BPaaSs in order to appropriatelyand properly perform the respective
analysis tasks. To assistin the different types of analysis, we foresee the following im plications:

e direct or indirect semantic annotation of measurements: either measurements have to be directly
annotated with the respective metric that they refer to or they need to pointto a metric specification in
which semantic annotations have been included. T hrough this semantic annotation, the semantic lifting
of measurements can be achieved and their exploitation by the semantic KPI analysis approach
envisioned for the Evaluation Environment.

e other BPaa$S execution information: some of the remaining analysis mechanisms of the Evaluation
Environmentneed to derive best deploymentplans for BPaaS and discrepanciesin BPaaS workflows.
Toenable the proper functioning of such mechanisms, respective information should be made available
by the Execution Environmentwhich ideallywould be nice if it is already semanticallyannotated. Such
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information spans: (a) workflow log files from which we can inspect all workflow tasks that have been
performed, the timing of their execution and the respective order; (b) Saa$, laaS and PaaS logs from
which we can derive information about when services executed and how long did their execution last,
(c) live allocation information mapping componentinstances to each other all the way up until the
workflow level (such that we know which laaS instances were used to host which internal software
component instances which realise the functionality of which task instances in the BPaaS workflow).
While (a) can be easyto gatheras mostworkflow execution engines do provide or can be configured to
provide suchlogs, it is not the case for the rest of the information. T hus, the respective componentsin
the Execution Environment should either already offer or be enhanced to offer such information.
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6 SUMMARY: RESEARCH SHOWROOM

This chapter provides a brief summaryof all research blueprints presented in this deliverable. Each research
blueprintis categorized in respectto its current state, while in the end the handover process for the respective
research assets of the blueprints to WP4 is outlined. T his chapter concludes with an overall summaryand outlook
to the forthcoming research.

6.1 Research assets

In the following, the research assets of the respective Blueprintcategories (BPaaS Modelling Blueprint, Alocation
Environment Blueprint, & Execution Environment Blueprint) are briefly analysed. This analysis will ease the
handover process to WP4 as it provides a solid overview and maturity level for each assetto the consortium. Each
asset analysis includes a short summary with the focus on the added value, the asset type and the research state.
The asset type defines the relation to existing components of the CloudSocket. Possible types are: new asset,
enhancementofcomponent X or replacementof componentX. T he research state indicates the actual state of the
asset and the estimated time in months to provide a first prototype, estimated time to prototype (ETTP inmonths).
Possible research states are idea (ET TP ~12),concept(ETTP~9), in process (ET TP ~6) and alpha version (~3).
In order the ease the evaluation and also have an indication of the integration effort required for WP4, attributes
like the existing/targeted license and the dependencies to existing components are also included (along with an
explanation ofwhy these dependencies hold). The analysis over all research assets for each Blueprint categoryis
incarnated in the following tables.

BPaaS Modelling Blueprint

Name 1. PaaS/Saa$S support of CAMEL (cf. chapter 2.2.2)
Summary Provide a cloud service level agnostic modelling approach for services
Dependencies Allocation Environment, Cloud Provider Engine
AssetType Extension of CAVEL

Research State In process

License Open-Source

Name 2. SLA supportin OWL-Q (cf. chapter 2.3.2)

Summary Extend OWL-Q to support the semantic specification of SLA (templates)
Asset Type Extension of OWL-Q

Research State Alpha version

License Open-Source

Table 11 - BPaaS Modelling Blueprint assets
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Name
Summary

Dependencies

Dependency
Explanation

Asset Type
Research State
License

Name
Summary
Dependencies
Dependency
Explanation
Asset Type

Research State

License

Name
Summary

Dependencies
AssetType
Research State

License

Allocation Environment Blueprint

3. Smart Service Discovery and Composition Tools (cf. chapter 3.2 and
3.3)

Semantic functional and non-functional service discoveryand composition
tools enabling automatic mapping ofabstractto concrete BPaaS workflows

Registries (service and provider/laaS/PaaS)
Cloud Senvice Offerings mustbe specified in the registries. Moreover, semantic
annotations should be in place for specific types of cloud services. The tools
need to be extendedin orderto be able to operate over these annotations and
not just senvice specifications conforming to a specific semantic description
language
New asset
Alpha version
Open-Source
4. DMN to CAMEL Mapping (cf. chapter 3.4)
Semi-automatic generation of CAMEL based on business values
CAMEL, Registries
The dependency to registries is required in order to be able to map high-leel
decisions to low-level ones which map to the selection of particular services tat
are fully described in the registries. The conditions over service selection wil
also relyon metrics that are defined in the metric registry.
New asset
ldea

Open Source

Table 12 - Allocation Environment Blueprint assets

Execution Environment Blueprint

5.PaaS orchestration and abstraction layer (cf. chapter 4.1.2.3)

Enabling Multi-PaaS orchestration byabstracting PaaS provider specific
characteristics

Cloud Provider Engine
Extension to Cloud Provider Engine
In process

Open-Source
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Name
Summary

Dependencies

Dependency
Explanation

AssetType

Research State

Name

Summary

Dependencies
AssetType
Research State
License

Name

Summary

Dependencies

Dependency
Explanation

Asset Type
Research State
Licence

Name

Summary

Dependencies

6. Dynamic laaS Selection at Runtime (cf. chapter 4.1.3.1)

Dynamic selection oflaaSto hostinternal BPaaS components based on
different criteria like tenantlocation

Registries

laasS registry needs to be populated accordinglysuch that this algorithm can
really function as expected and provide respective results

New asset
|dea

7. Distributed and self-scalable Monitoring Architecture (cf. chapter
4.2.3)

Provide self-scaling Monitoring Architecture with a flexible T SDB storage
engine and customisable sensors

Metric Registry, CAMEL/OWL-Q (BPaaS bundle)
Enhancement of Monitoring Engine
In process
Open-Source
8. Cross-Layer Monitoring Framework (cf. chapter 4.2.4)

Cross-layer monitoring framework for BPaaS which provides measurements
on metrics at different layers of abstraction

Metric Registry, CAMEL/OWL-Q (BPaa$S bundle)
Need to know the metricsthatneed to be sensed or aggregated as well as the
components whose properties are measured by these metrics. The Metic
Registry provides the specification of the metrics but there is also a need for
having access to the BPaaS bundle description and especially the monitoring
part in CAMEL such that we have the knowledge about the respective
conditions and metric contexts that have to be accommodated.

Replacement of Monitoring Engine
In Process
Open-Source

9. Synergic Cross-Layer Monitoring Framework (cf. chapter 4.2.6.3)

Cross-layer monitoring framework produced by combining the monitoring
frameworks from FORTH and UULM

Metric Registry, CAMEL/OWL-Q (BPaaS bundle)
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Dependency
Explanation

AssetType
Research State
Licence

Name

Summary

Dependencies

Asset Type
Research State
Licence

Name

Summary

Dependencies

Dependency
Explanation

AssetType
Research State
Licence

Name
Summary

Dependencies

Need to know the metrics thatneed to be sensed or aggregated as well as the
components whose properties are measured by these metrics. The Metic
Registry provides the specification of the metrics but there is also a need for
having access to the BPaaS bundle description and especially the monitoring
part in CAMEL such that we have the knowledge about the respective
conditions and metric contexts that have to be accommodated.

Enhancement of Monitoring Engine
Concept
Open-Source
10. AXE Adaptation Framework

An adaptation framework supporting the Scalability Rule Language for
enabling complex BPaa$S adaptations on the laaS level

CAMEL (BPaaS$ bundle), Cloud Provider Engine, Metric Registry,
CAMEL/OWL-Q (BPaaS bundle)

Enhancement of Adaptation Engine
Alpha version
Open-Source

11. Cross-Layer Adaptation Framework (cf. Chapter 4.3.3)

An adaptation framework for BPaaS enabling to perform adaptation strategies

in a cross-layer manner to resolve respective problematic situations

CAMEL (BPaaS$S bundle), Component Registries

Need to know what are the adaptation strategies that have to be triggered in
terms of adaptation rules and this informationwill be available in the forthcoming
CAMEL extension (see section 2.4.1). In addition, if adaptation actions are
considered as software components, then we need their description in the
software component registry.

Replacement of Adaptation Engine
Concept

Open-Source

12. Synergic Cross-Layer Adaptation Framework (cf. chapter 4.3.4)

Adaptation framework produced from the combination of the adaptation
frameworks of FORTH and UULM.

CAMEL (BPaa$S bundle), Component Registries
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Need to know what are the adaptation strategies that have to be triggered in
Dependenc terms of adaptation rules and this informationwill be available in the forthcoming
E planationy CAMEL extension (see section 2.4.1). In addition, if adaptation actions are
Xp considered as software components, then we need their description in the
software component registry.
AssetType Enhancement of Adaptation Engine
Research State Concept
Licence Open-Source

Table 13 - Execution Environment Blueprint assetss

6.2 Blueprint handover process

Some ofthe presented research blueprints and assets maybe selected to be integrated into the stable CloudSocket
architecture through WP4. T he blueprintiassetanalysis in the previous section facilitates the hand over process of
the respective blueprints. The handover process covering both D3.3 and D3.4 is depicted in Figure 35. All described
assets are presented to the whole consortium, especiallythe WP4 stakeholders. With continuous demonstrations
along general assemblies and remote session an agile interaction with the end users is achieved.Thisinteraction
passes the initial presentation of the researchideasand WP4 provided an initial feedback. Further, the results of
D3.3 are presented in order to derive a first prioritization of the blueprints from a WP4 perspective. This provided
overview of the ongoing research blueprints can then be already considered for the upcoming Deliverable D45
‘Final CloudSocket Architecture” which is due in M21. As not all research blueprints might be considered with a
high priority, the involved WP3 partners have to take the decision, which blueprints they will follow in order to
provide prototypes.

Demonstration: agile interaction with
end users

1 [ 1 | 1 | 1 |
WP3: WP3: WP3:

present allocation/ WP3: allocation/

research .

doac execution present execution

! environment prototypes environment

blueprints state prototypes
WP4: wea: Wp4: WP4:
inital prioritisation feedback final.
feedback prototype
selection

Figure 35 - Research blueprint handover process

Based on the feedback from WP4, the focus will be placed on the higher prioritized research assets in order to
present the progress of respective blueprint prototypes during upcoming demonstrations. During the prototype
development process, WP4 is able to monitor it via periodic conference calls and technical workshops.

Copyright © 2016 UULM and other members ofthe CloudSocket Consortium
www cloudsocket.eu Page 110 of 118



6.3 Summaray and Future Work

This document comprises the mapping and execution from higher level business processes and workflows to
deployable BPaaS Bundles. Therefore, the three Blueprint categories, BPaaS Modelling, BPaaS Alocation
Environment Blueprints and BPaaS Execution Environment Blueprints are presented. The identified research
challenges (cf. section 1.2) are addressed for each Blueprint category by the research assets that have been
presented in the previous section 6.1.

The developed research assets of each Blueprintcategory are evaluated and prioritised by WP4. T his allows the
WP3 to focus and push the mostbeneficial assetsin each Blueprintfor CloudSocketin order to provide deployable
prototypes in the contextof D3.4 “BPaaS Allocationand Execution Environment Prototypes”. Further, the presented
Blueprints allow a smooth transition into the D3.5 “BPaaS Monitoring and Evaluation Blueprints” by providing
respective input data and interfaces facilitating the harvesting of such data.
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ANNEXA: LIST OF ABBREVIATIONS

List of abbreviation used into the document:

API: Application Programming Interface

BKM: Business Knowledge Model

BPaaS: Business Process as a Senice

BPEL.: Business Process Execution Language

BPMN: Business Process Model and Notation

CAMEL: Cloud Application Execution Modelling Language
CAMP: Cloud Application Management for Applications
CEP: Complex Event Processing

CIMI: Cloud Infrastructure Management Interface
COAPS API: Compatible One Application and Platform Service API
DMN: Decision Model and Notation

DT:Decision Table

DSL: Domain SpecificLanugage

ETTP:Estimateted Time T o Prototype

laaS: Infrastrucutre as a Senice

JW: Java Virtual Machine

OCL: ObjectConstraint Language

OCCI: Open Cloud Computing Interface

OWL-Q: Web OnthologyLanguage — Query Language
QoS: Qualitiyof Senvice

PaaS: Platform as a Service

RDBMS : Relational Database Management Systems
REST : Representational State Transfer

SaaS: Software as a Senvice

SLA: Service Level Agreement

SLO: Seniice Level Objective

SOA: Senvice Oriented Architecture

SOAP: Simple ObjectAccess Protocol

SRL: ScalabilityRule Language

TOSCA: Topologyand Orchestration Specification for Cloud Applications
TSDB: Time Series Database

UML: Unified Modelling Language

USDL: Unified Senice Description Language
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W: Virtual Machine

o WADL: Web Application Description Language
e WSDL: Web Senvice Description Language

o Web application ARchive

e YAML: YAML Ain't Markup Language

e YCSB: Yahoo Cloud Sening Benchmark
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