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EXECUTIVE SUMMARY 

The first phase of the BPaaS lifecycle - the BPaaS Deisgn - and the respective research challenges were covered 

in D3.1 “Modelling Framework for BPaaS”. The first phase produces the BPaaS Design Package that provides the 

input for the following phases. This document introduces research challenges on the second and third phase of the 

BPaaS lifecycle, which are supported by the BPaaS Allocation and Execution Environments. 

This is the second deliverable of work package 3 "BPaaS Allocation and Execution Environment Blueprints ". Its 

content is twofold: first, in the Allocation phase, the mapping of the abstract workflows from the Design Package to 

executable workflows that involves incorporating actual cloud services to realise and support the workflow 

functionality. The executable workflow along with additional information as SLAs and scalability rules then constitute 

the BPaaS Bundle produced. Second, the execution of the BPaaS Bundle, including the orchestration, monitoring 

and adaptation of all services involved.  

In order to enhance the BPaaS lifecycle with research findings, three Blueprint categories are covered within this 

deliverable: The BPaaS Modelling Blueprints, the BPaaS Allocation Blueprints and the BPaaS Execution Blueprints.  

Each Blueprint comprises a set of research assets. The upcoming deliverable D3.4 “BPaaS Allocation a nd 

Execution Environment Prototypes”, which is due in December 2016, will build upon these research assets and 

provide prototypes for each Blueprint category.  

The BPaaS Blueprint comprises the modelling approach for the BPaaS Bundle. In order to provide complete support 

to the BPaaS allocation and execution phases, the CAMEL domain-specific language is exploited and extended as 

one research asset in order to additionally cover the modelling of SaaS and PaaS allocation decisions apart from 

IaaS ones. Apart from the modelling of the application deployment, CAMEL also covers the aspects of application 

adaptation and monitoring. The second research asset is the semantic quality description language OWL-Q that 

can be used to describe non-functional requirements and capabilities at all levels of abstraction as well as semantic 

hierarchical SLAs. The resulting assets are (1) PaaS/SaaS support of CAMEL and (2) SLA support in OWL-Q 

The BPaaS Allocation Blueprint presents more sophisticated service selection and concretisation algorithms to map 

the abstract workflows to actual cloud services. This comprises smart service discovery, composition and selection 

tools. Based on the semantically lifted BPaaS Design Package and the Allocation Environment Blueprint, a more 

accurate creation of the corresponding part of the BPaaS Bundle, i.e., the executable and deployable workflow is 

enabled. The resulting assets are (3) Smart Service Discovery and Composition Tools and (4) DMN to CAMEL 

Mapping. 

The BPaaS Execution Blueprint is split into three crucial sub-phases of BPaaS execution, i.e., orchestration, 

monitoring and adaptation with the offering of corresponding research assets for each. BPaaS orchestration 

encompass research assets regarding the BPaaS execution across different cloud service levels. The BPaaS 

monitoring assets focus on a self-scalable monitoring infrastructure (UULM) as well as on cross-layer monitoring 

(FORTH) framework while a synergic framework between these two is also proposed. The adaptation assets cover 

the scalability on the lower cloud service levels (UULM) as well as service adaptation in higher cloud service levels 

(FORTH) along with a corresponding proposal for a synergic/combined approach. The resulting assets are (5) 

PaaS orchestration, (6) Dynamic IaaS Selection at Runtime, (7) Distributed and self-scalable Monitoring, (8) Cross-

Layer Monitoring, (9) Synergic Cross-Layer Monitoring, (10) AXE Adaptation Framework, (11) Cross-Layer 

Adaptation and (12) Synergic Cross-Layer Adaptation 

All three Blueprints and the included research assets are categorised according to their added value for the BPaaS 

lifecycle and their current state. This facilitates the prioritisation for work package 4 to derive the desired features 

from the architectural perspective. Based on the prioritisation, the prototype development is structured for the follow 

up deliverable D3.4.   



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 3 of 118 

PROJECT CONTEXT 

Workpackage WP3: Business Process as a Service Research 

Task T3.2: BPaaS Allocation and Execution Environment Research 

Dependencies Input to D3.4, T3.3 and WP4 

 

Contributors and Reviewers 

Contributors Reviewers 

Daniel Sebold, Frank Griesinger, Jörg Domaschka 
(UULM) 

Kyriakos Kritikos, Chrysostomos Zeginis (FORTH) 

Román Sosa, Joaquin Iranzo Yuste (ATOS) 

Radu Davidescu (YMENS) 

Simone Cacciatore (FHOSTER) 

Román Sosa (ATOS) 

 

Approved by: Stefan Wesner (UULM) as WP 3 Leader 

 

Version History 

Version Date Authors Sections Affected 

0.1 May 02, 2016 Daniel Seybold (UULM) Initial version, TOC  

0.2 May 04, 2016 Daniel Seybold, Kyriakos 
Kritikos (FORTH) 

Updated TOC 

0.3 May 20, 2016 Daniel Seybold (UULM), 
Kyriakos Kritikos 
(FORTH), Chrysostomos 
Zeginis (FORTH), 
Román Sosa (ATOS), 
Joaquin Iranzo Yuste 
(ATOS)  

All sections 

0.4 May 31, 2016 Daniel Seybold (UULM) Finalised Monitoring section 

0.5 June 3, 2016 Daniel Seybold (UULM) Introduction, Summary 

0.6 June 15, 2016 Daniel Seybold (UULM), 
Frank Griesinger 
(UULM), Kyriakos 
Kritikos (FORTH) 

Blueprint revisions, all sections 

0.7 June 17, 2016 Daniel Seybold (UULM), 
Frank Griesinger 
(UULM), Kyriakos 

Consolidated internal review version 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 4 of 118 

Kritikos (FORTH), 
Chrysostomos Zeginis 
(FORTH) 

0.8 June 27, 2016 Daniel Seybold (UULM), 

Simone Cacciatore 
(FHOSTER) 

Roman Sosa (ATOS) 

Alexandru Ganga 
(YMENS) 

Integrated internal review feedback 

0.9 June 29, 2016 Daniel Seybold (UULM) 

, Kyriakos Kritikos 
(FORTH) 

Final improvments 

1.0 June 30, 2016 Daniel Seybold (UULM) Finalised document 

 

  



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 5 of 118 

Copyright Statement – Restricted Content 

This document does not represent the opinion of the European Community, and the European Community is not 

responsible for any use that might be made of its content. 

This is a restricted deliverable that is provided to the community under the license Attribution-No Derivative 

Works 3.0 Unported defined by creative commons http://creativecommons.org 

You are free: 

 

to share within the restricted community — to copy, distribute and transmit the work within the 
restricted community 

Under the following conditions: 

 

Attribution — You must attribute the work in the manner specified by the author or licensor (but 
not in any way that suggests that they endorse you or your use of the work). 

 
No Derivative Works — You may not alter, transform, or build upon this work. 

With the understanding that: 

Waiver — Any of the above conditions can be waived if you get permission from the copyright holder. 

Other Rights — In no way are any of the following rights affected by the license: 

o Your fair dealing or fair use rights; 

o The author's moral rights; 

o Rights other persons may have either in the work itself or in how the work is used, such as publicity or 
privacy rights. 

 
Notice — For any reuse or distribution, you must make clear to others the license terms of this work.  
This is a human-readable summary of the Legal Code available online at:  

http://creativecommons.org/licenses/by-nd/3.0/ 

  



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 6 of 118 

TABLE OF CONTENT 

1 Introduction and Problem Statement ..........................................................................................................................12 

1.1 Project Context .....................................................................................................................................................13 

1.2 Research Problem ...............................................................................................................................................13 

1.3 Structure ................................................................................................................................................................15 

2 BPaaS Modelling Blueprint ...........................................................................................................................................16 

2.1 State-of-the-art......................................................................................................................................................16 

2.1.1 Service Description Languages ....................................................................................................................17 

2.1.2 Cloud Service Modelling.................................................................................................................................18 

2.2 CAMEL ...................................................................................................................................................................19 

2.2.1 Original Version ...............................................................................................................................................20 

2.2.2 Extension: SaaS Modelling ............................................................................................................................22 

2.2.3 Extension: Cross-Layer Description of Components.................................................................................23 

2.2.3.1 Configuration per service level and ability .........................................................................................23 

2.2.3.2 Overloading the component configuration.........................................................................................24 

2.2.3.3 Crushed configurations by building blocks ........................................................................................25 

2.2.3.4 Conclusion ..............................................................................................................................................27 

2.3 OWL-Q ...................................................................................................................................................................28 

2.3.1 Original Version ...............................................................................................................................................28 

2.3.2 Extensions ........................................................................................................................................................30 

2.3.2.1 Core Extensions.....................................................................................................................................30 

2.3.2.2 SLA Extension........................................................................................................................................33 

2.4 Future Work...........................................................................................................................................................36 

2.4.1 CAMEL Adaptation ..........................................................................................................................................36 

2.4.2 CAMEL Semantic Annotations ......................................................................................................................37 

3 Allocation Environment Blueprint.................................................................................................................................38 

3.1 State-of-the-Art .....................................................................................................................................................39 

3.2 Smart Service Discovery & Composition..........................................................................................................40 

3.2.1 Smart Service Discovery ................................................................................................................................40 

3.2.1.1 Non-Functional Service Discovery......................................................................................................40 

3.2.1.1.1 Prototype Architecture.....................................................................................................................41 

3.2.1.1.2 Mixed Category Algorithms ............................................................................................................42 

3.2.1.1.3 Ontology-based Category of Algorithms ......................................................................................44 

3.2.1.1.4 Overall Discussion on Non-Functional Matchmaking Algorithms ............................................44 

3.2.1.2 Functional Service Matchmaking ........................................................................................................45 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 7 of 118 

3.2.1.3 IaaS Matchmaking.................................................................................................................................46 

3.2.2 Smart Functional Service Composition........................................................................................................46 

3.3 Simultaneous IaaS & SaaS Service Selection Algorithm ..............................................................................46 

3.4 DMN to CAMEL mapping....................................................................................................................................49 

3.4.1 DMN Mapping Scenario .................................................................................................................................50 

3.4.2 Identified Challenges.......................................................................................................................................52 

3.5 Future Research...................................................................................................................................................52 

3.5.1 Combined Service Discovery.........................................................................................................................52 

3.5.2 Overall Service Concretisation Method........................................................................................................52 

3.5.3 QoS Mapping Derivation ................................................................................................................................52 

3.5.4 PaaS Consideration in Discovery & Selection ............................................................................................53 

3.5.5 Rich Service Specification..............................................................................................................................53 

3.5.6 Formalism Transformation .............................................................................................................................53 

3.5.7 Service Filtering ...............................................................................................................................................53 

3.5.8 Semantic annotations for DMN Mapping .....................................................................................................53 

4 Execution Environment Blueprint ................................................................................................................................55 

4.1 Orchestration.........................................................................................................................................................55 

4.1.1 State of the art..................................................................................................................................................56 

4.1.1.1 IaaS Abstraction Tools and Platforms................................................................................................56 

4.1.1.2 PaaS Abstraction Tools and Platforms ..............................................................................................57 

4.1.2 Cloud Provider Engine (Cloudiator)..............................................................................................................59 

4.1.2.1 Original Version .....................................................................................................................................59 

4.1.2.2 Evaluation ...............................................................................................................................................60 

4.1.2.3 Extension: PaaS orchestration and abstraction layer......................................................................65 

4.1.3 Future Research ..............................................................................................................................................68 

4.1.3.1 Dynamic IaaS Selection at Runtime ...................................................................................................68 

4.2 Monitoring ..............................................................................................................................................................68 

4.2.1 State of the art..................................................................................................................................................69 

4.2.1.1 Quality Models .......................................................................................................................................69 

4.2.1.2 Service Monitoring.................................................................................................................................71 

4.2.1.3 Cloud Monitoring....................................................................................................................................71 

4.2.2 Scalability / Elasticity Evaluation of Distributed Databases ......................................................................74 

4.2.2.1 Evaluated NoSQL databases ..............................................................................................................74 

4.2.2.1.1 Apache Cassandra ..........................................................................................................................74 

4.2.2.1.2 Couchbase ........................................................................................................................................75 

4.2.2.1.3 MongoDB ..........................................................................................................................................75 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 8 of 118 

4.2.2.2 Benchmarking Tool ...............................................................................................................................75 

4.2.2.3 Methodology ...........................................................................................................................................76 

4.2.2.4 Results.....................................................................................................................................................78 

4.2.2.4.1 Scalability Results............................................................................................................................78 

4.2.2.4.2 Elasticity Results ..............................................................................................................................79 

4.2.2.4.3 Conclusion ........................................................................................................................................81 

4.2.2.5 Future Evaluation Scenarios................................................................................................................81 

4.2.3 UULM Approach ..............................................................................................................................................81 

4.2.3.1 Monitoring Agent: Visor ........................................................................................................................82 

4.2.3.2 Aggregation Levels................................................................................................................................83 

4.2.3.3 Distributed Architecture ........................................................................................................................83 

4.2.3.4 Generic TSDB Layer .............................................................................................................................84 

4.2.4 FORTH Approach ............................................................................................................................................85 

4.2.4.1 Distributed Cross-Layer Monitoring Framework ...............................................................................85 

4.2.4.2 Cross-Layer Quality Model...................................................................................................................88 

4.2.5 Integration / Synergy of Approaches ............................................................................................................91 

4.2.6 Future Research ..............................................................................................................................................92 

4.2.6.1 Cross-Layer Quality Model Expansion...............................................................................................92 

4.2.6.2 Quality Model Realisation.....................................................................................................................92 

4.2.6.3 Synergic Cross-Layer Monitoring Approach .....................................................................................93 

4.2.6.4 Monitoring Adaptation ...........................................................................................................................93 

4.3 Adaptation .............................................................................................................................................................93 

4.3.1 State of the Art .................................................................................................................................................94 

4.3.1.1 Service Monitoring & Adaptation.........................................................................................................94 

4.3.1.1.1 Cross-Layer Approaches ................................................................................................................94 

4.3.1.2 Languages for Adaptation Plans .........................................................................................................95 

4.3.2 UULM Approach ..............................................................................................................................................96 

4.3.2.1 AXE ..........................................................................................................................................................96 

4.3.2.2 Adaptation Plans....................................................................................................................................97 

4.3.3 FORTH Approach ............................................................................................................................................98 

4.3.4 Integration / Synergy of Approaches ......................................................................................................... 100 

4.3.5 Future research............................................................................................................................................. 100 

4.3.5.1 Dynamic Adaptation Workflow Concretisation............................................................................... 100 

4.3.5.2 Optimised Derivation of Adaptation Strategies .............................................................................. 101 

4.3.5.3 Layer-Specific Adaptation Action Realisation ................................................................................ 101 

5 Interaction with other environments ......................................................................................................................... 103 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 9 of 118 

5.1 Required Input ................................................................................................................................................... 103 

5.2 Exploitable Output ............................................................................................................................................. 104 

6 Summary: Research showroom ............................................................................................................................... 106 

6.1 Research assets................................................................................................................................................ 106 

6.2 Blueprint handover process ............................................................................................................................. 110 

6.3 Summaray and Future Work ........................................................................................................................... 111 

7 References ................................................................................................................................................................... 112 

Annex A: List of Abbreviations ..................................................................................................................................... 117 

  



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 10 of 118 

LIST OF FIGURES 

Figure 1 - Initial High-level Architecture of CloudSocket ...................................................................................................12 

Figure 2 - Identified Research Challenges ..........................................................................................................................14 

Figure 3 - BPaaS Modelling Blueprint ..................................................................................................................................16 

Figure 4 - Advanced class structure of the configurations of a component in CAMEL ................................................24 

Figure 5 - ConfigurationsRequirementSet  part of the class structure ............................................................................25 

Figure 6 - Class structure for Container and Containerizables concept .........................................................................25 

Figure 7 - Provider model for Containers and example instances...................................................................................26 

Figure 8 - Example for a application stack from building blocks ......................................................................................26 

Figure 9 - Simplified application description ........................................................................................................................27 

Figure 10 - Five main OWL-Q facets ....................................................................................................................................31 

Figure 11 - The OWL-Q specification facet (with concepts coloured in blue)................................................................32 

Figure 12 - Q-SLA sub-facet (with concepts coloured in light blue) ................................................................................35 

Figure 13 - Allocation Environment Blueprint ......................................................................................................................38 

Figure 14 - The architecture of the non-functional service matchmaking prototype.....................................................41 

Figure 15 - An example subsumption hierarchy .................................................................................................................43 

Figure 16 - Integration points for DMN into the BPaaS process. .....................................................................................50 

Figure 17 - DMN-to-CAMEL mapping. .................................................................................................................................51 

Figure 18 - Oveall architecture of the BPaaS Execution Environment ...........................................................................55 

Figure 19 - Cloudiator architecture .......................................................................................................................................59 

Figure 20 - Unified Life-cycle Handling in the Cloud Provider Engine ............................................................................65 

Figure 21 - Cloudiator with IaaS and PaaS abstraction layer...........................................................................................66 

Figure 22 - YCSB Architecture ..............................................................................................................................................76 

Figure 23 - Benchmarking setups .........................................................................................................................................77 

Figure 24 - Apache Cassandra Elasticity Benchmark .......................................................................................................80 

Figure 25 - Couchbase Elasticity Benchmark .....................................................................................................................80 

Figure 26 - MongoDB Elasticity Benchmark........................................................................................................................81 

Figure 27 - Visor.......................................................................................................................................................................82 

Figure 28 - Distributed Monitoring Architecture ..................................................................................................................84 

Figure 29 - The logical architecture of FORTH's monitoring framework.........................................................................87 

Figure 30 - Physical architecture of the FORTH's cross-layer monitoring framework..................................................89 

Figure 31 - Overview of the cross-layer quality model ......................................................................................................90 

Figure 32 - Combined cross-layer monitoring architecture ...............................................................................................91 

Figure 33 - Example of an adaptation plan with component scaling and short-term service substitution ................98 

Figure 34 - FORTH's Adaptation Framework......................................................................................................................99 

Figure 35 - Research blueprint handover process .......................................................................................................... 110 

 

  

file:///C:/CloudSocket/7_Workpackages/WP3/D3.3/CloudSocket_D3.3_BPaaS-Allocation-Execution-Environment-Blueprints-v0.9_UULM_20160629.docx%23_Toc454960142


 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 11 of 118 

LIST OF TABLES 

Table 1 - The evaluation of Q-SLA against more representative state-of-the-art SLA languages .............................34 

Table 2 - Cloud Deployment Type DT ..................................................................................................................................51 

Table 3 - Cloud Orchestration Tool Comparison ................................................................................................................61 

Table 4 - Life-cycle Actions of the Generic PaaS Deployment APIs...............................................................................67 

Table 5 - YCSB workloads CRUD ration in %.....................................................................................................................77 

Table 6 - create-only workload results .................................................................................................................................78 

Table 7 - read-update workload results................................................................................................................................78 

Table 8 - read-heavy workload results .................................................................................................................................79 

Table 9 - Aggregation Levels .................................................................................................................................................83 

Table 10 - TSDB feature comparison ...................................................................................................................................85 

Table 11 - BPaaS Modelling Blueprint assets.................................................................................................................. 106 

Table 12 - Allocation Environment Blueprint assets ....................................................................................................... 107 

Table 13 - Execution Environment Blueprint assetss ..................................................................................................... 110 

 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 12 of 118 

1 INTRODUCTION AND PROBLEM STATEMENT 

This document introduces research Blueprints with respect to the BPaaS Allocation and BPaaS Execution 

Environment (cf. Figure 1). The Blueprints focus on the BPaaS Allocation and Execution Environment research 

challenges and solutions in the context of CloudSocket. The previous Deliverable D3.1 has focused on the BPaaS 

Design Environment and its outcome constitutes the starting point of this document, respectively the input to the 

Allocation Environment. This deliverable is concerned with the mapping of business episodes to deployable 

solutions in the cloud, which are then taken care of accordingly by enabling their adaptive provisioning. As such, 

the Blueprints presented focus on the specification of the appropriate information in order to support the envisioned 

activities (deployment, execution, monitoring & adaptation) as well as on the realisation of such activities.  

As a blueprint has a meaning of a plan and not an actual realisation, this deliverable actually explains the analysis 

of concrete algorithms or frameworks that support the aforementioned activities. In this sense, it goes far deeper 

than reporting some blueprints. As such, we adopt a different term to refer to these algorithms or frameworks, which 

is a research asset. This is also more close to our final goal, i.e., to introduce particular assets or components that 

could be adopted by the CloudSocket implementation by providing add-ons to existing components or more 

advanced replacements of them. Nevertheless, in some cases, some algorithms/fram eworks are just a sketch of 

an idea. Moreover, additional algorithms are sketched in future work directions. In this case, indeed, such ideas or 

sketches can be regarded as blueprints that can be realised in the next 6 months in the project such that they can 

then constitute more mature research assets that could be exploited by the CloudSocket implementation.     

 

 

Figure 1 - Initial High-level Architecture of CloudSocket 
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1.1 Project Context 

As this document focuses on the Allocation and Execution Environment, a high-level architecture of all 

environments, which constitute the CloudSocket prototype, with their main components is shown in  Figure 1. A 

detailed architectural overview of all CloudSocket environments can be found in Deliverable D4.1  [1]. The BPaaS 

Allocation Environment allows a CloudSocket Broker to retrieve workflows from the BPaaS Design Environment 

and create a Cloud deployable as well as executable Workflow Bundle – named as BPaaS Bundle - and publish it 

in the Marketplace, by means of a web-based user interface. Such a deployable workflow bundle comprises: (a) a 

executable workflow where service tasks have been mapped to certain services/SaaS; (b) a deployment plan which 

indicates where (in the cloud) the BPaaS internal components are deployed; (c) monitoring and adaptation 

information to guide the adaptive provisioning of the BPaaS workflow; (d) SLA specification explicating the exact 

service level to be offered by the BPaaS.  

As soon as a BPaaS bundle is ordered in the Marketplace, the BPaaS Bundle is transferred to the BPaaS Execution 

Environment. This environment is responsible to manage, monitor and adapt the execution of the BPaaS bundles 

generated during the allocation phase. The execution comprises the deployment and orchestration of the requ ired 

cloud services via the Cloud Provider Engine, the preparation of the Workflow Engine to interact with the deployed 

services and the monitoring of the holistic BPaaS lifecycle. When a BPaaS workflow bundle is deployed, the 

environment will allow to manage the workflow instances created by the BPaaS Customer and to visualize the 

conformance levels to associated agreements and respective monitoring data. Besides, based on the monitoring 

data, the violations incurred as well as the BPaaS bundle adaptation rules, the environment will be able to adapt 

the BPaaS instances to maintain the promised service level via executing particular adaptation actions, including 

component scaling, component/workflow migration and service substitution, possibly across different levels 

(Workflow as a Service (WfaaS), SaaS, PaaS, & IaaS). 

This Deliverable D3.3 describes the “BPaaS and Allocation Environment Research Blueprints”, including modelling, 

allocation and execution related challenges and solutions. Based on the resulting blueprints of D3.3, the follow up 

Deliverable D3.4 “BPaaS Allocation and Execution Environment Prototypes” will analyse the actual blueprint 

prototypes, i.e., the (almost) mature research prototypes/assets that could be adopted by the CloudSocket 

implementation.   

The concepts/blueprints of D3.3 and prototypes of D3.4 will provide the required input to the upcoming Deliverable 

D3.5 “BPaaS Monitoring and Evaluation Blueprints” in M24. D3.5 will close the loop of the holistic BPaaS lifecycle 

with the focus on the Evaluation Environment providing analysis capabilities that result in business intelligence 

knowledge through KPI analysis and drill-down, SLA violation patterns detection, best BPaaS deployments 

discovery and determination of optimised billing models for the CloudSocket broker.  

1.2 Research Problem 

With the definition of the business processes and respective workflows in the Design Environment, the Allocation 

and Execution Environments enable the deployment and adaptive provisioning of workflows in the cloud. Therefore, 

the Allocation Environment enables the mapping of abstract workflows to deployable and executable solutions, 

namely BPaaS Bundles, by receiving sematically enriched models from the Design Environment, which are 

translated into a technical allocation description. 

The identified research challenges are introduced by the means of the business process “Sending Christams 

Greeting Cards”, which was introduced in D5.1. This business process requires three different kinds of services, 

an email service, a CRM service and a card designer service, which need to be mapped to respective allocation 

decisions constituting an executable business process solution that is deployable in the cloud. In the context of this 

deliverable we focus on the technical realization and do not reflect the modelling guidelines presented in D5.2 In 
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order to enhance the BPaaS lifecyle, three blueprints categories are derived from the high-level architecture shown 

in Figure 1 and the related tasks: BPaaS Modelling Blueprints, Allocation Environment Blueprints and Execution 

Environment Blueprints. Each blueprint category comprises a set of research assets, which represent the actual 

prototypes. Figure 2 provides an overview of the identified research challenges that are described in the following 

paragraphs.  

 

Figure 2 - Identified Research Challenges 

The first blueprint, the BPaaS Modelling Blueprint, is represented by the yellow box in  Figure 2. The respective 

research challenge involves the necessity of a smart description for the holistic BPaaS lifecycle, including 

deployment, adaptation, and monitoring as well as the support of semantics for each aspect. The modelling 

research area of Domain Specific Languages (DSLs) provides an established set of DSLs: TOSCA [2], CloudML 

[3] and CAMEL [4]. However, these approaches only target a subset of the aforementioned aspects and none of 

the existing modelling approaches targets the BPaaS domain explicitly. To provide to the Allocation Environment 

the complete mapping between business processes and a deployable BPaaS Bundle, the evaluation and extension 

of appropriate modelling solutions comes up as the first research challenge.  

The second blueprint category, the Allocation Environment Blueprint, is depicted in the red box in Figure 2 with 

respect to the high-level architecture. This blueprint comprises the actual allocation of the BPaaS Bundle while also 

provides rules for its runtime adaptation. The allocation relies on the use of smart and semantic discovery and 

composition algorithms which attempt to map BPaaS workflow tasks to concrete cloud services by also respecting 

the main broker requirements. The respective section (3) will present these algorithms as well as indicate particular 

research challenges that still need to be satisfied. The broker is able to specify adaptation rules in a high-level 

language, which is transformed into CAMEL by utilising the Decision Model and Notation (DMN). It can be facilitated 

by the existence of metric blueprints (i.e., sets of already specified and re-usable metrics) as well as the findings 

from the Evaluation Environment in terms of event patterns leading to SLO/KPI violations.     

The context of the third blueprint, the Execution Environment Blueprint, is shown in the green box in Figure 2Figure 

1. This blueprint is separated into the research assets for orchestration, monitoring and adaptation of the BPaaS 

Bundle. The holistic lifecycle of a BPaaS Bundle requires the deployment and orchestration of services across all 

cloud service levels. Whereas recent deployment tools focus solely on the IaaS level, higher-level deployment tools 

also covering the PaaS or SaaS levels are not yet specifically targeted in academia and industry. All cloud service 
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levels need to be considered also by the BPaaS monitoring solution. Whereas current monitoring solutions typically 

focus only one a specific cloud service level, cross-level monitoring is required to cover in a more complete manner 

problematic situations that impact multiple levels within the BPaaS stack. Monitoring across all service levels also 

raises new challenges, including scalability to provide a monitoring solution with a suitable performance level. 

Cross-layer BPaaS adaptation is also a necessity in order to address problematic situations in a holistic manner by 

also preventing cases where individual level-based actions are performed which are overlapping or conflicting.  

1.3 Structure 

The structure of this document is organised in the following chapters: chapter 2 introduces the BPaaS Modelling 

Blueprint, which will be exploited by the Allocation Environment to design the BPaaS Bundle. The BPaaS Modelling 

Blueprint comprises cloud specific DSLs as well as semantic languages. Chapter 3 describes the actual Allocation 

Environment Blueprint, including smart service discovery and composition tools and the adoption of DMN to semi-

automatically create CAMEL. Chapter 4 presents the Execution Environment Blueprint for the specific sub-phases 

of BPaaS deployment, monitoring and adaptation. Chapter 5 describes requirements imposed by the identified 

research items of the previous chapters with respect to their interaction with other CloudSocket Environments. 

Finally, Chapter 6 concludes with the research showroom, summarising and categorising all research items and 

their actual research state. Moreover, a brief description of the research handover process to WP4 is provided.  

 

 

  



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 16 of 118 

2 BPAAS MODELLING BLUEPRINT 

The various tasks that need to be performed for the allocation, execution, monitoring and adaptation of a BPaaS 

require the existence of models that provide information that properly supports these tasks. A more detailed view 

on the BPaaS Modelling is provided in Figure 3. The models have to enable the mapping between workflow tasks 

and actual cloud services, including all technical details to allow the deployment of the service in the cloud. The 

models should also support the definition of adaptation rules in order to support the adaptive provisioning of BPaaS, 

which will obviously include the appropriate measurement details required for BPaaS monitoring. In addition, the 

models need to support the definition of SLAs as well as cost models.  

 

Figure 3 - BPaaS Modelling Blueprint 

Such models should conform to one or more languages that define the structure, the main notions and the 

relationships between these notions. Concerning the BPaaS deployment and adaptation, the language that the 

consortium has selected is CAMEL [5], a main research result developed in the context of the PaaSage1 European 

project. For the semantic modelling of metrics and SLAs, OWL-Q [6] has been chosen due to its ability to express 

all appropriate aspects related to the modelling of quality terms and service levels. These are the two main 

languages that are to be used for the research prototype environments.  

In the following, after conducting a state-of-the-art analysis concerning the modelling in cloud computing especially 

spanning the aforementioned lifecycle activities, we describe the main project research contributions concerning 

the modelling aspect. Figure 3 shows the targeted area for the resulting blueprints. The blueprints are incarnated 

into the analysis of CAMEL and its main extension blueprints with the focus on the deployment and adaptation of 

cloud services. An equivalent analysis of OWL-Q is performed, encompassing the respective extensions blueprints 

with the focus on SLA specification.      

2.1 State-of-the-art 

The modelling of services in general and for specific domains like cloud computing is an ongoing research area 

with a large set of existing solutions. As CloudSocket introduces the quite new BPaaS paradigm, the current state 

of the art on service and cloud modelling is reviewed towards their capabilities and shortcomings for BPaaS.  

                                                                 
1 http://www.paasage.eu/  

http://www.paasage.eu/
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2.1.1 Service Description Languages 

The functional specification of services benefits from a plethora of many different languages. Each language 

focuses on a different functionality aspect. The most commonly used languages are those used to structurally 

specify the service interface. Such languages are WSDL [7] and WADL [8] that cover SOAP and REST -based 

services, respectively.  

As structural specifications are not information rich, semantic languages have been proposed to close the gap by 

also raising the level of service discovery accuracy. In this respect, semantic languages like OWL-S [9] and WSMO 

[10] have been proposed but have not been undertaken due to the shortage in tools able to support the semantic 

specification of services as well as to the gap between the knowledge of semantic representation and the current 

expertise of the service modeller. However, such languages have been extensively used in research prototypes 

with quite significant results and are assorted with collections of semantic specifications, which map to real-world 

services. Need to mention here that both languages support the specification of the service I/O  as well as its 

behaviour in terms of pre-conditions and effects. OWL-S also enables the description of the abstract interface of 

the service covering the interactions needed with the service requester.  

USDL is a semi-formal language for business and software service description. This language has been recently 

transformed to a Linked-Data counterpart [2] to become more formal. Moreover, USDL covers also the specification 

of SLA, quality, security, cost and legal aspects. An approach in [11] was also proposed focusing on integrating 

USDL with TOSCA to link service selection with deployment such that the cloud application lifecycle is better 

supported. 

A UML based language called SoaML [12] has been proposed to specify Service-Oriented Architectures (SOAs) 

by defining components and their inter-relationships at the business and service levels. This language, however, 

mainly focuses on the functional specification of the services and does not deal with the internal orchestration logic. 

As composite services comprise more simpler services that have to be coordinated, quite well -known workflow 

specification languages can be used to express the internal orchestration logic such as WSBPEL [13]. In addition, 

recently, BPMN [14] was also extended in order to support the specification of service-based workflows. Both these 

two languages and especially BPEL4WS are used by the majority of service providers in order to specify the internal 

logic of their services. In addition, semantic annotations have been considered for both languages in order to assist 

in the concretisation of abstract workflows. D3.1 [15] also shed light on this in terms of semantic lifting and 

alignment.   

The project has decided to follow a structural-based approach to specify services according to a specific JSON 

schema. This was mainly done for simplicity and current implementation reasons. However, concerning the main 

research developments and the need for supporting semantic service discovery that reaches higher-levels of 

accuracy, the main research prototypes addressing smart service discovery adopt OWL-S due to its main 

capabilities to semantically describe both I/O and behaviour of the service. Moreover, OWL-S is coupled with a 

semantic service collection, which can be used as a basis for an extended semantic service registry. In case that 

the internal logic needs to be captured, then BPMN is by de facto adopted by the project. Semantic annotations are 

entered in this case in the current registry implementation that in conjunction with the CAMEL deployment plan 

indicate the way the functionality of an abstract BPMN workflow task can be realised by a specific abstract service 

entry in the registry, which is semantically annotated. 

Various non-functional service description languages have been proposed. A quite detailed evaluation on them can 

be found in [16]. From this evaluation, it becomes apparent that: (a) there are particular features that distinguish 

one language over the other, including the formalism, the richness, and the complexity; (b) l anguages can be 

separated according to the lifecycle activities that they can cover. In this way, languages covering service quality 

profiles go until the service discovery while languages covering SLAs cover potentially the whole lifecycle; (c) OWL-
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Q is the most prominent language from those used to represent quality profiles while for SLAs, there is actually no 

language that prevails. In fact, a trend has been revealed where different languages are combined together in order 

to exploit in a complementary way their SLA specification capabilities. Nevertheless, languages from the first type 

can be extended to cover the second specification type and this will be witnessed in section 2.3.2.2 where we will 

analyse the extension made towards enabling OWL-Q to specify SLAs. Such an extension leads to an SLA 

language that surpasses the current state-of-the-art. 

2.1.2 Cloud Service Modelling 

A de-facto standard for the description of the application deployment that is widely used in research prototypes 

is TOSCA [2]. TOSCA is an OASIS open standard that defines a description of services and applications, including 

their components, relationships, dependencies, requirements, and capabilities. It can be described as a technology 

centred on the application. T he objective is to enable portability and automated management across cloud 

providers regardless of underlying platform or infrastructure. This way, TOSCA expands customer choice, 

improves reliability, and reduces cost and time-to-value. These characteristics also facilitate the portable and 

continuous delivery of applications (DevOps) across their entire lifecycle. However, it comes with certain 

shortcomings related to the non-coverage of the instance level required for dealing with runtime aspects, the lack 

of cloud/domain-specific constructs and the almost non-coverage of the non-functional aspect. These shortcomings 

limit the holistic modelling of the BPaaS lifecycle needed which takes into consideration all cloud service levels as 

well as various types of technical requirements.  

CAMEL is a multi-purpose DSL developed in the context of the PaaSage European project. This language is 

analysed in detail in section 2.2 and has been finally adopted by the CloudSocket project. Two main drawbacks 

apply to CAMEL: (a) it is quite lengthy covering a great level of details that might not be required in the context of 

specific tasks; (b) it is semi-formal as it is Ecore-based. However, the first drawback is solved by the modularity of 

the language such that only specific modules can be used in the context of a specific task. The second drawback 

can be solved via enabling semantic annotations via using an appropriate and suitable language like OWL-Q (see 

section 2.4.2). 

In [17] , a language enabling the semi-formal description of Blueprint Templates is proposed. Such templates 

cover cloud-offerings at multiple abstraction levels and capture service capability, virtual topology as well as QoS 

and policy aspects. Apart from being semi-formal, this language does not capture information that is required in all 

lifecycle activities as done in the case of CAMEL. In addition, it cannot define the quality terms required for quality 

capability specification of respective service offerings.    

Galán et al. [18] have proposed a cloud meta-model that extends OVF2 towards covering self-configuration, 

elasticity and performance monitoring. This meta-model cannot specify component dependencies as well as quality 

capabilities and requirements.  

The service manifest is another OVF extension proposed in [19]. This extension covers placement and 

allocation constraints, security requirements and performance profiles according to the properties of trust, 

reputation, eco-efficiency and cost. However, the service manifest covers mainly the IaaS level without the ability 

to describe component dependencies. In addition, it does not have the ability to model additional quality attributes 

and metrics related, e.g., to performance as in the case of CAMEL.  

mOSAIC [20] is an OWL-based ontology used for semantically annotating semi-formal cloud service descriptions. 

It covers various aspects, including cloud service requirements and resources, metrics, SLAs, components and 

                                                                 
2 https://www.dmtf.org/standards/ovf 

https://www.dmtf.org/standards/ovf
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policies. Such an ontology could be exploited in the context of semantically annotating CAMEL as indicated in 

section 2.4.2 but mainly covering semantic concepts not currently captured by OWL-Q.  

By considering the IaaS level, it can be considered that CAMEL is the richest from all languages able to cover all 

possible aspects in an appropriate level of detail. In addition, it caters for the models@runtime  [21] approach 

enabling a system to always keep up with an up-to-date state of the multi-cloud applications that are being 

provisioned. Moreover, it is also coupled with tools that enable both the deployment description, provision ing and 

local as well as global adaptation of multi-cloud applications.     

2.2 CAMEL 

In order to cover appropriately all the information aspects involved in the design and adaptive provisioning of multi-

cloud application, the PaaSage European project has developed the CAMEL family of DSL languages. CAMEL 

comprises DSLs which were already existing, such as CloudML [3] and Saloon feature meta-model [22], as well as 

languages that were developed from scratch in that project, such as the Scalability Rule Language (SRL)  [4]. The 

information aspects that CAMEL spans include application deployment, monitoring, scaling, c loud provider 

offerings, organisation, security, as well as requirements modelling.  

All meta-models in CAMEL have been specified in EMF3 ecore. This enables using various technologies provided 

by the Eclipse framework, including editors and programmatic interfaces. These meta-models were also carefully 

integrated by removing duplicate concepts or relationships and connecting appropriately related concepts from 

different aspects/meta-models. This integration is supported via the specification of OCL4 constraints that enable 

proper semantic validation of models in one or across domains. In this way, the modeller is guided in providing only 

semantically and structurally valid models conforming to the CAMEL meta-model. This guidance is supported both 

in an interactive mode via editors as well as in programmatic mode. Three editors can be mainly exploited in order 

to specify CAMEL models. The first one is provided by default by the Eclipse IDE and enables a tree-based editing 

of the models. The rest of the editors have been developed in the context of PaaSage. The first is a textual editor 

that conforms to the textual syntax of CAMEL, which was defined by exploiting Eclipse's XText5 technology. This 

editor provides some added-value features like auto-completion, error marking and automatic transformation of the 

model into an XMI form. The web-based editor has been developed again via Eclipse Technologies (RAP6) and 

enables the web-based editing of CAMEL models focusing more on (deployment and application) requirements 

specification as well as in the specification of organisation models and especially their security-oriented aspects 

(user and permission modelling). Its main advantages are that it does not require from the user to know the textual 

or normal syntax of CAMEL, it immediately generates valid models that are persistent in a corresponding model 

repository and it enables a role-based access only to CAMEL aspect-specific models which conform to this role's 

allowed permissions.      

Due to this extensive aspect coverage at the more technical level and especially its prominent capabilities to 

describe both abstract and concrete deployment plans as well as scalability rules, CAMEL was selected as the 

main cloud modelling language for the CloudSocket project. However, while this language can be used more or 

less as it is, there are particular aspects that need to be slightly or more heavily extended in order to better support 

the aforementioned BPaaS lifecycle tasks/operations across all possible layers (IaaS, PaaS, SaaS and WfaaS). In 

this respect, we first provide an overview of the original version of CAMEL and then we analyse in detail the 

extensions that were performed on it.   

                                                                 
3 https://eclipse.org/modeling/emf/  
4 https://wiki.eclipse.org/OCL  
5 https://eclipse.org/Xtext/  
6 http://eclipse.org/rap/  

https://eclipse.org/modeling/emf/
https://wiki.eclipse.org/OCL
https://eclipse.org/Xtext/
http://eclipse.org/rap/
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2.2.1 Original Version 

Our analysis on the original CAMEL version focuses mainly on those aspects or sub-DSLs that are mainly used by 

the project. These sub-DSLs include the deployment, metric, scaling, requirement, provider and organisation meta-

models. These meta-models are going to be shortly described only. More details can be found in CAMEL's technical 

documentation7. 

Camel Meta-model. This is the top-level meta-model which defines a root CAMEL model that can encompass 

aspect specific models. It also enables the definition of applications comprising their name, short description and 

version. As such, one CAMEL model can be associated to one or more applications for which the respective aspect-

specific models should hold.  

Deployment Meta-model. This meta-model enables the specification of both abstract and concrete deployment 

plans. Abstract plans define the structure of the user application in a provider-independent way. They indicate what 

are the main application components and how they can be configured via respective OS commands, the VM nodes 

on which these components can be hosted along with the respective requirements on VM character istics like the 

number of cores, as well as hosting and communication relationships between the application components. 

Concrete deployment plans, on the other hand, model the deployment of an application in a cloud provider specific 

way by working mainly at the instance level. In this sense, the deployment meta-model suitably covers the type-

instance pattern. In such plans, each application component or VM maps to one or more instances that are 

connected to each other according to the respective relationships defined at the type level. Moreover, both 

application components and especially the VMs that host them map to real IPs. We should also note here that at 

the instance level we also make a connection between a VM instance and the respective VM offering o f a cloud 

provider that is instantiated (specified in a respective (cloud) provider model). This is essential information for 

deployment as the respective deployment engine will then know which VM to instantiate at which cloud.  

Requirement meta-model: This meta-model enables the specification of various types of requirements. First, 

requirements can be categorised into hard and soft. Hard requirements must be satisfied at all means while soft 

requirements are usually optimisation directives over non-functional parameters to the platform over how the best 

deployment plan can be derived. Hard requirements can be further categorised into hardware, OS, provider, 

location, and service level objectives (SLOs). The first 4 sub-classes can be associated either to the whole 

deployment plan, as global requirements that must hold for all VMs, or to specific VMs as local requirements in 

order to restrain the cloud provider space. Hardware requirements mainly impose restrictions on the values of VM 

characteristics, which include the number of cores, the memory size and the disk storage size. OS requirements 

explicate the OS that must be supported by the VM. Provider requirements indicate a specific provider from which 

respective VM offerings should only be considered to instantiate a specific VM. Location requirements are used to 

restrain the cloud provider space to a specific location that can be physical or virtual. Physical locations map to 

specific continents or countries while virtual locations map to locations that are specific for a certain cloud. Finally, 

SLOs are hard requirements on the application service level, which indicate that the values of a particular quality 

term (attribute or metric) should not overpass a specific low or upper threshold. Such requirements are mainly used 

in order to filter the provider space during deployment plan reasoning.  

Metric meta-model. This meta-model specifies all necessary measurement details in order to measure specific 

properties of components at different levels of abstraction. Such measurement details are encompassed in the 

notion of a metric. Metrics can be raw or composite. A raw metric can be immediately measured via sensors. A 

composite metric can be measured by applying a specific formula over measurements of other metr ics. Formulas 

are actually expressions that can encompass the application of mathematical or statistical operators over metrics, 

                                                                 
7 
https://tuleap.ow2.org/plugins/git/paasage/camel?p=camel.git&a=blob_plain&h=62d67508d3611f64d67a88e
ad10afeef350f711e&f=documents/CAMELDocumentation.pdf&noheader=1   

https://tuleap.ow2.org/plugins/git/paasage/camel?p=camel.git&a=blob_plain&h=62d67508d3611f64d67a88ead10afeef350f711e&f=documents/CAMELDocumentation.pdf&noheader=1
https://tuleap.ow2.org/plugins/git/paasage/camel?p=camel.git&a=blob_plain&h=62d67508d3611f64d67a88ead10afeef350f711e&f=documents/CAMELDocumentation.pdf&noheader=1
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attributes or other (sub-)formulas. In order to cater for scheduling/timing aspects, metrics can be associated to a 

metric context which indicates when (how frequently) each metric should be computed and according to which 

measurements (time or measurement or mixed-type of windows). Such a context also indicates other details like 

which is the object that is being measured (the application or one of its components or a VM) and pattern-based 

information (pertaining to how many instances of a component should be considered in order to deem a metric 

condition as being violated or not). Metrics or attributes are associated to conditions that apply a specific threshold 

on their values. Such conditions are used as building blocks in order to specify scaling rules and service level 

objectives. As can also be easily understood, metric conditions are also related to a specific metric context in order 

to set-up exactly the appropriate information to be used for their proper evaluation. 

Scalability meta-model. This meta-model can be exploited in order to specify scalability rules. Such rules map a 

particular event to one or more actions. Currently, horizontal scaling actions are supported as well as event creation 

actions. The latter lead to the creation of an event when local/cloud-specific scaling fails indicating that global 

adaptation should be performed for the whole application. Horizontal scaling actions indicate important details about 

how scaling should be performed by explicating how many instances to create or destroy for which particular 

application component. Events can be simple or composite. Simple events map to the violation  of a metric or 

attribute condition. Composite events map to unary or binary event patterns. Event patterns combine one or more 

events according to logic-based (e.g., AND/OR) and time-based operators (e.g., PRECEDES). For instance, we 

can indicate that we should wait for 10 seconds before a specific event happens or that two different events need 

to occur in order to consider that the respective event pattern is satisfied. 

Provider meta-model. This meta-model has the main goal to specify feature models, which cover all types of 

offerings of a specific cloud provider. A feature model comprises a tree-based hierarchy of features. Each feature 

can have a set of attributes whose values map to a specific value type. A feature model is also associated to a set 

of constraints that can be intra- or inter-feature-based. Intra-feature constraints indicate that e.g. one attribute value 

of a feature leads to another value for another attribute to be fixed. This is an essential mechanism to specify a 

mapping from a VM flavour name to the characteristics of this flavour (where VM flavour is an equivalent term to a 

VM offering or a VM type). Inter-feature constraints can operate over the attributes of the features or their cardinality. 

For instance, we can express that a particular VM flavour of a provider (mapping to a VM feature) is available only 

in specific locations (mapping to a location feature). As it can be easily derived, this meta-model is quite generic 

and can express any kind of cloud provider offering, including IaaS and PaaS services. In this respect, this meta-

model does not need to be extended in order to cover all layers in the cloud computing stack.  

Organisation meta-model. This meta-model originates from the CERIF standard [112] that is used to specify 

research organisation information, covering aspects like publications, equipments, users, and roles. A particular 

sub-set of CERIF was selected as a base for the organisation meta-model and especially concerning the 

information about user and role modelling. The basic root construct is the organisation model that represents 

information about a specific organisation, like name, address and web site URL. Specific types of organisation can 

also be modelled mapping to cloud providers. In this case, additional information can be modelled, like what type 

of cloud is offered and what of cloud offerings. An organisation model also includes the specification of one or more 

users. Each user is related to specific personal information, like username, first and last name, and email as well 

as to credential-based information. Credentials can be platform-specific or cloud-specific. Platform-specific are 

credentials (in the form of a password) used to connect the user to the respective platform prototype, like the 

PaaSage (or CloudSocket) prototype. On the other hand, cloud credentials (which can take different forms) are 

specific to one cloud and represent security information that can be exploited in order to perform cloud-specific 

tasks (like VM instantiation) on behalf of the user. Users are related to one or more roles. In PaaSage, the basic 

roles of administrator, DevOps and business have been identified. Each role is associated in turn to a set of 

permissions that are allowed for it in terms of different types of accesses on platform resources (models or services). 

Role assignments as well as permissions are associated to specific information that can be used to inspect their 

validity, like the end date of the assignment or permission.  
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In the context of the CloudSocket project, the organisation meta-model is exploited by the initial version of the 

project prototype. However, when the Identity Management solution is ready (to be provided by YMENS for user 

access control), different formalisms and a different corresponding language might be exploited to specify the same 

type of information.             

2.2.2 Extension: SaaS Modelling 

Currently, concerning deployment/allocation, CAMEL only covers allocation decisions for the hosting of application 

components to VMs. However, the main requirements originating from the project require: (a) allocation decisions 

to cover additional layers in the cloud computing stack; (b) the respective lifecycles of the components at these 

layers to be properly handled.  

As a first extension to CAMEL attempting to satisfy the above requirements, the deployment meta-model in CAMEL 

was expanded towards the specification of allocation decisions related to the WfaaS and SaaS layers as well as 

the coverage of SaaS and internal service components. In the sequel, we explain in detail these two types of 

extensions. 

In order to prepare for the forthcoming extensions towards covering the modelling of PaaS components, a 

Component in the deployment meta-model is now further classified into internal and external components. Internal 

are software components of the application or BPaaS workflow at hand. On the other hand, external are 

components mapping to SaaS, PaaS (not currently modelled) and IaaS services (i.e., mapping to VM concept in 

the meta-model).  

A SaaS service is related to: (a) the set of BPaaS workflow tasks for which it can realise the respective functionality 

(mapping to an attribute of type String that can take multiple values mapping to the IDs of these tasks) and (b) a 

particular ID mapping to the respective entry in the atomic service registry in the main CloudSocket prototype. Such 

an ID can be a normal identifier or a URI (both can be used as the type of the respective attribute is just a String). 

In this sense, any kind of service repository can be catered from which we can identify and obtain information for 

the particular SaaS at hand. Please consider that this is usually an abstract SaaS and not a concrete one. This 

means that it maps to an abstract functionality that needs to be concretised at the instance level. However, we also 

do allow specifying a concrete SaaS in order to cover all possible scenarios in CloudSocket concerning the 

concretisation of abstract BPaaS workflows. Such scenarios can be static which indicates that a concre te SaaS 

has already been identified or more dynamic where we just indicate an abstract functionality and then indicate at 

allocation specification time how this functionality can be concretised either in a vague or quite specific way. Vague 

means that we specify a concrete SaaS but do not explicate which endpoint from those available (mapping to its 

instances) will be exploited; specific means that we also choose the particular endpoint to be exploited.   

Covering the case of internal service components, we have also modelled the InternalServiceComponent class, 

which is a subclass of InternalComponent. This indicates that an internal service component is a kind of software 

component that also inherits the respective information pertaining to software components like the ways to configure 

them. As such, the lifecycle of service components is also handled in a uniform manner as in the case of any other 

software component. Of course, some differentiation can exist which actually concerns the instance level in te rms 

of issuing different commands in order to handle the lifecycle with respect to other types of components, like 

databases. In this class, we have also modelled specific additional information which relates to the type of the 

service (SOAP or REST), mapping to a member of a new enumeration called ServiceType, plus allocation 

information equivalently specified as in the case of SaaS (IDs of tasks for which the functionality can be realised).  

To cater for the instance level, the same classification (as in the type level) has been enforced. This means that 

component instances are further classified into internal and external component instances. The external component 

instances now map to SaaS and VM instances. A SaaSInstance is mapped to a set of endpoints, which indicate 

the different instances of a SaaS that are available in order to realise the functionality of a BPaaS workflow task. In 
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case that one endpoint is provided, this means that the allocation decision is fixed for the respective abstract BPaaS 

workflow task(s). In case of multiple endpoints, the allocation is not actually fixed and has been determined at 

deployment time when additional information is available. For instance, as each endpoint is location specific, it 

might be the case that we need to know the location of the BPaaS customer in order to select the SaaS endpoint 

that is closer to this customer.  

Similarly, the InternalServiceComponentInstance class has been realised which just indicates the endpoint from 

which this instance is available. This endpoint is to be set when the respective deployment plan is executed and 

especially when the respective instance is deployed on a particular VM. We need to mention here that multiple 

instances can map to the same internal service component. This can occur when we need to split the tasks 

horizontally into partitions that are covered by different instances for load balancing reasons. To this end, each 

internal service component instance can be related to a subset of the tasks that are associated to its type. If this 

information is not provided, this means that the instance realises all the tasks allocated to its type.  

We should note here that following the design principles of CAMEL, we have made extensions that are compatible 

with the original CAMEL version in order to allow easily CAMEL to evolve without requiring modifying existing code 

of respective platforms. Moreover, we have created an initial small set of OCL constraints, which further enhance 

the semantics of the deployment domain according to the extensions that have been performed.    

2.2.3 Extension: Cross-Layer Description of Components 

In the current CAMEL meta model, a component can have multiple configurations. Any configuration is a set of life 

cycle actions represented as Strings. Unfortunately, the configurations are not annotated with any semantic 

information about how to use and execute the life-cycle actions on which platform. Obviously, this hinders the 

execution of a component across multiple cloud service levels. 

In the following, we present an approach to develop a method specifiying components in a way that will lead to the 

ability to deploy a service on cloud providers of different service levels and capabilities (IaaS and PaaS). 

2.2.3.1 Configuration per service level and ability 

Configurations of a component can have different formulations based on the service level(s) supported by the Cloud 

provider and the ability in terms of DevOps tools to manage the deployment.  

On IaaS level, a typical approach is to define the life-cycle actions directly on the operating system (OS) in terms 

of scripts. These are then executed and their correctness is evaluated via environment variables or return values. 

This approach suffers from an OS-dependent description as well as an imprecise error handling when executing 

the life-cycle actions. 

On PaaS level, there exists a numerous amount of provider-specific APIs, focusing on specifying the application 

and its environment, which are managed by the PaaS provider. There are also APIs to build an abstraction layer to 

plethora of PaaS providers, such as the COAPS API (see section 4.1.1.2), by defining a spanning format for the 

application manifest and the environment with its capabilities. 

There are also approaches between those levels that make use of IaaS providers and build up the environment for 

an application by defining its platform in terms DevOps tools like Chef8 or Puppet9. Examples for this are Scalr10 or 

Foreman11, which allow to describe nodes of your deployment by means of Chef recipes or Puppet modules. 

                                                                 
8 https://www.chef.io/  
9 https://puppet.com/  
10 http://www.scalr.com/  
11 https://theforeman.org/  

https://www.chef.io/
https://puppet.com/
http://www.scalr.com/
https://theforeman.org/
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For each service level and DevOps ability, there are multitude of variants to consider before moving from one Cloud 

provider to the other. 

2.2.3.2 Overloading the component configuration 

The first approach to solve this on the modelling side, is to allow the application engineer to specify multiple 

configurations for each service level and DevOps ability. Here, we present an extension to CAMEL, which only 

needs few adjustments to the language itself. 

Figure 4 shows the class structure for the Configuration entity referred from the Component entity, which is needed 

in this solution. It shows that the Component entity can now have attached several different kinds of Configuration 

entities. In particular, a Configuration is specialized in a ScriptConfiguration, DevOpsConfiguration and 

PaaSConfiguration. The ScriptConfiguration is expanded by life-cycle actions that are already supported by the 

Cloudiator toolset, while is almost identical to the original Configuration class in CAMEL. DevOpsConfiguration will 

be specialized to several DevOps tools, such as Chef or Puppet. In PaaSConfiguration, it will be possible to 

specialise for different PaaS providers (e.g., Heroku) but also cater for a cross-provider description, as is the case 

of e.g. the COAPS API manifest for environments and applications (see section 4.1.1.2). 

 

Figure 4 - Advanced class structure of the configurations of a component in CAMEL  

A Configuration has now also attached a ConfigurationsRequirementSet whose structure is visualised in Figure 5. 

The semantics of this entity is based on the VmRequirementSet of the current CAMEL version. This means that it 

comprises several entities that describe the requirements for this Configuration. The updated ProviderRequirement 

entity defines restrictions of the Cloud Provider for this configuration, e.g., it has to be an IaaS or PaaS provider, or 

support a certain PaaS API or PaaS abilities, such as storage- or messaging-specific capabilities. For the latter 

restriction, the current CAMEL has to be extended by additional configuration values in this class, which are 

represented by Strings in the field’s type, name and version. As with the current CAMEL version, it is still possible 

to define specific Cloud Providers as a requirement. A HardwareRequirement, has not been modified with respect 

to the current CAMEL version, and defines hardware constraints such as the number of CPU cores or size of RAM. 

An OsOrImageRequirement imposes the usage of a certain image or operating system. A SoftwareRequirement 

defines which software has to be made available for the Component to run with. By that, it will be possible to define 

a ScriptConfiguration that has no SoftwareRequirement defined, when the scripts actually install the software, 

besides a PaaSConfiguration that describes the PaaS capabilities in terms of SoftwareRequirements that are 

needed in order to run a certain component. 
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Figure 5 – The ConfigurationsRequirementSet part of the class structure 

The life cycle that is managed per Component is directly defined in the ScriptConfiguration as actions represented 

as Strings, whereas the management of life-cycle actions of DevOpsConfiguration defined by the actual DevOps 

tool. PaaSConfigurations have their life cycle pre-defined by the provider or an abstraction layer. In the latter case, 

the Configuration maps to the parameters of the predefined life-cycle actions of the PaaS providers, such as 

"createEnvironment", "createApplication", and "destroyEnvironment".  

2.2.3.3 Crushed configurations by building blocks 

Another way to realize this multi-definition of the life-cycle actions is to rely on the principle of building blocks from 

which the user plugs his application together and for each block, a description for multiple cloud-service levels and 

DevOps tools is available. This is a more sophisticated approach as we not only add additional configurations for 

the same topology, but also integrate the concept of Containerizables and Containers (cf. Figure 6). A code, that is 

an actual component of an application, can be a Container or Atom. We define Atoms as atomic services that are 

pre-configured and ready-to-use software (delivered as SaaS), which is not yet in the focus of this configuration 

model. A Container is a building block that provides a hosting platform for a Containerizable. A Containerizable is 

a template class, which is related to the Container it can be hosted in. A Container can host severable 

Containerizables. This allows the user to plug the building blocks together that he/she needs. 

 

Figure 6 - Class structure for Container and Containerizables concept  

A Common specialization for Containers is Hardware associated with a description about the essential hardware 

capabilities as CPU, RAM and Storage. An OperatingSystem is a Container as well as a Containerizable for 

Hardware Containers. A JVM is a Container as well as a Containerizable for an OperatingSystem. The OpenJDK 

for example is a specialized JVM. For the Provider, as seen in Figure 7, we need to define explicit entities for 

Containers and Containerizables, so the user is able to choose or define them on his/her own, which would then 
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mean to provide also the Configuration entities. This way, every Code (that can be an Atom, Container or 

Containerizable) has multiple Configurations attached, which aim for different Cloud-service levels. 

IaaSConfiguration remains with executable scripts and a reference to an Operating System. A PaaSConfiguration 

contains the part of the application manifest that deals with this part of the component of an application. Any 

SaaSConfiguration is to be specialized for each SaaS provider. SaaSConfiguration includes provider-specific 

mechanisms for, e.g., accounting and provisioning that is out of focus of the current research. By this structure, if 

a user uses for his VanillaSoftware the OperatingSystem Container Ubuntu, which is a parent class of 

Ubuntu_14_04, the Allocation Environment will be able to use any sub-class of this Container, which is provided 

from any of Cloud provider – implied that no other restriction is given in the deployment rules. 

 

Figure 7 - Provider model for Containers and example instances 

This approach caters for an easy-to-reuse container model by the concept of building blocks. Figure 8 shows an 

example stack of Containers and a derivation of a Servlet, which implements the actual life-cycle actions (e.g. in 

case of an application manifest) in the context of a user-defined custom application component. 

 

Figure 8 - Example for a application stack from building blocks 

In the end, the proposed modelling might serve as a meta language for CAMEL, since  the Containerization 

capabilities will be mappable to the current Hosting concept, as it will then be able for multiple components to share 

the same hosting capabilities. In addition, the very generic provider model of the current CAMEL version needs to 

be specialized by enriching it with the ability to define Components with hosting capabilities.  
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Due to the immense genericity of CAMEL's provider meta-model, a mapping to this meta-model is possible, but 

semantic definitions on how to use attributes and constraints, need to be made. Figure 9 shows a simplified example 

of how such a language construct could look like. This of course requires to have entities like Tomcat or JVM 

already defined, such that the user does not have to care for the complex Provider model needed to map the 

application deployment description to actual available offers. For such entities, we need and ontology or repository, 

such that the same terminology is adopted in defining both, the cloud service requirements and cloud service 

capabilities. This is up to be integrated in the modelling/development environment, such as the user just needs to 

provide the minimum possible information to define his/her application.  

 

 

2.2.3.4 Conclusion 

For CloudSocket we aim to be maximally flexible in choosing the right Cloud provider. This will enable us to be 

more cost-efficient by, e.g., using a cheaper hosted platform from a PaaS provider, instead of creating the platform 

on our own based on virtual machines. Other criteria for provider selection are, e.g., trust and availability. 

The first approach affords the least effort for extending CAMEL and integrating it into the current system. However, 

this approach would involve duplicate definitions of component configurations and would therefore most likely not 

be feasible as a direct interface for, e.g., DevOps engineers. As this is not the main target group for CloudSocket, 

we would most likely go this very first alternative approach and then widen the user interface capabilities. 

Using building blocks as highlighted in the second approach, will help the modeller to (re-)use the same artefacts 

across multiple applications. The idea of CloudSocket's architecture relying on building blocks, that can be 

independently used and exchanged, is reflected in the latter approach and will make it easier to be used by DevOps 

engineers, by having a way to plug their components together. 

In order to make CAMEL more usable for actual human users, a meta-language approach is feasible as described 

in the second approach. However, this would also demand a high amount of effort as this approach implies many 

changes to the CAMEL meta-model. The first presented approach aims on fulfilling the main goals of a cross-layer 

description of components, i.e., the ability to deploy the same component across multiple provider (types) and 

technically map and integrate common DevOps approaches, by as few modifications to CAMEL as possible. At the 

current stage of CloudSocket, DevOps are not the main target user group of the project. In addition, CAMEL is not 

used as a direct interface for the user, but created in a semi-automatical way. Evaluating these priorities and 

characteristics, we suggest going for the first approach. The effort for huge modifications to cater for DevOps 

engineers does not give much of a benefit to the project at the current stage. 

Application “Example”: 
 MyServlet [quantity: 1- 10] /* '[]' denotes further configuration and  
      set of requirements */ 
 Loadbalancer [quantity: 1] 
  -> MyServlet /* '->' denotes communication */ 
 
Component “MyServlet”: 
 Servlet [/* custom manifest and custom  

life-cycle action scripts,  
means here IaaS and PaaS  
deployment is possible */] 

 Tomcat[version: [3.1; 3.3-40]] 
 JVM[version: [7-8]] 
 OperatingSystem[LINUX] 
 Hardware[CPU:[1-4]] 
  
Component “Loadbalancer”: 
 Nginx [ /* custom life-cycle action scripts, means here only IaaS */] 
 Image[Image_X] 
 Hardware[CPU:[1-4]; RAM:[4-8]] 

 Figure 9 - Simplified application description 
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2.3 OWL-Q 

OWL-Q [6] is a prominent semantic service specification language that covers completely the non-functional aspect 

by allowing the description of quality models as well as quality specifications. It has been carefully designed into 

different facts, which cover various aspects in the definition of non-functional terms and specifications. Quality 

models are specifications of quality terms, like quality metrics, attributes and groups, which cover the relationships 

between these terms. For example, a quality model can specify the group of performance, which can include the 

quality attribute of response time as well as the mean response time metric able to measure this attribute. Such 

quality models can be regarded as standardised vocabularies covering domain-independent and domain-specific 

quality terms that can be used in the specification of quality capabilities or requirements in quality specifications.  

Based on the survey in [16], OWL-Q has been considered as the most prominent service quality description 

language which has the major drawback of being quite lengthy. In addition, by considering the context of this project, 

this language needs to be extended in order to cover: (a) the consideration of components in all possible layers; 

(b) the specification of SLAs as a special kind of non-functional service specifications. Through satisfying the 

requirement in (b), OWL-Q can be considered to apply across the whole service lifecycle and not just the service 

description and discovery activities. This is the main advantage of having the ability to specify SLAs. However, this 

also must be properly supported through modelling all the necessary information to support the remaining lifecycle 

activities. As such, OWL-Q has been updated in order to alleviate all these aforementioned issues. In the sequel, 

we explain shortly what was the original version of OWL-Q and then we analyse the main extensions performed on 

it.   

Before explicating OWL-Q and its main extensions, we need to highlight a specific additional issue that might be 

raised by the conscious reader. Both OWL-Q and CAMEL seem to overlap with respect to quality term specification. 

This is indeed true but the usage of these languages in the context of this project will be complementary. O WL-Q 

will be mainly used for specifying the semantics of quality terms mapping to a vocabulary of terms that can be 

exploited in order to specify monitoring conditions and event patterns leading to the firing of scalability rules via 

CAMEL. In this sense, OWL-Q semantically annotates CAMEL and enables the lifting of the monitored information. 

In this way, such semantically-lifted information can then be exploited for the evaluation of KPIs as the Evaluation 

Environment employs a more semantic approach for supporting this and other types of analysis.  

To add to the above discussion, we should also mention that the goal of WP3 is to research and develop interesting 

research prototypes, which could be exploited by the implementation of the CloudSocket prototype in WP4. In this 

sense, OWL-Q can be used in specific research prototypes covering the monitoring of BPaaS or their components 

(see section 4.2.4), thus completely substituting CAMEL in this lifecycle activity. To this end, the synergy between 

OWL-Q and CAMEL will be surely exhibited in the main CloudSocket prototype while in WP3 we have the freedom 

to use different types of languages in order to support different types of BPaaS lifecycle activities. This is also 

evident from the fact that OWL-Q is proposed to cover SLAs in WP3 while in WP4 WS-Agreement is used for this 

coverage due to the use of the SLA Manager from ATOS.     

2.3.1 Original Version 

OWL-Q originally comprised eight facets. In addition, its design evolved around the specification of detailed class 

hierarchies in order to cover all possible sub-types of the basic quality term types. This design also included the 

specification of semantic rules in order to capture the respective domain semantics by supporting semantic model 

validation and derivation of added-value knowledge. In the sequel, we shortly analyse each facet in order to 

understand the main information aspects covered by OWL-Q. More details can be found in [23].  

Connecting Facet. This facet had the main goal to connect a quality profile, whether it covers non-functional 

requirements or capabilities, into the respective service for which it applies. Such a connection regarded that OWL-

S is used for the semantic specification of the service functional part. We should highlight here that via this 
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connection we were able to relate one service with many quality profiles mapping to the different levels of 

performance that this service could support catering for different types or classes of consumers. This facet also  

covered the specification of different types of quality attributes.  

Core Facet. This facet specified the main notions and their relationships for quality specification. It covered mainly 

generic notions with some of them being further elaborated in aspect-specific facets. Some generic properties were 

also covered like names and descriptions for any kind of notion. This facet also covered the modelling of quality 

specifications. Such specifications were categorised into quality offers and demands mapping to the description of 

quality requirements and capabilities, respectively. Quality demands were actually included in quality requests 

which also encompassed the specification of quality selection elements (i.e., preferences over quality term specified 

by the requester). Any quality specification was mapped to a set of (simple) constraints that were expressed as 

comparison expressions over one or two arguments (where argument was considered as a metric, attribute or 

metric formula).    

Metric Facet. This facet was used to specify metrics, which represent the main notions that encapsulate all 

measurement details needed for the monitoring of quality attributes. Similar categorisations with respect to CAMEL 

metric meta-model applied here which were however more sophisticated. For instance, metrics could be classified 

as either dynamic or static or as either positively or negatively monotonic. Compared to the CAMEL metric meta-

model, the notion of metric context was not totally covered and only in an indirect manner. Finally, we should note 

that metric computation formulas in OWL-Q could be specified either explicitly via respective direct language 

constructs or indirectly via the specification of such computational expressions in mathematical languages (e.g., 

OpenMath). 

Function Facet. As indicated in the previous sentence, OWL-Q had two ways to specify metric computation 

formulas. By focusing on the direct expression way, various notions were included which mainly concerned 

differentiating between how the formula is represented and how it can be applied to a specific metric. Both 

mathematical and statistical operators were modelled and could thus be exploited. 

Measurement Directive Facet. This facet included the modelling of necessary details for specifying measurement 

directives to be exploited for obtaining measurements for raw metrics. Specific types of measurement directives 

were modelled for this reason, like gauges and counts.  

Schedule Facet. This facet included the modelling of schedules which focused mainly on the frequency of 

measurement for metrics. Window-based information was not properly covered. 

Unit Facet. This facet included the specification of all notions required for the modelling of units. Three different 

types of units were considered: basic, multiples and derived. A basic unit was associated to a system of units, a 

multiple was a multiple of a basic unit, while a derived unit was a unit that could be computed from the division of 

other units. Equivalence of units as a notion was also captured in order to cover mainly the equivalences between 

basic units in different systems of units. As in the case of the metric computation formulas, equivalence expressions 

between two units could be expressed in two alternative ways (direct formulas or mathematic al expressions).  

ValueType Facet. This facet included the specification of value types mapping to metrics. It included a quite 

extensive classification. First, value types could be classified into Scalar, List-Based and NumericUnion. Scalar 

were further classified into String and Numeric. Numeric could be further distinguished into constrained numeric 

mapping to range-based numeric types with both or one limit explicitly specified (i.e., mapping to a specific value). 

NumericUnion in turn represented unions of non-overlapping numeric types.           
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2.3.2 Extensions 

Based on the aforementioned main issues, OWL-Q was extended accordingly in order to become compact as well 

as cover different layers and the specification of SLAs as needed by the CloudSocket project. In the following, we 

separately analyse the extensions into two main sub-sections covering: (a) OWL-Q necessary modifications not 

related to a new aspect; (b) the OWL-Q update as a new sub-aspect of the specification aspect to cover the 

description of SLAs.   

2.3.2.1 Core Extensions 

OWL-Q was redesigned in order to become more compact. This has lead to the production of only 6 facets which 

resulted in merging some facets and in deleting others. In addition, the design rationale was modified for each facet. 

In particular, more shallow classifications of concepts were maintained catering for the actual usage of the language 

and not the coverage of extreme cases. Moreover, while previous OWL-Q version took the approach of enabling 

users to explicitly state all classes of a particular instance, in the new version one class is usually enough. This is 

due to the fact that the ontology class axioms have been enriched allowing to infer the rest of the classes on which 

an instance can belong. Finally, OWL-Q was enriched with a more extensive set of semantic (SWRL) rules covering 

additional and more complicated validation scenarios as well as the generation of more extensive knowledge facts.  

We should also mention that OWL-Q caters for different modes of modelling. The first mode concerns the modelling 

of anything via the use of sub-classing and more specific ontology class axioms. In this sense, metrics like Mean 

Response Time would be modelled as subclasses of the Metric class. This mode can be quite convenient in 

producing semantic quality models that can be exploited in order to semantically annotate, e.g., the parameters 

involved in SLO conditions in SLA languages like WS-Agreement. The second mode concerns that the modelling 

of more concrete things maps to the instance level, i.e., to the instances of the core classes. In this sense, following 

the same example, Mean Response Time would be modelled as an instance of the Metric class. The advantage of 

this type of modelling is that it is more lightweight and can be used to model precisely all appropriate information 

which can be needed in subsequent lifecycle activities from service/BPaaS discovery. For example, it can capture 

specific details that can assist in the monitoring of the respective metric specified. A mixed mode could be also 

supported enabling the instantiation of more specific metric classes and the inheritance of the respective information 

specified at the class level.  

In the sequel, we shortly explain the content of the main facets of OWL-Q. More details can be found [6]. A snapshot 

of the OWL-Q facet covering all of the facets (apart from the SLA extension) is depicted in Figure 10 and Figure 

11. 

Central Facet. In comparison to the previous OWL-Q version, this facet has been simplified and a specific part of it 

was moved to the Attribute facet. Now, this facet (with concepts coloured in white in Figure 10) only contains generic 

notions, relationships between them (like compatibility and dependency) and generic properties (like value mapping 

to a value of specific XSD type). It also includes the specification of quality categories which represent meaningful  

groups or partitions of other quality terms (attributes, metrics or more specific categories). We should highlight here 

the notion of an Argument (as in previous version) which explicates the different types of arguments that can be 

used as input in a metric computation formula. As such, an argument can be a quality metric, a quality attribute, a 

service property, a value (see ValueType facet) or a formula (recursive definition).       

Attribute Facet. This facet (with concepts coloured with yellow) was also simplified with respect to the previous 

version of OWL-Q. It now includes only a small shallow classification of quality attributes. In particular, quality 

attributes can be further distinguished into composite, measurable and unmeasurable. A composite attribute 

represents a more abstract or complex attribute that can map to simpler ones. For instance, the response time 

attribute can be separated into execution time and network latency attributes. A measurable attribute can be 

measured by one or more metrics. On the other hand, an unmeasurable attribute cannot be directly measured. If it 
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is composite/abstract, this means that probably its descendants can be measured. In some cases, however, such 

an attribute, if it is concrete enough, can be associated to a specific unit and value type, thus representing a fixed 

quality characteristic. Any attribute is also associated to the level it maps to. Concerning the case of the extended 

cloud computing stack (quite relevant also in the context of this project), the following levels are relevant: IaaS, 

PaaS, SaaS, WfaaS and BPaaS.     

 

Figure 10 - Five main OWL-Q facets 

Metric Facet. Figure 10 depicts in a green colour the concepts of this facet. As in CAMEL, metrics can be considered 

as raw or composite. Similarly, raw metrics can be computed from sensors or measurement directives, while 

composite metrics from other metrics via computation formulas. Compared to the previous version of OWL-Q, we 

now explicitly cover sensors and their configuration and we resort to just one way, the direct one, to express 

computation formulas. The main rationale is that we allow any kind of interpretation and respective transformation 

of such formulas into different forms. For instance, such formulas could be translated into SPARQL queries to be 

posed on a semantic repository over (lower-level) metric measurements into order to dynamically compute the 

value of a higher-level metric. Formulas are modelled similarly to CAMEL by applying a specific function over an 

argument list. Functions can be statistical or mathematical and we provide respective classes to represent them. 

Also the notion of a MetricContext has been partially included which was inspired actually by CAMEL. This notion 

is related to the notion of a metric which enables us to define multiple contexts of the same metric catering for the 

variability in metric measurement exhibited in monitoring systems. As expected, this metric context covers 

scheduling and window details concerning the frequency and size of measurements for metric computation. A 

metric is also associated to a specific unit and value type as well as to a specific monotonicity (covered this time 
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by a specific attribute). Finally, this facet covers the modelling of metric measurements which are associated to a 

specific value and timestamp. This allows us to use OWL-Q in order to populate semantic measurement databases 

which can enable different types of analysis over the measurements modelled and stored.  

Unit Facet. This facet (with concepts coloured in purple) was carefully redesigned in order to exclude details not 

necessary needed from the previous OWL-Q version (like the capturing of units of systems and basic units) as well 

as to improve some parts of the modelling. In this way, the basic root notion is again Unit which is now classified 

into Simple, Derived and Dimensionless. Simple are atomic units (like bytes) which cannot be derived from other 

units. Derived units (like bytes per second) are derived from the division of units multiplications. To this end, two 

object relations were modelled to cover the nominator and denominator part of this division named as proportional 

and inverseProportional as well as a factor mapping to a constant of double precision also required for the proper 

specification of this division. While simple and derived units are associated to a specifi c dimension (named as 

QuantityType), this is not the case for Dimensionless units (like percentage). On the other hand, any kind of unit is 

associated to a specific quantity which is associated to a certain dimension (i.e., type). For example, the dimension 

of speed can have as quantities the network speed (with bytes per second as unit) or the light speed. As such, the 

quantity is the main differentiation or partitioning factor among units of the same dimension.     

ValueType Facet. This facet (with concepts coloured in red) can be used to model value types. As the main 

subclasses of ValueType are more or less similar with respect to the previous version of OWL-Q, we focus only on 

the specific modifications performed. First, the Range class has been introduced which always have a lower and a 

upper limit, where a limit is a kind of Value. Specialised instances of values have also been modelled to represent 

positive and negative infinity. In this way, a range can have either one or both limits open. Second, a ValueList now 

replaces the List-Based class in previous version to represent a list of values of the same type. Third, the Value 

class, as already stated, has been modelled which can be classified into four main subclasses mapping to string, 

double, integer and float-based values. Actually, there are restrictions indicating that the value property that can be 

associated to each Value sub-class should map to the appropriate XSD type.    

 

Figure 11 - The OWL-Q specification facet (with concepts coloured in blue)  

Specification Facet. This facet is depicted in Figure 11. There have been particular updates with respect to the 

previous version. First, an actual renaming of some classes, like QoSSelection being renamed by PreferenceModel. 

The preference model is a tree-based structure which indicates the preferences as nodes (named as 

PreferenceElements) mapping to weights that the user has on certain quality terms. The main feature here is that 

the weights are relevant in the context of the same parent indicating the respective relative significance that each 
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term has with respect to a common reference point. For instance, by assuming that the current parent node maps 

to the quality category of Performance, the child nodes of response time and throughput can take the weights of 

0.6 and 0.4, respectively. T hese weights indicate their relative importance with respect to their category. This 

hierarchical representation suits well the Analytical Hierarchy Process [113] and can be used for the ranking of 

services after being matched against a service request or in service concretisation problems to enable the proper 

formulation of the optimisation formula. Any specification is now connected to a particular Service which can 

comprise more simple services and which has particular service properties. Each service property is a kind of 

Argument, as already stated. Any service is also related to a specific endpoint (serviceURI) from which additional 

information can be fetched about this service (e.g., a specific mechanism is employed to obtain the interface 

specification of a SOAP-based service). In this way, we connect the non-functional specification of a service with 

the functional one without being tightly coupled with a particular functional service description language.  

Any specification is associated to a Constraint. A constraint can be simple or complex. Complex constraints are 

associated to a logical combination of simpler constraints by applying logical operators like AND and OR. On the 

other hand, simple constraints are associated to a comparison operator (like GREATER_THAN), a threshold and 

an argument indicating the quality term on which the threshold (i.e., low or upper bound) should hold. Such 

constraint type is also associated to a ConstraintContext which indicates particular details concerning: (a) the URI 

of the element/object/component that is measured again catering for language independence but also for covering 

components in different layers; (b) similar information to CAMEL corresponding to the way the instance 

measurement level should be addressed (see respective description in section 2.2.1).  

To conclude, we would like to stress that OWL-Q has been substantially extended to become more compact and 

easy to exploit, it supports different modes of modelling, it covers additional validation and knowledge derivation 

cases and more importantly covers all the layers in the extended cloud computing stack.        

2.3.2.2 SLA Extension 

Inspired by the survey in [16] which indicates the inability of current SLA languages to cover the information needed 

to support many of the activities of the service lifecycle as well as by considering the current needs of the project, 

OWL-Q specification facet was extended [24]  in order to include a sub-facet, named as Q-SLA, focusing on the 

specification of SLAs. A snapshot of this facet is depicted in Figure 12. The design of this sub-facet relied on the 

main evaluation criteria of the SLA languages in [16]. These criteria map to the information that needs to be covered 

in each activity of the service lifecycle. As advocated in and shown in the following table, now Q-SLA outperforms 

all the current state-of-the-art SLA languages. 

Life-cycle 
Activity 

Criteria WSLA 
[WSLA] 

WS-A 
[WS-A] 

WSOL 
[WSOL] 

RBSLA 
[RBSLA] 

LUA 
[LUA] 

SLALOM 
[SLLOM] 

Q-SLA 
[Q-SLA] 

Description Formalism Informal Informal Informal RuleML 

Ontologies 

Ontology UML Ontology 

Coverage [p,y] [y,p] [p,p] [p,y] [y,y] [p,y] [p,y] 

Reusability yes yes yes yes yes yes yes 

Composability no fair no no no no fair 

Matchmaking Metric Definition yes no no yes no yes yes 

Alternatives impl impl impl impl no no yes 

Soft Constraints no yes no no no no yes 
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Matchmaking 
Metric 

no no no no no no yes 

Negotiation Meta-
negotiation 

poor fair poor poor poor poor good 

Negotiability no part no no no no yes 

Monitoring Metric Provider yes no yes no yes no yes 

Metric Schedule yes no no yes yes no yes 

Assessment Condition 

Evaluator 

yes no yes no yes no yes 

Qualifying 
Condition 

impl yes no no yes no yes 

Obliged yes yes yes yes yes yes yes 

Assessment 
Schedule 

yes no no no yes no yes 

Validity Period yes no no yes yes no yes 

Recovery 
Actions 

yes no yes yes no no no 

Settlement Penalties no SLO SL SL SLO SLO SLO 

Rewards no SLO no SL SLO no SLO 

Settlement 
Actions 

yes no no yes no no yes 

Archive Validity Period yes yes no no yes yes yes 

Table 1 - The evaluation of Q-SLA against more representative state-of-the-art SLA languages 

The root level concept of this facet is named SLA. This concept is a sub-concept of Specification highlighting that 

an SLA is a kind of non-functional specification. An SLA template in turn is a specific kind of an SLA. An SLA is 

associated to a validity period as well as a specific transaction and authentication protocol. It includes one more 

service levels (SLs) which represent the different performance levels that can be exhibited by the corresponding 

service and are relevant for this SLA. As such, SLs can be considered as a special kind of a composite constraint. 

A special kind of SL called MaintenanceSL was also modelled to cover the performance level of a service during 

maintenance periods. The SLA permits the transitions from one SL to another. The transition to a maintenance SL 

can occur in different ways: (a) on demand; (b) in certain periods; (c) both previous ways applying. On the other 

hand, the transition from one normal SL to another can occur when either: (a) the respective signatory entity 

requests this and is entitled to do so; (b) when certain conditions occur within a specific time per iod (such as a 

violation of a number of Service Level Objectives (SLOs)). Through this transitioning, we enable the specification 

of more flexible SLAs, which do not have to be re-negotiated when certain critical circumstances occur. For 

instance, when the service client needs to cover an additional load (e.g., due to an increase in the number of its 

customers), then he/she can indicate his/her intention to upgrade the SL offered by the respective service. As 

another example, if the service provider cannot any more guarantee the delivery of a certain SL, he/she can indicate 

that the current SL is downgraded to a lower one. This downgrading will of course have an effect on the pricing of 

the service that will be reduced.  
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Figure 12 - Q-SLA sub-facet (with concepts coloured in light blue)  

SLA usually includes a conjunction or a logical combination in general of SLOs. Each SLO is a kind of simple 

constraint for which additional information is provided. This information spans the follow ing: (a) a qualifying 

condition indicating when this SLO should hold and is valid. Such a condition may include limitations on the side of 

the requester, which can include bounds on the frequency via which requests are issued; (b) a settlement should 

apply if the SLO is violated or surpassed. A SLO violation should map to a penalty, which is expressed as a discount 

over the normal service price while an SLO overpass to a reward expressed as a small percentage of increase in 

the basic service price. We believe that both types of settlement should be considered in SLAs in order to encourage 

service providers to increase the levels of service that they provide. This will lead to additional competition between 

the providers, resulting in better products and better prices for them; (c) the obliged party/entity which should be 

responsible for the satisfaction of the SLO; (d) the services or service parts for which the SLO should hold; (e) the 

parties responsible for the monitoring and assessment of the SLO; (f) negotiation/discovery-oriented information 

indicating whether the SLO is negotiable and/or soft. Negotiable SLOs are usually included in SLA templates 

indicating those quality terms for which the value can be negotiated. Soft SLOs are SLOs that are not obligatory in 

the sense that the service client can tolerate a violation of them.  

Speaking about service clients, an SLA includes a set of RoleAssignments which indicate the roles that entities can 

play in this SLA which map to certain responsibilities. In this way, we can specify that Org1 can play the role of 

service provider in SLA1 and the role of service client/requester in SLA2. As such, we allow the same organisation 

to play a different role in different SLAs. The types of entities that have been modelled include Organisations and 

Persons. The main roles have also been modelled mapping to PROVIDER, REQUESTER and THIRD_PARTY 

(mapping to an entity that might be obliged to perform particular tasks in the context of an SLA such as SLO 

monitoring and/or assessment).  
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A SL is also associated to a specific price model from which the price of the service can be derived. A price model 

maps to a certain monetary unit (e.g., EUROS) as well as to low and upper price bounds which indicate the highest 

and lowest limits that the price of the service can reach, irrespectively of the way this price is calculated. A price 

model is associated to one or more price components which explicate the way the price can be computed for a 

specific aspect. In this way, the total price of the service would be the sum of the prices derived from these aspect-

specific components. Each price component is associated again to lower and upper price limits as well as to a price 

computation formula which is a kind of metric formula. In this sense, price can be considered as a metric that can 

be computed from other arguments, including particular features of a service. As a more concrete example, imagine 

the price for an IaaS service. This can include formulas over the computational, network and storage resources 

exploited that each can map to different price components.  

When an SLO is violated or surpassed, this violation has an effect on the price model of the respective SL and 

especially on the corresponding price component that is affected. As already indicated, for the time being, a penalty 

or reward is expressed as a percentage over the price derived from a price com ponent. In the future, we will 

consider other types or ways to compensate for an SLO violation or surpassing.  

To cater for the modelling of critical situations which need to map to the performance of corresponding actions, like 

re-negotiation or SLA cancelling, a SL is associated to one or more Settlements which capture these critical 

situations and the actions that need to be performed. Currently, we consider that settlements can be expressed for 

lower-level SLs for which either a specific amount of SLOs has occurred in total or for a specific time period.  

Finally, it has been decided that Q-SLA should follow a lightweight approach towards the capturing of SLA 

hierarchies that can well occur in the case of BPaaS. For example, a SLA for a BPaaS can involve the BPaaS 

broker and the BPaaS client while the SLA for the IaaS/PaaS/SaaS services that provide support to the BPaaS can 

involve either the BPaaS broker or client and the providers of these lower-level services. This lightweight approach 

maps to the modelling of the relatedSLA object property which relates one SLA with another one. This approach 

has been followed due to the increased complexity needed to fully specify such hierarchical SLAs and especially 

the various dependencies between the components and respective quality terms in the different levels. However, 

this decision can be modified in the near future, possibly in case a specific requirement is raised in the context of 

this project.       

2.4 Future Work 

The aforementioned sections have reported the current developments with respect to the modelling aspect for 

BPaaS allocation, execution, monitoring and adaptation. However, the project considers particular research 

directions that are going to be followed in the next period of the project. These research directions are now shortly 

analysed in separate sub-sections, which are grouped according to the sole language that they concern (CAMEL). 

2.4.1 CAMEL Adaptation 

Until now CAMEL covers only an application's scaling behaviour in terms of scalability rules that can be triggered 

to perform the respective scaling actions. However, in the context of this project, this adaptation type is restrictive 

and we need to expand on it to cover higher levels, i.e., the PaaS, SaaS and WFaaS levels in the context of CAMEL. 

For these levels, different types of adaptation actions apply and different conditions might need to be captured. In 

addition, as advocated by corresponding research results from other projects (S-Cube) and respective research 

work [106, 114], adaptation should be performed in a cross-layer and not a layer-specific and individual manner. 

This gives rise to the ability to interconnect conditions occurring at different layers as well as the actions that have 

to be performed to alleviate them. CAMEL can guarantee condition interconnection but this is not the case for 

adaptation actions. In our view, adaptation actions might have to follow a more complicated workflow rather than a 

simple one comprising just a sequence of two actions. In this sense, CAMEL needs to be extended such that it can 

specify in a direct or indirect manner such workflows. It should also allow specifying actions that need to be 
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performed at different layers. In case adaptation-based exceptions occur, it also need to supply alternative or 

compensation logic. All aforementioned extension directions will be followed for CAMEL by extending the current 

content of the SRL meta-model/language.     

2.4.2  CAMEL Semantic Annotations 

While not being a top priority for now, semantic annotations will greatly assist in two main BPaaS lifecycle activities: 

(a) adaptation and (b) evaluation. Adaptation in sense of substitution or re-composition requires to know the 

functionality of a BPaaS workflow task to be replaced. To enable an accurate substitution, this functionality should 

be semantically annotated (with annotations spanning the I/O parameters and possibly the functionality itself). As 

a SaaS usually points to an entry in the service registry, we believe that CAMEL does not need to be extended to 

cover this type of annotations. On the contrary, we believe that the service registry should be semantically 

annotated to support semantic service discovery by allowing the production of those semantic specifications that 

are needed by a semantic service discovery algorithm (see section 3.2.1). 

Concerning BPaaS evaluation, measurement information needs to be semantically annotated so as to be 

semantically lifted to cater for the main analysis goals of the BPaaS Evaluation environm ent. Such an annotation 

could be done in two different ways: (a) semantically annotating metrics when specified in CAMEL or (b) 

semantically annotating the measurements. The first way enables to indirectly connect the annotation with the 

respective measurement produced via the metric identifier while the second way maps to a direct connection. The 

first way does not require modifying the measurement logic while the second way does as the respective sensor 

should be configured with the URI of the semantic metric specification.  

Based on the above, CAMEL is going to be extended mainly as far as metric specification is concerned. Any other 

kind of annotation burdens mainly the contents of the different types of registries that are available (especially 

mapping to the description of PaaS, SaaS and IaaS services), provided that information at the higher business level 

is already semantically annotated.  
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3 ALLOCATION ENVIRONMENT BLUEPRINT 

The main goal of the Allocation Environment is to produce a BPaaS bundle out of a BPaaS design package that is 

given as input to it. Such a BPaaS bundle should contain the concrete deployment plan which will be used in order 

to guide the deployment of the BPaaS by the Execution Environment. Such a deployment plan indicates the 

allocation decisions that have been taken. Such decisions concern the usual three layers in the cloud: (a) SaaS 

services are mapped to service tasks in the abstract workflow of the BPaaS design package; (b) PaaS and IaaS 

services map to the deployment of VMs (IaaS) or environments (PaaS) which will host the internal service 

components of the BPaaS. In this sense, these decisions concretise the abstract BPaaS workflow as well as cater 

for providing an underlying infrastructure support to guarantee that enough resources are engaged for the 

deployment and execution of the concrete BPaaS workflow.  

 

Figure 13 - Allocation Environment Blueprint 

Figure 13 depicts the allocation blueprints, which will support the Allocation Environment in the required decisions. 

We believe that a step-wise approach should be followed which involves four main steps: (a) the discovery of those 

(SaaS) services that realise the functionality of the tasks of the abstract workflow in the BPaaS design package. In 

case that no single service can realise the functionality of a task, then service composition is executed to find 

suitable service combinations that do realise it; (b) the discovery of PaaS or IaaS services that satisfy the 

deployment requirements for internal service components of the BPaaS workflow; (c) the selection of one candicate 

SaaS service for each task in the abstract workflow; (d) the selection of one PaaS or IaaS from the candidate ones 

for each VM/environment in the deployment plan. We need to indicate here that the first two and the last two steps 

can be executed in parallel where the execution of the first two should precede the execution of the last two. 

Moreover, as the selection of services should reflect the satisfaction of broker non-functional requirements, we 

actually advocate that one combined algorithm should be in place in order to realise the last two steps. This is 

because the choices at the IaaS and PaaS level influence the QoS of the internal service components at the SaaS 

level and thus the overall high-level requirements that are posed at that level also influencing the selection of 

external SaaS services. In this way, a combined algorithm can guarantee the optimality of the solution derived while 

the execution of individual service selection algorithms at different levels will lead to a non-optimal solution.  
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In order to facilitate the generation of the BPaaS Bundle, the DMN Mapping describes the idea of semi-automatically 

generating parts of the CAMEL description for the actual service deployment. This will reduce the required technical 

knowledge about the cloud provider specific details and reduces the complexity for creating of the technical CAMEL 

description.  

In the following, we first provide a short state-of-the-art analysis concerning approaches in cloud service discovery 

and composition. Then, we present the two research approaches that realise the four main steps in the BPaaS 

allocation approach. The description of the DMN Mapping Blueprint follows before we conclude this section by 

drawing directions for further research in the short and long term. Short term directions will be followed and reported 

in the next version of this deliverable while long term directions might be followed but is not expected to solve 

completely the main research problem to be addressed.   

3.1 State-of-the-Art 

A comprehensive state-of-the-art analysis for cloud service discovery and composition has already been reported 

in D3.1. In this section, we just shortly supply the main outcomes of this analysis. 

Concerning cloud service discovery, we have indicated that there is a variety of approaches, which focus on 

different types of cloud services and on different aspects (functional and non-functional). For any kind of cloud 

service, approaches that employ semantics can reach higher levels of accuracy. The most promising approaches 

concerning functional SaaS service discovery [25] employ a combination of information retrieval and semantic web 

techniques. On the other hand, concerning non-functional SaaS service discovery the most prominent approaches 

come from the mixed category [26] in which QoS-based SaaS specifications are first aligned based on their QoS 

terms and then constraint solving techniques are exploited in order to perform SaaS matching. IaaS discovery 

seems to map to an easier problem and requires just the use of constraint solving techniques in order to perform 

the IaaS matching. In fact, in our view, IaaS matching looks similar to non-functional SaaS matching. This is 

because the main features of an IaaS offering can be seen as constraints on particular properties while the 

respective IaaS requests follow the same pattern. As QoS/non-functional capabilities and requirements are also 

expressed as constraints over QoS terms, in principle the same approach as in SaaS matching can be used in 

order to perform the IaaS matching. However, more sophisticated approaches can also be employed which map to 

the semantic-aware matching of feature models. Such approaches consider feature models, which can be regarded 

as more structured constraint models comprising constraints operating over the properties of features or across 

features. Moreover, feature models map to feature hierarchies. As such, they seem to match the different parts 

from which an IaaS offering can comprise.   

Functional service composition has been applied mainly in the context of SaaS services. This is qui te natural if we 

consider that, there is no meaning in composing IaaS services as usually abstract deployment plans are employed 

which comprise VM nodes mapping to a set of requirements that are then used to discover the most suitable IaaS 

services. In this way, the concretisation of abstract deployment plans is similar to the concretisation of abstract 

service plans where the selection of the best candidate IaaS service is driven by global non-functional requirements. 

Thus, by focusing on functional SaaS service composition, the proposed approaches can be distinguished into 

graph-based [27], model-based [28] and AI-based [29]. Model- and AI-based approaches are more automated but 

usually also slower than graph-based approaches. In addition, graph-based approaches seems to be able to cater 

for the variability in the workflow production by allowing the use of different types of workflow control flow elements 

apart from sequential ones. On the other hand, especially AI-based approaches can also apply semantics in order 

to guarantee a more accurate service composition result.  

Service selection as already indicated maps to the concretisation of a plan, whether this plan is an abstract workflow 

or a deployment plan. Concerning SaaS selection or concretisation, the approaches can be split into the following 

categories: (a) semantic [30]; (b) heuristic-based [31]; (c) multi-tenant-based [32]; (d) variability and multi-criteria 
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decision making (MCDM) [33]; (e) aspect-based (e.g., focusing on network issues and availability of multiple SaaS 

instances) [34]. In the context of web service selection, the second and fourth categories have been mainly 

exploited. Heuristic-based approaches enable the production of sub-optimal solutions in a faster way while MCDM 

approaches are able to produce optimal solutions but suffer from performance problems. As advocated in  [35], 

many approaches, irrespectively of their category, suffer from particular disadvantages concerning: (1) following a 

pessimistic or a optimistic approach covering the worst case or the average one and not all possible ones; (2) they 

consider that SaaS/web service offerings comprise single values for each QoS term while it i s more proper, 

especially in dynamic environments, to model offerings comprising a range of values per term; (3) user 

requirements can be over-constrained leading to no solution - such a situation should be avoided by enabling to 

violation of least possible amount of user constraints in order to still propose a solution to the user; (4) usually there 

are dependencies between the QoS terms (metrics or attributes) that are not captured. Based on these 

disadvantages, a prominent approach [35] was proposed able to solve all of them.  

In the case of IaaS selection, most of the approaches have focused on the so-called placement problem that 

regards the placement of VMs in a specific cloud. The approaches that do solve the exact problem that we are 

facing actually employ similar techniques like those used for SaaS concretisation, which was also evident from the 

above analysis. It is worth to mention that fuzzy-based [36] and stochastic learning techniques [37] have also been 

employed. The former attempts to map user-provided optimisation rules into an optimisation formula, catering for 

the fact that some users are not experts in deriving such formulas by themselves. The latter relies on the fact that 

insufficient information is considered for the IaaS selection (e.g., high-level performance goals and how they are 

mapped to low-level ones are not taken into account), which maps to supplying results which satisfy low-level 

requirements but are not suitable with respect to the expected application performance. This can be because either 

the IaaS provider may not conform to its promises or the type of IaaS service selected may not be actually suitable 

for hosting the respective application component. As such, the incremental learning approach learns from the 

previous execution history in order to improve the solutions proposed to the user.        

3.2 Smart Service Discovery & Composition 

In order to deal with the first two steps as indicated in the introductory part of this section, smart service discovery 

and composition algorithms have been developed covering both SaaS and IaaS services. In the sequel, we shortly 

analyse the respective research approach followed for each service lifecycle process by also providing a respective 

reference from which additional information and details can be found. 

3.2.1 Smart Service Discovery 

3.2.1.1 Non-Functional Service Discovery 

We have developed various smart service matchmaking algorithms, which focus on the coverage of the non-

functional aspect. These algorithms span the first (in the context of CloudSocket) [6] and third category of 

approaches (previous work) [26] in non-functional SaaS matchmaking. To remind the reader, the first category 

employs ontologies and uses subsumption reasoning in order to infer the matchmaking but is able to address only 

unary-constrained non-functional service specifications. All the developed algorithms rely on OWL-Q (see section 

2.3). So they do account for the semantics in the description of the quality terms thus catering for higher accuracy 

levels as they are accompanied by a respective non-functional service specification alignment algorithm[38].  

All the developed algorithms attempt to smartly organise the service advertisement space in order to enable a faster 

service matchmaking. They also rely on the matchmaking metric of conformance indicating that a non-functional 

request matches the non-functional offer when each solution of the offer is included in the solution space of the 

request. The algorithms of the third category transform the conformance matchmaking into constraint satisfaction 

while the algorithms in the first category transform it into ontology-based subsumption. In the first case, by having 
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each non-functional service specification transformed into a constraint model, conformance is expressed as fo llows: 

match (PD, PO) ↔ sat(PO ˄ ˥PD) = false. This means that the constraint model PD of the request matches the 

constraint model PO of the offer if and only if the constraint model constructed from the constraint model of the offer 

and the negation of the constraint model of the request is not satisfiable/feasible, i.e., it does not have any solution. 

In the second case, the conformance is expressed as follows: match (SD, SO) ↔ SD  ⊇  SO , where SD represents 

the ontology specification of the request and SO the ontology specification of the offer. 

In the following, we first shortly analyse the architecture of the research prototype developed and then we describe 

each algorithm classified based on the two concerned categories. In the end, there is a discussion of which 

algorithm to select for different circumstances. 

3.2.1.1.1 Prototype Architecture 

The architecture of the consolidated system is shown in Figure 14. The actual matchmaking and registration 

processes are analysed in the following sub-sections as they map to details that are specific for each category of 

algorithms. The analysis now concentrates on the functionality exhibited by each component of the architecture.  

 

 

Figure 14 - The architecture of the non-functional service matchmaking prototype 

The Broker is the entry point in the non-functional service discovery system, which is responsible for the 

orchestration of respective capabilities of other components in order to realise the service matchmaking and 

registration processes. In case invalid requests are issued, this component raises an error to the user/client.  

The Constraint Solver is responsible for checking the consistency/feasibility of constraint models and employs 

different constraint solving techniques depending on the type of constraints involved [39]. Linear constraints are 

handled by mixed-integer programming techniques while non-linear ones with constraint programming techniques. 

Please note that constraint-based matchmaking is translated into constraint model consistency checking so this 

component is also exploited for matchmaking constraint-based non-functional service specifications. 

The Semantic Aligner is responsible for aligning the non-functional service specifications issued by mapping their 

terms to the terms of a basic Term Repository. After the mappings are derived, the alignment involves a 
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transformation of the specification to include only basic qual ity terms which is performed by the Transformer. The 

Transformer is also responsible for transforming an ontology-based specification to a constraint model.  

The Reasoner is responsible for checking the syntactic and the semantic validity of the specifications issued. It is 

also responsible for performing subsumption reasoning over an ontology (which can include two or more 

specifications). Both normal and incremental subsumption reasoning is supported.  

 The Repository Manager is finally responsible for the storage and retrieval of various artefacts that are stored in 

different repositories. These artefacts include semantic quality terms and semantic specifications stored in a 

Semantic Repository as well as constraint models which are stored in a Constraint Model Repository.  

3.2.1.1.2    Mixed Category Algorithms 

Four (existing) algorithms are exploited in this category. In the following, we first explain the main procedure 

followed for each algorithm in the context of advertisement matching and registration and then we analyse the main 

logic for each algorithm. More technical details about the exact logic, the complexity analysis and the evaluation of 

the algorithms can be found in [26].  

The usual procedure for matchmaking is that the ontology-based user specification is first checked for validity. This 

means that an ontology reasoner is employed in order to check the syntactic and semantic consistency of the 

specification. If the specification is not valid, an error is relayed back to the user. Otherwise, the user specification 

is aligned [38] based on its quality terms against a repository of basic terms that have already been encountered. 

This avoids having to perform pair-wise comparisons of a request with all the offers currently stored in order to align 

it and reduces the possible term-to-term mappings that have to be considered in the alignment. Then, the user 

specification is transformed into a constraint model which is checked for consistency. If it is not consistent, an error 

is sent back to the user. Otherwise, the constraint model produced is matched against the constraint models of the 

offers stored in the service repository.  

Concerning offer registration, the same steps as in matchmaking are performed in order to align and validate the 

ontology-based offer specification. Then, this specification is just registered based on the logic of the respective 

algorithm and especially the way it organises the service advertisement space.  

3.2.1.1.2.1 Naive algorithm 

This algorithm does not conduct any specialised organisation of the service advertisement space. In this sense, 

requests are matched against all offers registered via pair-wise comparisons. In this sense, this algorithm has the 

worst time in service matchmaking and the best for service registration as it does not have to perform anything else 

apart from just storing the constraint model of the offer in the service repository. Thus, it actually represents the 

main (performance) extremes in service matchmaking (worst) and registration (best).    

3.2.1.1.2.2 Unary algorithm 

The main logic of the unary algorithm is that it tries to organise the service advertisement space by using smart 

structures which consider just the thresholds of each non-functional service specification. A set of same structure 

instances is actually employed, each mapping to a different QoS term. As such, this means that this algorithm can 

only operate on unary-constrained non-functional specifications.  

In this algorithm, the matchmaking is performed by considering each constraint of the user request. In  particular, 

each user constraint is checked with respect to those offers that satisfy it. This results in a sub-set of offers, which 

have to be concatenated with the respective sub-set produced from the processing of the previous constraint in 

order. In this way, through set concatenation, we can reach a point where either no offer is able to satisfy all the 

constraints of the request that have been processed (so far) or all constraints have been processed and a set of 

offers matching the request have been found. As the derivation of a sub-set based on a user request is fast and 

this holds for the concatenation of sets, this algorithm is the fastest in service matchmaking.  
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Concerning service registration, each constraint of the offer is processed at a time and leads to the update of the 

structure mapping to the quality term that this constraint involves. This again leads to a quite fast service registration 

process but is not as fast as in the case of the naive algorithm.  

3.2.1.1.2.3 Subsumes algorithm 

The main idea here is that the service advertisement space is organised into a subsumption hierarchy where at the 

root we have nodes which are not subsumed by any other node and at the rest of the levels we have nodes that 

are subsumed by their parent while they subsume their descendants. An example of such subsumption hierarchy 

can be seen in Figure 15, where offer O1 subsumes offer O2 which in turn subsumes offers O3 and O4.  

 

Figure 15 - An example subsumption hierarchy 

Through such a subsumption hierarchy, service matchmaking can be fast due to the following observation: if a 

request subsumes a node, it also subsumes all the descendants of this node. In this way, we do not have to go 

down in the tree hierarchy in order to perform pair-wide comparison of the request with each descendant node.  

Service matchmaking follows the above rationale. We compare the request first with each root node. In case of a 

match, we just collect the node's descendants and we include them in the matchmaking results (along with the root 

node). Otherwise, we need to go down the tree of the current root node because there is a possibility that a 

descendant mapping to a more strict constraint model matches the request. As such, in this case, matching is 

performed in a recursive manner.  

Service registration follows a similar process as in matchmaking by starting with the root nodes. However, the 

difference now lies on the fact that we need to check all subsumption directions in a pair-wise comparison. This 

maps to covering the following cases: (a) the offer subsumes a root node but is not subsumed by it. This means 

that the offer becomes the parent of the root node and the processing continues; (b) the offer is equivalent to the 

node. In this case, it enters the node's equivalence set that maps to all offers that are represented by this node. 

The registration ends here; (c) the offer is only subsumed by the node. In this case, we have to recursively visit the 

descendants of this node; (d) the offer is not related to the node - the processing goes to the nodes siblings. 

This algorithm might have good matchmaking performance if the subsumption hierarchy has more than 2 levels 

and certainly outperforms the naive algorithm in most of the cases. However, this algorithm has also the worst 

performance with respect to service registration due to also to the need to cover both directions of subsumption.   

3.2.1.1.2.4 SubsumedBy Algorithm  

This algorithm has similar logic with the previous one. The main differentiation lies on the fact that it relies on the 

opposite relation, subsumedBy, in order to organise the service advertisement space. The main rationale is that if 

the percentage of offers being matched is always low, then matchmaking will be faster than the Subsumes 

algorithm. This is achieved by the fact that if a request does not subsume the root node of a tree in a hierarchy, 

then it does not also subsume any of its descendants.  

We do not shortly detail the service matchmaking and registration logic of this algorithm as it is equivalent to the 

previous one. We just need to indicate that this algorithm was indeed proven to be faster in service matchmaking 

with respect to the previous one when the percentage of matched offers was equal or lower to 0.3. 
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3.2.1.1.2.5 Discussion 

Based also on the review in [26], the best algorithm is the Unary one as it is more scalable than the others in both 

service matchmaking and registration are. However, as already stated, it only operates over unary-constrained 

non-functional service specifications. Thus, in case that n-ary constrained specification are involved and registration 

time is not very important, then it is recommended that the subsumes-based algorithms are exploited where the 

SubsumedBy one seems to be more suitable based on the fact that it is more probable that a small percentage of 

offers is always matched against user requests.   

3.2.1.1.3 Ontology-based Category of Algorithms 

Almost the same procedure for service matchmaking and registration is followed by the category for which we have 

developed three main algorithms [116]. The only differentiation lies on the fact that the service specifications do not 

need to be translated into constraint models but they are matched or registered based on their original but aligned 

form. Constraint feasibility is guaranteed via ontology reasoning in this case. In the following, we shortly present 

the developed algorithms and then we provide a small discussion about which one to select in different 

circumstances.  

3.2.1.1.3.1 Naive Algorithm 
The main idea of this algorithm is that we use ontology subsumption as it is. This means tha t: (a) a new offer is just 

included in the existing specification of all offers registered - i.e., one ontology encompassing all offers; (b) a request 

is temporarily included in the former ontology and subsumption reasoning is just employed in order to discover 

those offers that it subsumes. In this sense, we expect that service registration will be the fastest possible while 

service matchmaking the worst possible with respect to the other algorithms proposed, especially as ontology 

subsumption does not scale well when the size of the ontology increases. As in the case of the naive algorithm in 

the mixed category of approaches, the same different extremes actually map to this algorithm, thus also justifying 

accordingly its name.  

3.2.1.1.3.2 Incremental Algorithm 

This algorithm tries to solve the main problem exhibited by the previous one. It considers the idea that incremental 

reasoning can be employed in order to decrease the matchmaking time. In this way, registration in this algorithm is 

almost equivalent to the previous one with the sole difference that now when every X offers are registered, 

incremental subsumption reasoning is performed. Matchmaking is performed as in the previous algorithm - we 

temporarily add the request to the offer ontology but we now perform incremental reasoning. The evaluation results 

have shown that this algorithm is worse in registration time than the previous one but is better in matchmaking time, 

reducing this time to one third in some cases.  

3.2.1.1.3.3 Subsumes Algorithm 

This algorithm has exactly the same rationale as in the case of the equally named algorithm in the mixed category 

of approaches. The only difference is with respect to the way conformance/subsumption checking is performed, 

where now pair-wise ontology subsumption is employed. Compared to the previous algorithms, this algorithm has 

a far better matchmaking time. Its registration performance is worse than the naive is but better than the incremental 

from a certain number of offers registered and above (450 in the experimental evaluation performed in [116]). 

3.2.1.1.3.4 Discussion 

Based on the above analysis, the best algorithm seems to be the subsumes one, if we especially consider that 

matchmaking time is more important than registration time. This algorithm is also more stable and scalable with 

respect to the previous ones. 

3.2.1.1.4 Overall Discussion on Non-Functional Matchmaking Algorithms 

While we have indicated the cases where one algorithm from those available in an approach category should be 

selected, we need to also provide some global recommendations spanning both approach categories for which 
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algorithms have been developed. In our opinion, the mixed-based approach seems to be faster and more scalable, 

especially in the case of the Unary algorithm. In this sense, if unary-constraints are only employed in specifications, 

we recommend the exploitation of this algorithm. In case that n-ary constrained specifications are involved, then 

different algorithms can be preferred. This depends on various factors, including the implementation technology. 

We expect that if state-of-the-art constraint solvers are used, then the SubsumedBy algorithm of the mixed category 

will be the best, as it will reach a better performance level in matchmaking and registration than its respective 

counterpart in the other category. However, in our evaluation, we have experienced some scalability and 

performance problems when employing free constraint solving components. Such problems lead to nominating the 

Subsumes algorithm in the ontology-based category as the best when exploiting the Pellet state-of-the-art open-

source ontology reasoner [40]. Nevertheless, we expect that only unary-constrained specifications will be 

considered in the project and thus the use of the Unary algorithm will be the most appropriate and the one finally 

recommended.    

3.2.1.2 Functional Service Matchmaking 

Currently, we support functional service matchmaking by relying on two main algorithms. The first algorithm, called 

Alive, has been proposed in [Alive] while the other algorithm, called Simple, has been developed in the context of 

this project. Both algorithms employ information retrieval and semantic web techniques to perform the functional 

service matching and return as a result categories of matches based on the classification in [25]. Both algorithms 

require that services are functionally described via OWL-S but in the future they could adopt even other formalisms 

(by realising the respective processing or model transformation functionality needed).  

Both algorithms attempt to organise the service advertisement space in a smart way in order to speed-up service 

matchmaking. The first algorithm employs smart graphs which enable in O(1) time to retrieve the subsumption 

descendants of one node, where each node maps to a domain ontology concept. Both direct and indirect 

subsumption retrieval is supported. Via such graphs along with hash-based structures that map each I/O concept 

to the service that features it, matchmaking can be performed by retrieving for each output concept of the request 

the set of services, which produce output concepts that are subsumed by this concept. This set is concatenated 

with the respective set produced for the previous output request concept in order of processing. Thus, we reach a 

point where either the request is not matched by any service, as we end up with an empty concatenation result, or 

it is output-matched by a set of services when all output request concepts have been processed. The final set, if 

not empty, is then matched based on the user request input where the order of matching now is reversed . This 

means that we check if each input concept of the offer subsumes any input concept of the request. Now, input 

checking is performed on the fly as we expect that a quite small fraction of services is matched.  

The second algorithm follows a similar matchmaking logic with the first one. The sole difference is with respect to 

the type of structures exploited. In this second algorithm, instead of the smart graph, the whole subsumption 

hierarchy of an ontology is mapped into a hash set which covers all direct and indirect subsumption relationships 

between pairs of domain ontology concepts. Compared to the graph structure, this second structure is static and 

thus cannot handle domain ontology updates. As such, the first algorithm is more robust to changes in  domain 

ontologies.  

Concerning offer registration, the procedure is quite similar for both algorithms. They first check if the offer is 

valid/consistent, a prior step also for service matchmaking. Then, they process each I/O concept of the offer in 

order to update the respective structures. The registration process takes usually longer time than the matchmaking 

one as ontologies have to be loaded, reasoned and the respective subsumption hierarchies must be incarnated 

into appropriate structure content. On the other hand, during the matchmaking process, only the specification 

ontology is loaded while then the normal matchmaking takes place by relying on the subsumption information 

already gathered. 
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Due to its robustness as well as on the fact that the first algorithm is faster, it is selected by default in the prototype 

and is highly recommended. Evaluation results for this algorithm can be found in [41]. We just need to note that 

this algorithm has been modified to correct some minor issues that prevented it from reaching higher accuracy 

levels. In this sense, the evaluation results concerning accuracy will be better than those in [41]. 

3.2.1.3 IaaS Matchmaking 

Currently, we follow the approach that IaaS matchmaking is equivalent to non-functional service matchmaking. In 

this respect, the algorithms provided in section 3.2.1.1 also function for this type of matching. They only requirement 

is that IaaS offerings are described in OWL-Q in order to be matched. In the future, we will consider whether the 

constraint-based matching is enough or more sophisticated approaches (like semantic feature model matching) 

can be employed.    

3.2.2 Smart Functional Service Composition 

From those planning algorithms that have been proposed, we have selected the AI-based ones due to their 

capability to also handle semantics. From this category, an algorithm developed by FORTH [42] has been chosen 

which is able to address service planning by also considering the frame, ramification and qualification problems in 

service specifications. The latter problems have been acknowledged to lead to composition accuracy issues. As 

such, the selected algorithm will certainly reach higher accuracy levels, provided that the service specifications are 

rich enough and are specified based on a specific XML-based language called WSSL (Web Service Specification 

Language) [43] that has also been proposed by FORTH. However, even if service specifications are not rich 

enough, the accuracy levels exhibited by the selected algorithm will be the normal ones as in other AI-based 

planners. Other features that make this planner more appealing are that: (a) it supports service 

validation/verification apart from service composition; (b) it is also able to produce plans, which are non-

deterministic; (c) it is able to address information incompleteness due to partially observed service states.   

3.3 Simultaneous IaaS & SaaS Service Selection Algorithm 

As it has been indicated in the introductory part of this section, SaaS and IaaS selection should be performed in 

conjunction in order to take the best possible allocation decisions in all the levels involved that best satisfy the 

user/broker requirements posed. To this end, a constraint optimisation algorithm [115] has been developed able to 

perform this type of combined selection. This algorithm has been implemented based on the Choco constraint 

solver12 and the Ibex constraint programming solver13 (for the internal handling of real variables). The main features 

of this algorithm are shortly explained below: 

 It is able to consider global requirements on the overall performance of the BPaaS workflow as well 

as local requirements mapping to specific workflow tasks or nodes of the abstract deployment plan 

providing infrastructure support to this workflow. 

 It is able to consider both high-level and low-level security requirements and capabilities. High-level 

security requirements and capabilities are represented by security controls while low-level security 

requirements and capabilities are represented by constraints on security-based (quality) terms 

(attributes and metrics). The high-level security requirements enable a coarse-grained filtering of the 

cloud service provider space while the low-level ones a more fine-grained filtering. Moreover, there is 

a connection between high and low-level security constraints in order to be able to infer how well a 

specific control is realised by a certain cloud service provider. 

                                                                 
12 choco-solver.org 
13 www.ibex-lib.org 
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 It is able to handle non-linear constraints as well as constraints on sets. The former are appropriate 

for addressing quality terms like availability while the latter are suitable for handling quality terms with 

sets as their value type (e.g., coverage of areas for a map service).  

 It is able to address over-constrained user requirements through the introduction of utility functions 

that enable the slight over-passing of the user-provided thresholds on quality terms. As such, it is able 

to produce solutions even for such (extreme) cases.  

 It considers functions, which enable the propagation of QoS from lower- to higher-levels (e.g., a 

function that indicates that the service execution time depends on the underlying resource utilisation). 

 It is able to consider cloud service offerings, which promise a range of values for each quality term 

and not just a single value thus catering for better capturing the variation of service levels in dynamic 

environments.    

 It considers two different types of placement constraints (along with their opposite formulation): (a) 

two components should (or should not) be placed in the same VM; (b) two components should (or 

should not) be placed in the same cloud. The first type of constraint is suitable when two components 

have so frequent communication that is better to place them in the same VM. The second type of 

constraints is suitable when two components have frequent communication, which can be well 

supported based on the respective network characteristics of the same cloud in order also to reduce 

costs.    

 Last but not least: It can take interesting allocation decisions when there is a different kind of variability 

in realising a particular functionality. In case that one functionality is internally supported via 

software/service components that have been already developed and externally by the existence of 

services that can be purchased, the algorithm can check whether it is more appropriate to use the 

internal component and host it in a specific well-suited cloud or to exploit an external service in order 

to realise the respective functionality.  

The input to be given to this algorithm maps to the user global quality requirements as well as to local quality 

requirements posed over the tasks of an abstract BPaaS workflow plus VM attribute constraints over the abstract 

deployment plan supporting the BPaaS workflow. In addition, the algorithm needs to know all the possible 

alternatives in terms of: (a) services realising the functionality of a task; (b) VMs supporting the hosting of internal 

service/software components; (c) design choices with respect to some tasks based on the afo rementioned 

allocation variation in the last bullet. The algorithm also needs to know the relative priority of one quality term over 

the others. In order to achieve that, the Analytical Hierarchy Process [45] is followed in order to derive a set of 

weights mapping to the desired global quality terms whose sum should equal to 1.  

Based on all the above input, the algorithm c reates a specific constraint problem and solves it via employing the 

aforementioned constraint solvers. While multiple objectives are given to this problem, through the assistance of 

the term-to-weight mapping, it can associate it to a single objective one which includes the following optimisation 

formula:  
1

*
Q

q q q

q

maximize w uf val


 
 
 
  (where q is the index of one quality term, Q is the number of all 

quality terms, wq is the weight given to this term, ufq is the term's utility function and valq is the global value that this 

term takes based on the selected solution). This formula indicates that the single problem goal is to maximise the 

weighted sum of the application of each quality-term-specific utility function to the global value that the respective 

quality term obtains according to the specific solution selected. This global value relies on the respective quality 

term values that the workflow tasks exhibit, the aggregation type of the quality term as well as the workflow structure. 

In this way, as cost is additive and does not depend on the workflow structure; the global cost value will be equal 

to the cost of all tasks. On the other hand, as availability is multiplicative, by considering that the workflow maps to 

one task execution sequence, the global availability value will be equal to the product of the availability values of 

all tasks involved in this sequence. In overall, the derivation of this global value is regulated by the following 
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equation:  q

q q ival f val  (where fq is a function mapping to the aggregation procedure of the q quality term 

and 
q

ilval  is the value that this term takes for the i-th task in the workflow).  

As already, indicated, utility functions are formulated in such way that they map to enabling a slight deviation with 

respect to the range of values requested for the specific quality term. Depending on the term monotonicity, different 

functions are used which have a similar form. The formulation of these utility functions was inspired by the work in  

[35]. More details can be found in [115].   

Three main decision variables are considered in this problem which also map to respective constraints. These 

regulate: (a) whether we select an internal service component or an external service to realise the functionality of 

a task; (b) whether a particular VM offering of a specific cloud provider from all candidate ones is selected in order 

to host an internal service component; (c) whether a particular service from the candidate ones is selected to realise 

the functionality of a BPaaS abstract workflow (service) task.   

As already mentioned, we need to have a mapping from the QoS of a low level to the QoS of the higher level. Such 

a mapping is expressed via the following formula that connects a quality term of a workflow task to the QoS of the 

component used to realise it:  * , , (1 )* *q q q

i i i i i i i il il

l

val y f core mem store y z val
 

    
 
 (where yi represents 

the decision of whether we select the internal service component realising the functionality of the task, 
q

if  is the 

function mapping the QoS of the internal service component to the QoS of the VM used to host it), corei, memi, 

storei represent the amount of cores, memory and disk storage size of the VM used to host the service component, 

zil represents the decision of whether we select a particular external service to realise the functionality of the task 

and 
q

ilval  is the term value for this external service).  

The amount of cores and the sizes of memory and disk storage are computed from the following formula (where 

xijk represents the decision of whether k VM offering from cloud j was selected to host the component realising the 

functionality of task i): 

 

*

*

*

i ijk jk

jk

i ijk jk

jk

i ijk jk

jk

core x core

mem x mem

store x store













 

This formula indicates that these characteristics are derived from the respective characteristics of the VM selected 

to host the internal service component.   

Pair-wise placement constraints for the same VM are expressed via the following form: 'ijk i jk
x x where i and 

i' are the indices of the components to be hosted on the same VM. This expression indicates that the same allocation 

decision concerns both components. The pair-wise placement constraints for the same cloud are expressed as 

follows: 'ijk i jk
k k

x x  . This expression indicates that a decision must be taken for two components 

which involves the selection of VMs in the same cloud.  

More details about the whole formulation of the constraint problem can be found in [115] as we desire not to 

overwhelm the reader.  
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The algorithm has been also evaluated. The initial evaluation results show that a more optimal solution is reached 

with respect to solving two individual IaaS and SaaS selection problems. It also indicates that while the constraint 

problem size is bigger with respect to the corresponding problem for IaaS selection, the solving time of the combined 

selection algorithm is less than that of an IaaS selection algorithm. Finally, the evaluation indicates and validates 

experimental results from other research propositions which signify that the more is the size of the placement 

constraints, the less is the time needed to solve the combined service selection problem. This means that the 

deployment plan should be rich enough in order to enable a faster selection time by including many placement 

constraints, when such constraints can be applicable. However, please have in mind that the modeller should be 

careful not to pose many placement constraints as it also risks reaching the situation where the constraint problem 

produced is infeasible.  

Finally, we would like to mention that in case the low-to-high level mappings cannot be expressed, the algorithm 

can still perform the different types of selection in an individual manner as this would make more sense. In this 

sense, it can be configured to perform just one type of selection and the user will be then responsible on the exact 

method to follow in order to coordinate the execution of the individual selections to be performed.   

3.4 DMN to CAMEL mapping 

Whereas the tool support in modelling and orchestration of cloud applications has been risen for the technical 

experts, including DevOps tools like Chef or cloud orchestration tools like Cloudiator, business experts still require 

technical assistance for consuming cloud services. Therefore we propose a novel approach to support business 

experts in consuming cloud services based on higher-level business values. As introduced in chapter 2.2, CAMEL 

allows the specification of cloud applications with respect to deployment, monitoring, scaling, cloud provider 

offerings, and security. Whereas a technical expert has the required knowledge in these areas, a business expert 

comes with a higher business view. 

The Decision Model and Notation (DMN) [46] standard is a way to model decisions by the means of tree-based 

decision tables.The novel approach is to integrate DMN into the modelling environment ADOxx14, in order to semi-

automatically generate CAMEL models that comply to the business requirements of the company and allow to bring 

dynamicity to the CAMEL models. Whereas several CAMEL models, along with the technical descriptions of the 

services, may comply with the same business process, they are basically independent and differ in the suitability 

to different business requirements. The description in the CAMEL is quite static and does not reflect decisions that 

has to be taken case-by-case for the business requirements of the companies. By having, a meta format of CAMEL 

that integrates DMN tables to dynamically reason about the actual used services and their properties, it will be able 

to ease the process of creating a BPaaS bundles that fit for a particular customer classes. This DMN-enabled 

CAMEL format will be used to create complete CAMEL models that can actually be deployed. 

Figure 16 shows the possible integration points for DMN into the BPaaS life-cycle15. Point (a) is the mapping of a 

task to a service or service composition. The parameters for mapping would be functional and non-functional 

descriptions of the task and service. Point (b) is the mapping between a service and a deployment description. For 

this decision, the consideration of the SLAs of the customer and the properties of the cloud provider is necessary. 

Point (c) is the mapping of the DMN decision tables to the rules of the deployed workflow that decide on the service's 

behaviour on run-time. 

                                                                 
14 https://www.adoxx.org/live/web/cloudsocket-developer-space/space  
15 https://www.cloudsocket.eu/common-understanding-wiki/-/wiki/Main/CloudSocket+Process+Terminology  

https://www.adoxx.org/live/web/cloudsocket-developer-space/space
https://www.cloudsocket.eu/common-understanding-wiki/-/wiki/Main/CloudSocket+Process+Terminology
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Figure 16 - Integration points for DMN into the BPaaS process. 

 

The first approach for introducing DMN into the CAMEL creation focusses on (b). As business experts still requires 

technical assistance for consuming cloud services, our approach aims to create a way to semi -automatically handle 

the service selection and configuration based on high-level parameters. 

Our approach enables the modelling of cloud applications by using non-technical business values, which will be 

mapped to a technical CAMEL model, by using Business Knowledge Model (BKM) in combination with Decision 

Tables (DT). 

We use a modelling environment to support the editing of DMN models, such as ADOxx16, in order to program the 

application deployment. The modelling environment will allow creating a meta-model on top of CAMEL including 

DMN references in a CAMEL model. These DMN references link to a set of DTs for each sub-set of CAMEL, e.g. 

the cloud provider offering for a given service. Each placeholder receives a set of business values as input for the 

referenced DTs. The referenced DT span a tree of DT s connected by their in- and outputs. The final output will be 

put in that place in the CAMEL model. 

That means business experts define parameters that are important for a given task from a business view, which 

serve as input for the root DTs. A technical expert decides on how this influences the selection of services by 

defining the correlation to the service offerings with respect to specifying the output of the DT s that may serve as 

input for higher-level DTs. Currently, we assume this as a manual task and leave the semantic annotations for the 

semi-automatic generation of such DTs as future work.  

In the top DT of such a tree, the output is the actual selection with respect to the CAMEL-part that was to be 

reasoned about. 

3.4.1 DMN Mapping Scenario 

In the following we present a sample scenario identifying an appropriate cloud provider by mapping business values 

to the concrete CAMEL specification for the cloud provider. 

We have chosen the CloudSocket use case of the Christmas Card Designer. In our sample scenario, two 

companies use identical workflows and services but with different business needs with respect to expected parallel 

customers and privacy level.  

                                                                 
16 https://www.adoxx.org/live/web/cloudsocket-developer-space/bpmn-and-dmn-tool  

https://www.adoxx.org/live/web/cloudsocket-developer-space/bpmn-and-dmn-tool
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Company A wants to serve up to 100 customers with a high data privacy level, whereas company B wants to serve 

up to 1000 customers with a low level of data privacy. 

A business expert defines the set of input variables, which might also be extracted from the knowledge space of a 

business requirement analysis that feeds the decision tables. In the case of our scenario, the selected output values 

will be mapped to the technical selection of the IaaS provider to host the application. 

While the selection of an appropriate IaaS provider typically requires a technical expert considering characteristics 

like location, the cloud deployment model or virtual machine offerings, a business expert will consider higher level 

parameters as privacy level or number of expected customers. In order to select an appropriate IaaS provider model 

for the card designer service, we combine multiple DMN tables to transfer the business needs privacy level and 

expected customers into technical parameters, which map to the cloud provider model of CAMEL. 

 

Figure 17 - DMN-to-CAMEL mapping. 

An illustration of this approach is provided in Figure 17 comprising the business needs as input, an exemplary set 

of DT with the BKMs. We only use the three decision tables, Cloud Type Decision, VM offering Decision and Cloud 

Provider Decision, in order to keep our approach comprehensible. Each decision table is defined by the respective 

BKM. Each BKM is reusable and needs to be defined beforehand by a technical expert. 

A simplified DT in DMN notation17 is shown in Table 2. 

Hit Policy 

C 

Input 

Privacy Level 

Output 

Cloud Type Continent 

1 Low public US 

2 Low public Europe 

3 Medium private US 

4 Medium public Europe 

5 Hight private Europe 

Table 2 - Cloud Deployment Type DT 

                                                                 
17 http://www.omg.org/spec/DMN/1.1/  

http://www.omg.org/spec/DMN/1.1/
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Based on the passed privacy level it maps to a list of tuples (cloud deployment type, continent). The resulting output 

is combined with the output of the VM Offering DT and passed to the Cloud Provider DT, which will map to a 

technical CAMEL model as depicted in Figure 17. 

3.4.2 Identified Challenges 

The presented approach covers a first set of necessities towards a dynamic description of cloud-based applications. 

However, there are some challenges that have to be examined in more detail. It is open, who creates the business 

knowledge model to feed the respective decision table. In addition, how the correlation is determined between a 

service (and its properties) and the available input parameters for a decision table. 

In order to work in a modelling environment like the one mentioned above, a meta language upon CAMEL has to 

be defined, to handle the integration of DMN into CAMEL. A way is needed to transform from a non-runnable 

CAMEL to a fully self-contained CAMEL model. 

A definition of semantic annotations and their mapping to lower level requirements is needed. For example, if the 

modeller decides on the type of input parameters, such as number of users or region, the system  must know how 

this relates to a certain service or a property of a service. 

It is not challenging for the region, since you can obtain the meta-information region from the service as it is, so this 

is a very simple mapping. However, for the number of users, it is more complicated to define the relation of this 

parameter to the properties of a service. Having said that, there is a need to meaningfully annotate the services 

and the properties that can be chosen as input parameter. 

3.5 Future Research 

While current research already performed in the context of BPaaS allocation can be considered quite fit to the 

purposes of the desired functionality, there are still some pending issues that will drive the short and long-term 

research to be pursued by the project partners. The issues are analysed in the following in separate sub-sections. 

3.5.1 Combined Service Discovery 

While service discovery algorithms focusing on a specific description aspect (functional or non-functional) have 

been developed and can be integrated into a combined service discovery research prototype, it is still pending to 

investigate the way these algorithms can be combined to realise a complete service matchmaking functionality. 

This is due to the fact that different combinations of aspect-specific algorithms can lead to different trade-offs 

between matchmaking and registration performance.  

3.5.2 Overall Service Concretisation Method 

While this section has unveiled the pieces that need to be integrated together to support the abstract to executable 

workflow mapping, there is a need to define a method that not only appropriately integrates them but also 

coordinates them accordingly. This can be done by checking what are the cases to be covered (e.g., M -1 or 1-1 

task-to-service mapping) and what can be the required interaction from users and the input than c an be provided 

by them. This method can also benefit from extensions of existing algorithms in order to cover initially not planned 

functionality as the one needed for service plan selection.  

3.5.3 QoS Mapping Derivation 

As indicated in section 3.3, the respective algorithm proposed requires that specific functions are derived indicating 

how QoS at the lower levels (IaaS) propagates to QoS at higher levels (SaaS). This m apping is valuable for 

investigating those IaaS services that are better suited for hosting internal services components covering some of 
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a BPaaS workflow's functionality. In fact, it has been increasingly reported that VMs with similar characteristics, 

offered in different clouds, tend to map to different component performance. To solve this problem, various type of 

techniques have been proposed like benchmarking and performance model learning [117]. Thus, it has to be 

investigated which technique is the most appropriate one to be exploited in the combined service selection algorithm 

and whether it needs to be extended accordingly.    

3.5.4 PaaS Consideration in Discovery & Selection 

Another direction to be pursued concerns how PaaS services can be exploited in service discovery and selection. 

By considering that PaaS can cover the functionality of particular components, like databases, and component 

hosting, it seems that PaaS is more appropriate to be considered as a potential replacement of IaaS services. As 

such, PaaS requirements can be inserted in abstract deployment plans to drive the infrastructure support to a 

BPaaS workflow. We believe that the handling of PaaS is more or less similar to the way IaaS services are handled. 

However, special care must be placed at the selection algorithm due to the additional level inserted which can 

further increase the complexity. Moreover, issues concerning how to derive PaaSs performance and map it to the 

performance of components hosted by them are also relevant. Finally, the use of PaaS might also lead to employing 

more advanced matching of features models for IaaS and PaaS discovery.  

3.5.5 Rich Service Specification 

In the current situation at the service world, services are described just based on their respective interface. This 

leads to structural specifications which do not cater for high accuracy in service discovery and composition.  To 

solve this problem, after such specifications are gathered, there is a need for semantic annotators that map the 

service I/O and offered functionality to concepts from a domain and task ontology. As such, we will investigate using 

or extending an automated service annotation approach so as to cover both types of annotations.   

3.5.6  Formalism Transformation 

Each algorithm exploited for BPaaS allocaton relies on a certain service specification language. The functional 

service matchmaking algorithm relies on OWL-S, the non-functional ones on OWL-Q while the service planning 

algorithm on WSSL. As service specifications can be described in different languages from those expected, it might 

be decided to develop transformation functionality to enable transforming service specifications in the language 

expected by the respective algorithm. 

3.5.7 Service Filtering    

There already exist thousands of service specifications in the real world which can benefit the realisation of BPaaS. 

However, it is expected that not all available services suit the requirements of the broker as such services must be 

offered only from reliable and trustworthy cloud service providers. As such, service filtering algorithms are needed 

before service specifications enter the respective registries by considering suitable reliability and trust metrics which 

are derived based on: (a) the existence of formal contracts or SLAs guaranteeing a certain quality level for these 

services; (b) past performance or feedback from users or cooperating partners with the broker; (c) certain 

characteristics of the cloud provider (e.g., size, service variety, market share). 

3.5.8 Semantic annotations for DMN Mapping 

As mentioned above, a decision process via DMN, can also be applied to reason about the mapping between task 

and service, as well as using DMN as high-level language for the rule part of CAMEL, i.e., the SRL. For the first 

mapping, it is required to have semantic annotations for the functional and non-functional requirements for both, 

the task and the service, as described in D3.1. For the latter usage of DMN, we need to specify semantics for the 

SLAs and their correlation to adaptation actions, in order to automatically generate SRL rules and actions from the 

definition of a DMN decision table. 
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Semantic annotations will also support to ease the process of realizing the integration of DMN into CAMEL by the 

means of a modelling environment like ADOxx. This is, because of the semi-automatic generation of decision tables 

by the available input parameters, generated from the semantics of the service, one wants to reason about. 
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4 EXECUTION ENVIRONMENT BLUEPRINT 

The Execution Environment is responsible to orchestrate, monitor and adapt the execution of the BPaaS bundles 

generated in the Allocation Environment, which have been published via the Marketplace. Hence, the main 

functional capability is to guarantee the execution and the suitable behaviour of the deployed BPaaS bundle. To 

this end, the environment is responsible to deploy, execute and re-configure the BPaaS Bundle to still satisfy the 

service level promised. Orchestration, monitoring and adaptation rely on the provided BPaaS Bundle specification. 

Figure 18 provides an overview of the Execution Environment components and the three main research directions. 

By focusing on the Orchestration, Monitoring and Adaptation across all cloud services levels, we are able to 

overcome current limitations and enable the execution of a holistic BPaaS lifecycle. In the following, the individual 

research assets for orchestration, monitoring and adaptation are presented. For the further components of the 

Execution Environment, i.e., Workflow Manager, Workflow Engine and Process Data Mediator, we have not 

foreseen any research challenges. Our focus lies on enabling the cross-cloud support for orchestration, monitoring 

and adaptation. 

 

Figure 18 - Oveall architecture of the BPaaS Execution Environment  

 

4.1 Orchestration 

The evolution of Cloud Computing has led to a state where the cloud paradigm has reached the mainstreams of 

software development and application operation. Nevertheless, many issues still have to be considered as 

unresolved. In particular vendor lock-in and limited auto-scaling capabilities are considered the most pressing and 

limiting aspects of cloud computing today [47]. Vendor lock-in avoids an easy migration from one cloud provider to 

another. It also avoids the parallel use of multiple cloud providers and establishes a technical barrier between 

operators and providers. In order to satisfy these demands, a powerful and reliable cloud orchestration and 

operation platform is needed. Indeed, there are multiple commercial and open-source tools available that promise 

to solve the aforementioned issues [48]. 

Whereas recent approaches focus on providing orchestration tools only for the IaaS level, the Cloud Provider 

Engine of CloudSocket aims to cover the orchestration across the IaaS and PaaS level [49]. The support of service 

orchestration over these cloud service levels enables the BPaaS paradigm via SaaS realise missing business 
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process functionalities, IaaS and PaaS provide the infrastuctures and platforms to execute business process in the 

cloud.  

This section describes the CloudSocket approach in developing a Cloud Provider Engine that orchestrates and 

abstracts cloud services not only for the IaaS but also for the PaaS level. First, an overview of the current state of 

the art of IaaS and PaaS abstraction layers and tools is provided. Second the Cloud Provider Engine, namely 

Cloudiator [50], is presented in its original state, as it was adopted from the PaaSage project. Based on this state, 

an evaluation of Cloudiator against other orchestration tools is performed, deriving the required extension to enable 

the BPaaS orchestration in CloudSocket. Finally, the required extension of Cloudaitor to enable the complete 

BPaaS orchestration are presented.  

4.1.1 State of the art 

4.1.1.1 IaaS Abstraction Tools and Platforms 

A first approach into IaaS abstraction is provided by IaaS libraries. Common representatives are Apache jclouds18, 

Apache Libcloud19 or fog20. Apache jclouds is a java based API abstracting more than 10 IaaS providers by also 

mapping their VM offerings to generic templates. In addition, it also supports a subset of these providers' storage 

APIs. Apache Libcloud is a Python based API abstracting the compute and storage APIs of more than 20 IaaS 

providers. Fog is based on Ruby and abstracts more than 15 IaaS providers. All of these libraries provide a single 

interface to users abstracting all the IaaS provider specific characteristics. By using such an abstraction layer, the 

provision and deployment of IaaS resources is facilitated which also eases the deployment of applications across 

different cloud providers, i.e., a multi-cloud deployment.   

Whereas the abstraction layer APIs just focus on the resource abstraction and provisioning, cloud orchestration 

tools follow a more advanced approach. This approach combines the resource management with the full life-cycle 

management of the applications that are typically described in a DSL. Besides the application deployment, 

orchestration tools may also exhibit monitoring and adaptation features.   

Apache Brooklyn21 is a framework for modelling, monitoring, and managing applications through autonomic 

blueprints. Apache Brooklyn provides the following capabilities: deploying to cloud and non-cloud targets; using 

monitoring tools to collect key health/performance metrics; responding to situations such as a failing node; adding 

or removing capacity to match demand22. A Brooklyn blueprint defines an application using a declarative YAML 

syntax. For example, a basic blueprint might comprise a single process, such as a web-application server running 

a WAR file or a SQL database and its associated DDL scripts. The types of supported entities are listed in the 

Brooklyn catalog23. Currently, Brooklyn uses a YAML syntax which complies with the CAMP’s one and exposes 

many of the CAMP REST API endpoints. On the other hand, an extension24 has been developed to manage TOSCA 

blueprints, but this extension is not official yet. 

Cloudify25 by GigaSpaces Technologies is offered in a free open-source as well as a paid Pro edition. Cloudify uses 

a TOSCA-aligned modelling language for describing the topology of the application which is then deployed to 

allocated virtual machines in the cloud environment. As in TOSCA, Cloudify splits the blueprint in a type and a 

template definition. Types define abstract reusable entities that are to be referenced by templates. The types 

                                                                 
18 https://jclouds.apache.org/  
19 https://libcloud.apache.org/  
20 http://fog.io/  
21 https://brooklyn.apache.org/  
22 http://brooklyn.apache.org/learnmore/theory.html   
23 http://brooklyn.apache.org/learnmore/catalog/index.html  
24 https://github.com/cloudsoft/brooklyn-tosca  
25 http://getcloudify.org/  

https://jclouds.apache.org/
https://libcloud.apache.org/
http://fog.io/
https://brooklyn.apache.org/
http://brooklyn.apache.org/learnmore/theory.html
http://brooklyn.apache.org/learnmore/catalog/index.html
https://github.com/cloudsoft/brooklyn-tosca
http://getcloudify.org/
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therefore define the structure of the template, by e.g. defining the properties that a template can have/must provide. 

The template then provides the concrete values. This mechanism is used for nodes as well as for relationships. 

Apache Stratos26 makes use of an abstract virtual machine description, named cartridge, with an application 

component type (named cartridge type) like an application runtime container (e.g. Tomcat). An application is 

described by a single cartridge or/and a set of cartridges (groups), combined with deployment and scaling policies. 

The cartridges, applications and other configurations are represented in an Apache Stratos specific JSON format. 

For the installation, it solely relies on the DevOps tool Puppet. The application itself is subsequently cloned from a 

Git repository. Stratos is installed as one central controller and in all virtual machines by having a virtual machine 

image prepared with the necessary software (Stratos and Puppet agents) installed. 

The CloudML27 approach [3]uses their DSL CloudML to describe the application. Based on the application 

description CloudMF supports the deployment and adaptation of applications across multiple cloud providers. 

Therefore they apply the models@runtime approach to align the actual application state with the desired CloudML 

state. 

The main goal of MODAClouds28 is to provide methods, a decision support system, an open source IDE and run-

time environment for the high-level design, early prototyping and automatic deployment of applications on multi-

Clouds with guaranteed QoS. The MODAClouds IDE allows the specification of cloud provider independent models 

of an application, together with the QoS to be fulfilled at runtime. This model-driven development enables 

applications to be deployed in multiple clouds –avoiding vendor lock-in–, to be monitored, and to be adapted in 

order to maintain the desired QoS. MODAClouds uses CloudML, a project that provides a domain -specific 

modelling language along with a run-time environment for the provisioning, deployment, and adaptation concerns 

of multi-cloud systems at design-time and their enactment at run-time. In the scope of the MODAClouds project, 

Tower 4Clouds was developed, a monitoring platform ready for the multi-clouds paradigm. 

PaaSage is an open source integrated platform to support both design and deployment of Cloud applications, 

together with an accompanying methodology that allows model-based development, configuration, optimisation, 

and deployment of existing and new applications independently of the existing underlying Cloud infrastructures. 

The deployment approach of PaaSage overcomes the vendor lock-in by supporting multi-cloud deployments and 

abstracting the underlying cloud providers. In contrary to MODAClouds, PaaSage integrates the CloudML DSL into 

CAMEL, a new DSL for cloud requirements, deployment, adaptation and organisations. Further, PaaSage implents 

an extensible cloud orchestration engine that executes CAMEL deplomynet plans.  CAMEL and the cloud 

orchestration engine are pursued and extended in the context of CloudSocket.   

4.1.1.2 PaaS Abstraction Tools and Platforms 

Whereas on the IaaS level, there is a relatively high common sense of what the providers offer, i.e. mainly 

computation, memory, storage and network in terms of virtual machines,  the PaaS level encompasses a more 

abstract offering, i.e. environments or containers.   

There are two categories of PaaS APIs [51]: (i) implementation API that caters for data storage, message queuing 

and similar capabilities and (ii) the deployment API that handles e.g. the container creation and configuration.  

Hossny et al. [51] describe an approach of generating adapters for a generic PaaS-API based on semantic 

annotations of the specific PaaS API. This approach focuses on the implementation APIs. This is an enhancement 

of the approach of defining a single generic API that is manually implemented for each provider API, and updated 

when the specific provider API changes. Also a common API across different database providers was proposed in 

                                                                 
26 http://stratos.apache.org/  
27 http://cloudml.org/  
28 http://www.modaclouds.eu  

http://stratos.apache.org/
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[52] In the remaining part of the section, we will focus on abstractions of the implementation API, as this is the focus 

for PaaS abstraction in the first instance of CloudSocket.  

A comprehensive taxonomy for comparing PaaS providers can be found in [53]. Kolb and Wirtz present also a 

standard profile for common capabilities of current PaaS offerings. They also propose a model for PaaS with three 

layers: infrastructure, platform and management. Moreover, based on that, PaaS can be categorized in IaaS-

centric, generic and SaaS-centric PaaS, depending on the level of provided management and possible control of 

the platform. This will be used in the decision whether an application can be deployed on a certain provider, e.g. 

since the application demands for hard requirements towards the infrastructure, that cannot be guaranteed by all 

PaaS providers. 

Sellami et al. [54] introduce (i) a unified description model allowing the PaaS provider independent representation 

of applications and (ii) a generic PaaS deployment API that is called COAPS API. It allows the specification of a 

manifest for the application and its environment, in a way that allows the deployment across multiple  PaaS 

providers. Moreover, it provides a REST -ful API for the management (createApplication, destroyApplication, etc.) 

that internally calls the APIs of the actual chosen PaaS providers. Therefore, this approach provides a generic 

PaaS life-cycle for the PaaS deployment. Similar proposal exists also for the implementation APIs of PaaS 

platforms, such as for persistent storage in [53] 

Walraven et al. propose a middleware for multi-PaaS environments called PaaSHopper [55]. Here they introduce 

an abstraction layer that offers a uniform API to the application component to communicate to the underpinning 

cloud services via the middleware. The API is defined for structured storage, blob storage and asynchronous 

execution task; it therefore targets the implementation APIs. 

Cloud4SOA29 provides an open semantic interoperable framework for PaaS developers and providers, capitalizing 

on the Service Oriented Architecture (SOA), lightweight semantics and user-centric design and development 

principles. The Cloud4SOA system supports Cloud-based application developers with multi-platform matchmaking, 

management, monitoring and migration by semantically interconnecting heterogeneous PaaS offerings across 

different providers that share the same technology. All this is done using a user-centric web interface. The 

Cloud4SOA platform provides an API to manage the lifecycle of applications in PaaS c louds; this API is not 

implemented as a single library, but its architecture is composed of a local module with the main REST service and 

a set of Remote Adapters, which handle the complexity of the interaction with the cloud provider. These Remote 

Adapters were also in charge of the monitoring of the application, providing some basic metrics like response time 

and availability. 

SeaClouds30 provides a platform to enable seamless adaptive multi-cloud management of complex applications, 

by supporting distribution, monitoring and adaptation of application modules over multiple IaaS or PaaS clouds. 

The SeaClouds GUI allows the definition of an application and its QoS from a high-level and cloud-independent 

view, and offers a set of clouds where the application can be deployed. SeaClouds embraces TOSCA, and the final 

deployment blueprint is specified in this language. Apache Brooklyn is used as deployment engine, enriched with 

a TOSCA extension, to which SeaClouds collaborated in its implementation. Once the application is deployed, it is 

monitored with the Tower 4Clouds platform, developed in the MODAClouds project. One of the results of SeaClouds 

is the PaaS Unified Library31, a library and REST service that provides simple operations for managing applications 

in PaaS providers. 

                                                                 
29 http://www.cloudwatchhub.eu/cloud4soa-%E2%80%93-bringing-interoperability-portability-paas  
30 http://www.seaclouds-project.eu  
31 https://github.com/SeaCloudsEU/unified-paas  
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4.1.2 Cloud Provider Engine (Cloudiator) 

The Cloud Provider Engine is responsible for the complete deployment and lifecycle management of all the required 

components of the BPaaS, including the management of their associated resources, e.g., VMs at the IaaS level or 

container/environments at the PaaS level. These capabilities are managed by different subcomponents of the Cloud 

Provider Engine to provide a modular, flexible and scalable architecture. To exhibit these capabilities, the Cloud 

Provider Engine is built upon existing functionalities offered through the interfaces exposed by the cloud providers 

The original version of Cloudiator [50] was developed during the PaaSage project with the focus on abstracting 

IaaS providers and enable the multi-cloud application deployment support.  

4.1.2.1 Original Version  

Cloudiator32 is a cross-cloud deployment tool that also supports adaptation and re-deployment. The deployment of 

Cloudiator features the capability to transform applications into application instances and store them  in its internal 

application component registry. The deployment specification is described in  CAMEL (cf. section 2.2).  

A general overview of Cloudiator is depicted in Figure 19 where the green entities mainly focus on enacting the 

deployment, the blue entities provide the monitoring (cf. section 4.2.3) and the yellow component enacts the 

adaptation (cf. section 4.3.2). Cloudiator consists of a home domain for which Colosseum is the entry point offering 

a JSON-based REST interface. This constitutes the background over a graphical Web-based user interface, but 

can also be used by adapters and automatisation tools. It also comprises various Cloudiator internal registries that 

store information about Cloudiator users, cloud providers, user cloud accounts, and meta-information about cloud 

offerings such as the operating systems of images. Moreover, the home domain contains a repository of application 

components together with their life-cycle handlers as well as applications composed of these components. In 

addition, the internal registries contain information about started VMs and the component instances deployed on 

them as well as about the wiring between the component instances. Finally, the workers synchronize the internal 

registries with the cloud provider information, and execute the provisioning of virtual machines or the installation of 

application components on virtual machines. The Sword abstraction layer realises the communication with the 

various cloud provider APIs based on Apache jclouds. 

 

Figure 19 - Cloudiator architecture 

                                                                 
32 https://github.com/cloudiator  

https://github.com/cloudiator
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The cloud  domain comprises all VMs at various cloud providers as well as the component instances running on 

them. In addition to that, it contains Cloudiator's Lifecycle Agent Lance on each of the VMs that the home domain 

uses in order to distribute component instances over VMs and to poll the status of the component instances to 

ensure a stable deployment. Lance manages the lifecycle of each application component based on an application 

component description derived from the CAMEL file.  

An application component description defines a set of lifecycle handlers that describe how to provision the binaries 

of the component, how to configure it, and how to run it. Other handlers capture the shutdown of the instance of an 

application running in the cloud. The lifecycle concept of Cloudiator is heavily influenced by Cloudify and CloudML 

[3]. The lifecycle can be specified as script files, command line instructions, Chef Recipes33, or Java commands. In 

addition to that, Cloudiator supports two special handlers: The start detector serves the purpose of detecting 

whether an application has started successfully. It is run after the component instance has been started and is used 

to determine when it is ready for wiring other instances. Once an application is considered running, the stop detector 

is invoked periodically in order to find out whether the application has accidentally stopped. Beside lifecycle 

handlers, a component description defines open ports that other components can use. Further, it defines ports a 

component will consume from other components. For both, incoming and outgoing ports, the cardinality of 

connections can be defined. 

4.1.2.2 Evaluation 

In the context of CloudSocket, a thorough comparison of existing cloud orchestration tools [48] against the original 

Cloudiator version was performed. This comparison unveils the need for a Cloudiator extension to enable the full 

deployment support for the BPaaS paradigm, which is currently not considered by any of the existing orchestration 

tools. In addition, the comparison has provided further input to the UULM Monitoring (cf. section 4.2.3) and 

Adaptation (cf section 4.3.2) approaches.  

The selection of the the analyzed tools is based on the particular requirements such as the availability of an open 

source version, including a documentation and an initial guideline on how to set it up. Further, the selected tools 

might also be used in other research projects, e.g. Apache Brooklyn in the SeaCloud project. We do not consider 

tools that by design only support a single cloud platform such OpenStack Heat34. 

This led to four possible tools, namely Scalr, Stratos, Brooklyn, and Cloudify from which Scalr was omitted to favour 

mere open source projects (Brooklyn and Stratos) and due to the need to support modelling standards (Cloudify) 

rather than custom formats (Scalr). 

The versions of the evaluated tools are Apache Brooklyn (version 0.7.0-M2-incubating), Cloudify (community 

edition 3.2), Apache Stratos (version 4.1.0-RC2) and Cloudiator (version 0.1). The comparison is based on feature 

sets mapping to cloud-related aspects, application-related features and non-functional requirements. An overview 

of the comparison is provided in Table 3   followed by detailed feature and result description. 

 

 

 

 

 

                                                                 
33 https://www.chef.io/solutions/devops/  
34 https://wiki.openstack.org/wiki/Heat  
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Feature Tools 

 Brooklyn Cloudify Stratos Cloudiator 

Cloud Features 

Multi-Cloud     

# of Cloud Providers jclouds 3 jclouds jclous + n 

Abstraction Layer   0  

Cross-Cloud    

External PaaS    

Cloud Standards     

BYON     

Application Features 

Model Standards 0 0  0

Resource Selection     

Manual Binding     

Automatic Binding 0   

Dynamic Binding    

Life Cycle 
Description 

    

Shell Scripts     

# of DevOps Tools 1 3 1 1

Wiring & Workflow     

Attribute & Event 
Passing 

0    

Manual Workflow    

Automatic Workflow    

External Services    

Non-functional requirements 

Discovery    

Authentication    

Multi-tenancy   0 

               = not fulfilled                                 0 = partially fulfilled                                = partially fulfilled 

Table 3 - Cloud Orchestration Tool Comparison 

Multi-Cloud Support Feature: Supporting multiple cloud providers is one of the most crucial features for cloud 

application management tools, as it allows selecting the best matching cloud offer for an application from  a diverse 

offering landscape. Cloud providers often differ from each other regarding their API. This causes the user to suffer 

from a vendor lock-in once he depends on the native API of a cloud provider. For that reason cloud, deployment 

and management tools should offer a cloud abstraction layer that hides differences, avoids the need for provider-

specific customisation, and removes the vendor lock-in. Only this feature enables a seamless change of the cloud 

provider. 
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Apache Brooklyn uses Apache jclouds as cloud abstraction layer and therefore supports many public and private 

cloud providers. Cloudify comes with plugins supporting AWS35, Openstack36 and VMWare vCloud37. It also offers 

a contributed plugin for Apache Cloudstack38. Nevertheless, Cloudify does not support an abstraction layer and 

each model needs to explicitly reference cloud provider specific features. Apache Stratos utilises jclouds as a cloud 

abstraction layer, supporting multiple providers. Yet, the abstraction is imperfect as application specifications still 

need to refer to cloud specific entities. The Cloudiator abstraction layer is built on jclouds with additional cloud 

provider support (e.g. Flexiant Cloud Orchestrator39) provided by UULM. Cloudiator allows the cloud provider 

independent resource specification. 

Cross-cloud support Feature: Enhancing the multi-cloud feature such that the user is able to deploy a single 

application in the way that its component instances are distributed over multiple cloud providers. For instance, the 

database may be deployed in a private cloud on the user’s premises while numerous instances of the application 

server run in a public cloud. The advantages of cross-cloud deployment are three-fold: (i) It allows a sophisticated 

per component instance selection of the best-fitting offer; (ii) it enhances the availability of the application as it 

introduces resilience against the failure of individual cloud providers; (iii) it helps coping with privacy and security 

issues (private vs. public cloud). 

Apache Brooklyn supports cross-cloud deployments on a per-component level: Each component can be bound to 

a separate cloud provider by referencing its configuration. Cloudify offers cross-cloud support. For each virtual 

machine defined in the model, the user can reference a different cloud provider. Apache Stratos allows the definition 

of network partitions that are logical groups of IaaS resources such as regions or availability zones. Network 

partitions enable cross-cloud scaling and deployment using policies like round robin through available network 

partitions. As Cloudiator does not link application specific entities with cloud provider specific entities a cross-cloud 

deployment can easily be achieved, i.e. an application description is completey independent from the underlying 

cloud provider. 

External PaaS Support Feature: In addition to supporting IaaS clouds, the support of PaaS clouds (e.g. 

GoogleApp Engine40) is desirable. PaaS offers ready-to-deploy application containers, thus reducing the complexity 

compared to IaaS as well as the management effort for the user. On the downside, it comes at the cost of reduced 

flexibility as the provider defines the container configuration. 

None of the four tools allows the usage of external PaaS clouds. 

Support of Cloud Standards Feature: In addition to supporting multiple cloud provider APIs, the adoption of cloud 

API standards such as CIMI [18] and OCCI [56] enables supporting any cloud provider conforming to such 

standards. None of the four tools supports any cloud API standard. 

Bring Your Own Node (BYON): BYON captures the ability to use already running servers for application 

deployment. It enables the use of servers not managed by a cloud or virtual machines on unsupported cloud 

providers. 

Apache Brooklyn supports BYON by providing an IP address and login credentials for the server. Cloudify supports 

BYON through an externally installable Host-Pool Service that works as a cloud middleware mock-up. When 

enabled, Cloudify requests IP addresses and login credentials from this service whenever it needs to provision a 

                                                                 
35 http://aws.amazon.com  
36 https://www.openstack.org/  
37 http://www.vmware.com/de/products/vcloud-suite  
38 https://cloudstack.apache.org/  
39 https://www.flexiant.com/flexiant-cloud-orchestrator/  
40 https://cloud.google.com/appengine/  
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new server. Apache Stratos does not support BYON, despite the general ability of jclouds to do so. Cloudiator can 

support BYON with the main requirement that Lance (cf. section 4.1.2.1) has to be installed on the server.  

Model Standards Feature: Supporting open standards such as TOSCA [57] and CAMP [58] for modelling the 

application topology, the component life cycles, and the interaction with a cloud management tool facilitates the 

usage of such tool and further increases the reusability of the topology definition, as it avoids moving the vendor 

lock-in from the cloud provider level to the management tool. Moreover, it reduces the in itial effort and costs to learn 

a new DSL. 

Apache Brooklyn’s YAML format follows the CAMP specification, but uses some custom extensions. Yet, it is 

possible to deploy CAMP YAML plans with Brooklyn and via the separately provided CAMP server. Support for 

TOSCA is planned for a future release. While Cloudify’s DSL for the deployment description is strongly aligned with 

the TOSCA modelling standard it does not directly reference the standard types, but instead defines its own profile 

following the TOSCA Simple Profile in YAML [2]. Apache Stratos does not implement any standard. Cloudiator’s 

concept does not follow one specific standard but due to the modular approach followed, the support of a specific 

standard is simple to realise via adapters. Currently CAMEL is supported and for future releases, a TOSCA adapter 

is planned.  

Resource Selection Feature: The resource selection is part of the application topology description. It defines the 

resources used for the deployment of a component instance in an IaaS cloud. Hence, a resource will commonly 

refer to the virtual machine type/flavour, an image type, and a provider specific location: <hardware ; image; 

location>. A tool has mainly three possibilities to define or derive such a tuple: (i) in a manual binding the user 

provides the concrete unique identifiers of the cloud entities; (ii) in an automatic binding the user defines abstract 

requirements regarding the defined tuple (e.g. number of cores). These are then bound to a concrete offer at runtime 

by the tool; (iii) dynamic binding offers a solving system that enables changes to the binding based on runtime 

information, e.g., metric data collected from the monitoring system (see section 4.1.3.1). 

Apache Brooklyn supports manual as well as basic automatic binding. For the latter it supports resource boundaries 

for the hardware. The resource selection happens either in the global or in the component-specific parts of the 

blueprint. Cloudify exclusively supports manual binding of the resources used for a virtual machine. The reference 

to a cloud provider specific node type (e.g. cloudify.openstack.nodes.Server for Openstack) has 

to be defined by the user. Due to this shortcoming, automated and dynamic bindings are also not possible. The 

resource selection in Apache Stratos is a manual process when configuring cartridges by referencing an image and 

a hardware description in an IaaS cloud. Cloudiator supports the manual and automatic binding of resources by 

providing concrete and abstract description mechanisms. Further more sophisticated resource selection concepts, 

i.e. facets and generic boundaries, will be enabled in future releases of Cloudiator. [59] 

Life Cycle Description Feature: The life cycle description defines the actions that need to be executed in order to 

deploy the application including all its component instances on started virtual machines. The basic approach for 

the life cycle description of the application is to provide shell scripts that are executed in a specific order. This 

approach can be extended to support DevOps tools such as Chef that offer a more sophisticated approach to 

deployment management and ready to use deployment descriptions. 

In Apache Brooklyn each defined type provides basic life cycle actions called effectors. These can be configured 

in the concrete application component definition. The configuration can happen either with shell scripts or by 

referencing Chef Recipes. Cloudify relies on the interface definition of TOSCA for defining life cycle actions. The 

base node type defines multiple life cycle actions as interfaces that are executed during deployment. The actions 

are defined as shell scripts or by using Chef and Puppet. Apache Stratos’ life cycle description software setup is 

delegated to Puppet. Cloudiator supports basic shell scripts and the support for Chef Recipes is in process. Further 

concepts of holistic lifecycle handling is discussed in section 4.1.2.3. 
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Wiring and Workflows: Most cloud applications are distributed applications where components reside on different 

virtual machines, e.g., the application server resides on a compute-optimised host, while the database is on a 

storage-optimised host. Hence, the modelling language needs to support a way to configure those communication 

relationships between the components by offering a way to pass the endpoint, either before the start of the 

dependant component (database starts before application server) or after (application server is added to already 

running load balancer). A straightforward approach to resolve those dependencies is attribute and event passing. 

That is, the tool allows the user (life cycle scripts) to lock/wait for attributes to become available or register listeners 

on topology change events. This is commonly achieved by a global registry shared between all component 

instances of an application. Obviously, this approach offloads most complexity to the user, who needs to, e.g., 

make sure that the database URL is only available when the database is already started. An improvement is a 

manual workflow definition. Here, the user defines a workflow taking care of the deployment order. Finally, the 

easiest way for the end user is an automatic workflow deduction, where the modelling language is sufficiently 

verbose to allow the system to automatically deduce the correct workflow from the defined l ife cycle actions on the 

virtual machines and their relationships. 

Apache Brooklyn supports wiring by attribute-and-event-passing. It offers a locking action that waits until the 

dependent service provides a required attribute. The reverse way, where a later starting service needs to 

reconfigure a running service, is not supported out of the box. Instead, the user has to implement this functionality. 

Apache Brooklyn supports neither workflow scenarios nor access to external services. Cloudify uses the 

relationship mechanism of TOSCA. It defines a generic relationship type that offers the execution of custom actions 

on either the source or the target of the relationship on specific events. Combined with a shared configuration space 

available via, e.g., a shell extension, this allows the user to configure endpoints before or after the start of a service. 

The user can implement custom workflows, making sure that the life cycle actions are executed in the correct order. 

If the user only uses the basic life cycle actions, Cloudify is capable of automatically deducing the correct execution 

order. Cloudify does not support external services by default. Cloudiator uses an extended approach of attribute-

and-event-passing that supports the reconfiguration of running services if services are added later at runtime. In 

order to ease the deployment for the user, Cloudiator automatically derives the deployment workflow from the 

modelled communications between the services. Therefore a manual deployment workflow is not supported. The 

support of external services is currently not supported by Cloudiator but as outlined in section 4.1.2.3 this is a 

planned feature for the next release. 

Discovery Feature: Discovery means that the given tool is able to automatically retrieve the different offerings 

such as images, hardware flavours and locations from the cloud providers. Having the different offers directly 

discovered by the system is beneficial to the user: It reduces the initial effort of “manual” discovery and it is less 

prone to errors such as typos. Moreover, it can be kept up to date automatically. 

Apache Brooklyn, Cloudify and Apache Stratos do not support automatic discovery. Hence, the user has to set 

cloud-specific unique identifiers by hand. Cloudiator retrieves images, flavours and locations automatically and 

updates them in its local registries in case the state changes at the cloud provider. 

Authentication and Authorisation: The cloud management tool offers a single point of attack. It stores cloud 

provider authentication information and entirely controls the application. This offers the possibility to, e.g., shutdown 

or even delete the application, but also to access the virtual machines. To protect sensitive information, the tool 

should at least offer authentication. As multiple persons in general maintain an application, it should also offer a 

multitenancy mechanism. Finally, a fine-grained authorisation mechanism, allows defining roles within the system, 

giving different privileges to different users. For instance, this allows that only a limited set of persons can shut 

down the application, while others can only retrieve monitoring reports. 

Apache Brooklyn supports authentication for the dashboard and its REST API being enabled by default. Multi-

tenancy and authorisation have been recently integrated via the Entitlement Manager. While Cloudify has all 
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security features disabled by default, it offers ways to secure the communication with its manager. The REST API 

of the manager can be secured by either password or token based authentication, securing the access via 

command line and Web GUI. Multi-tenancy is currently not supported. Apache Stratos provides users, roles and 

tenants through the Web GUI and the API. Moreover, the credentials of the underlying used IaaS cloud provider 

are only stored in configuration files and are not visible, or editable, directly through Stratos. Authentica tion and 

Authorisation in Apache Stratos exists, but presumably during development some features were disabled (e.g multi-

tenancy, roles etc.). Cloudiator supports authentication for the dashboard and its REST API, both enabled by 

default. Further, Cloudiator supports multi-tenancy. 

4.1.2.3 Extension: PaaS orchestration and abstraction layer 

As seen before, PaaS abstraction is still an open and on-going topic in current research. It can drastically decrease 

costs, by e.g. sharing infrastructure of public PaaS providers to host an application. Therefore, the integration of a 

PaaS abstraction into the Cloud Provider Engine is of major interest for CloudSocket.  

Relying on our use case of a card designer of the Greeting Cards BPaaS Bundle, we can decrease the cost of the 

deployment, since the cost of a virtual machine (IaaS level) per hour is higher than the cost of an application server 

(PaaS level). Therefore, in this use case, we can run the WAR file, i.e. the actual application, on an Apache Tomcat 

of a public PaaS provider instead of the IaaS provider. Of course, this comes with several restrictions, such as the 

limited means of monitoring and configuring the actual service.  

 

Figure 20 - Unified Life-cycle Handling in the Cloud Provider Engine 

In the current Cloud Provider Engine, there is already an abstraction layer for IaaS providers called Sword. Our 

approach is (i) to extend the state machine of the life-cycle management to cover also PaaS-specific actions and 

events, such as the creation of an environment, and (ii) to overload the description of the components as is 

described in section 2.2.3.2). This is enabled by using application manifests, instead of e.g. deployment scripts. 

Figure 20 shows an excerpt of the unified cross-layer life-cycle for Cloud providers. 

We call this PaaS abstraction layer Dagger. The life-cycle management of Colosseum is then capable of executing 

the respective calls in a provider-agnostic way as it is in Sword. Figure 21 shows the architecture of the Cloud 

Provider Engine after the integration. 
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Figure 21 - Cloudiator with IaaS and PaaS abstraction layer 

 

As Sword heavily relies on jClouds to implement calls, we target on the integration of one of the following tools to 

be used in the PaaS abstraction layer: (i) the PaaS Unified Library or (ii) the COAPS API. 

The PaaS Unified Library41 from the SeaClouds EU project is a library that provides simple operations for managing 

applications in PaaS providers: deploy, undeploy, start, stop, scale and bind service. It also includes an optional 

REST interface on top of the library, allowing the use of the library as a standalone application. The current 

supported providers are CloudFoundry v2 based providers, e.g. Pivotal, Bluemix or Canopy Cloud Fabric, 

OpenShift v2 based providers, e.g. OpenShift Online, and Heroku. It relies on the official Java clients for each 

platform. The CloudFoundry and Heroku implementations are able to deploy supplied artefacts, while the OpenShift 

implementation requires a URL to a git repository. Finally, Heroku is restricted to Java web applications. The Life-

cycle part of a specific application is implemented in the methods to start, stop and remove an application. Scaling 

is done via an additional methods that allows to change the amount of instances that are associated to a module. 

Additionally, the CloudFoundry implementation is able to scale disk and RAM. The values have to be provided by 

the user. A service management API allows binding existing services to an application where applicable. The PaaS 

Unified Library does not use a unique credentials for each cloud provider. On the contrary, each library session 

needs the credentials to be provided by the user. This allows the implementation of a service that is able to manage 

PaaS applications from multiple users, but it is less convenient if this service is supposed to act as the PaaS broker.  

The (M-)COAPS API4243 is an specification for an abstraction interface of common PaaS provider deployment APIs. 

It comes as an independent application that is run in an application server and provides a REST -ful API in terms of 

a proxy for several PaaS platforms. The supported providers are currently OpenShift, Amazon Elastic BeansTalk 

and Cloud Foundry. Implementations for the Google App Engine and Appscale are currentl y under development. 

The core life-cycle actions are very similar to the ones of the PaaS Unified Library. Table 4 shows the common 

methods of both APIs. In addition, the Unified PaaS Library has some more specific methods for the management 

of users, service bindings, security policy, scaling, monitoring and so on that are not available throughout all PaaS 

providers and therefore not considered in our very general approach for integrating a PaaS abstraction. Scaling is 

not explicitly as own methods in the COAPS API, but it is possible to change the number of instances (horizontal 

scaling) and the description of the environment (vertical scaling) in terms of updating the specific entities. In 

addition, service management, in respect of binding services of given providers to the application, is not an integral 

part of the COAPS API. However, as this is always application specific, the credentials to the service migh t be 

                                                                 
41 https://github.com/SeaCloudsEU/unified-paas  
42 http://www-inf.it-sudparis.eu/SIMBAD/tools/COAPS/  
43 The specification is released as COAPS API and later implemented and continued as M-COAPS API. 

https://github.com/SeaCloudsEU/unified-paas
http://www-inf.it-sudparis.eu/SIMBAD/tools/COAPS/
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passed via environment variables. The credentials are not managed dynamically, but have to be provided in a 

config file, that can be changed throughout instantiations of the COAPS API application. 

PaaS Unified Library COAPS API 

Create Container Creating Environment 

Update Container Updating Environment 

Delete Container Destroying Environment 

 Finding Environments 

 Describing Environment 

Retrieve Container Getting Information 

 Getting Deployed Applications 

Create Application Creating Application 

Update Application Updating Application 

Get List of Applications Finding Applications 

Manage Application Starting Application 

 Stopping Application 

 Restarting Application 

Retrieve Application Describing Application 

Delete Application Destroying Application 

 Destroying Applications 

Create Deployment Deploying Application 

Delete Deployment Undeploying Application 

Table 4 - Life-cycle Actions of the Generic PaaS Deployment APIs 

The outcome of the analysis of these APIs is that we target for the Cloud Provider Engine, the integration of the 

methods of the COAPS API in our life-cycle actions. This means the current abstraction layer, formerly solely 

represented by Sword, is extended by another component called Dagger that handles the communication with the 

PaaS providers. The state machine of the lifecycle management extended to cover all possible states; even some 

of them only needs triggering when a PaaS-layered component is involved. By that, when the state of the 

component is at install, it will call the install-method for IaaS-based components and in the case of PaaS-based 

components it will enact the following chain of commands: create environment, create application, deploy 

application. 

In respect of the final integration in the Cloud Provider Engine, there are several implementation aspects to be 

considered. The COAPS-API is stand-alone applications that runs independently of the Cloud Provider Engine in 
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an application server and is accessed by a REST interface. The PaaS Unified Library also offers a REST façade 

and it supports the usage as a plain library. By a prototypical implementation that is currently under development, 

we check the feasibility of the integration of the COAPS API into the Cloudiator framework. If this would not work 

as needed, we consider the plain integration of the methods in a novel abstraction layer with the abilities of the 

Cloudiator framework. As was already proven in the IaaS abstraction, the framework provides a rich set of features 

that handle the communication with and the management of Cloud providers in a stable and reliable way. By the 

means of the watchdog system, the advanced and sophisticated scheduling and registry components, we most 

likely achieve better results by a native integration. However, to proof the feasibility of integrating this cross-layer 

life-cycle, the first step is the integration of the COAPS API. 

Further, on, we extend the meta model of Colosseum, i.e. the main part of the Cloudiator framework, to allow 

instances to be run on containers (i.e. environment in the notation of the COAPS API). The description of containers 

features attributes, also found in the flavour part of the virtual machine entity, like RAM and Storage, but with 

additional fields, we extract from the environment manifest. In this manifest, configurations like the runtime of the 

environment (e.g. Java 7) is defined 

4.1.3 Future Research 

4.1.3.1 Dynamic IaaS Selection at Runtime 

While a deployment plan might explicate deliberately which IaaS services are going to be instantiated and host 

respective BPaaS internal service components, there can be scenarios that such a plan is not complete. For 

instance, imagine that one IaaS offering is available in multiple cloud locations. In this respect, we might desire to 

select the offering instance, which is more close to the BPaaS client in order to reduce the overall execution time 

of the BPaaS workflow. To this end, in order to cover such more dynamic scenarios, we plan to investigate a more 

dynamic IaaS selection approach where the specific VM offering or even the actual cloud location for such an 

offering is selected. To enable such type of selection, we could rely on different types of criteria. One criterion, 

already mentioned, could be the location with respect to the BPaaS client. Another criterion could consider the 

previous performance of the respective component that needs to be hosted in the respective cloud. As such, one 

issue that has to be dealt with concerns the suitable determination of the criteria that need to be used in the selection 

and can cover the dynamic scenarios that we are aiming at. The second issue is how to perform the IaaS selection. 

We can rely on a QoS-aware service matchmaking approach like the one mentioned in section 3.2.1.1. This is 

because this kind of selection includes the matchmaking of constraint-based specifications over functional 

properties of the IaaS offering as well as non-functional terms (quality metrics and attributes). Above all, of course, 

we also need to define exactly the dynamic scenarios that we need to cover. Apart from endpoint/cloud l ocation 

selection, we can also imagine that we might require to dynamically selecting a cloud offering at runtime in order to 

address prospective problems like offerings not existing any more or offerings that have become problematic due 

to various reasons. By relying on a static selection approach, such problems cannot be really addressed and can 

lead to the need of performing adaptions at the IaaS level in order to properly confront them resulting in lost time 

and increased cost. Based on the above analysis, the dynamic IaaS selection at runtime is considered as an 

interesting research direction that could be followed in the forthcoming project period.  

 

 

4.2 Monitoring 

Monitoring of a BPaaS or any kind of service is crucial for evaluating the performance of this service and be able 

to adapt it in case deviations from the expected performance behaviour are detected. To this end, the respective 

mechanisms and metrics should be in place in order to realise such monitoring by being coupled also by a 



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 69 of 118 

corresponding distributed monitoring framework. Distribution is necessary in order to handle an increased 

monitoring load especially originating from the lower layers of abstraction as well as to be able to overcome failures, 

thus paving to address issues concerning single points of failure. The metrics to be measured should be carefully 

designed in order to cover all possible requirements that can be posed on the different layers. Such metrics could 

be drawn from a repository of widely used and common metrics (i.e., the Metric Registry) while new metrics might 

need to be specified. In any case, the monitoring framework should be able to measure all the respective metrics 

needed and be extensible to address the needs of incorporating new metrics on demand. In addition, it might be 

required that such a framework is automatically reconfigured in order to address unforeseen load or modifications 

to corresponding requirements or the unexpected failure of some monitoring nodes. Finally, to address cross-layer 

adaptation (see section 4.3) and ensure the computability of all the metrics required, the monitoring framework 

should be able to propagate and aggregate measurement information across different layers by exploiting metric 

models that cover the dependencies between the different layers. Such metric models could take the form of metric 

trees, which explicate the way low-level measurements can be propagated up to the highest level producing the 

respective measurements of metrics at that level.    

4.2.1 State of the art 

In the scope of CloudSocket the monitoring applies to the three areas: (i) Quality Models, covering the monitoring 

of QoS terms in general, (ii) Service Monitoring, covering the monitoring of services and service-based applications 

and (iii) Cloud Monitoring with the focus on the cloud related monitoring challenges. 

4.2.1.1 Quality Models 

Various quality models have been proposed in the literature. They can be distinguished in general to those that are 

layer-specific, thus focusing on one layer, or cross-layer, focusing on two or more layers. Quality models can also 

be separated into those covering one or several aspects. In particular, we can see in the literature quality models 

that focus on security, scalability or elasticity aspects or models that attempt to cover them all. Based on the survey 

in [16], the quality models can be evaluated across different criteria. These criteria include the 

extensiveness/richness of the model, the coverage of both provider and requester views, the coverage of domain-

independent and dependent quality terms, the coverage of QoS and QoE quality terms, the association of attributes 

to metrics from which they can be computed, the layers covered, and the type of quality term dependencies 

captured. The analysis in this survey revealed that there is a trend towards providing more rich models which tend 

to cover many layers and not just one as well as to cover most of the comparison/evaluation criteria. Our analysis 

now focuses shortly on reviewing some layer-specific and cross-layer (cloud-based) quality models. 

The quality models in [60], [61] focus mainly on the service and infrastructure layers but not on cloud services. They 

actually cover mainly the service provider view and domain-independent QoS metrics. They do provide a mapping 

between quality attributes and metrics while the structuring of these models can be considered to be at a good level 

with moderate or good detail level.  

Cross-layer quality metrics have been proposed in [39], [62]. Compared to the previous quality models, they are 

better and cover both provider and requester views, both QoS and QoE terms as well as map to a high level of 

detail. Some trade-offs exist between these models. The model in [63] has a better detail level than the one in [64] 

but does not cover dependencies. On the other hand, the model in [62] has the best performance in all criteria but 

does not cover the specification of metrics and respective computation formulas.   

The CLOUDQUAL quality model has been proposed in [65]  which covers dimensions and metrics for cloud services 

in general. This model comprises 6 well-known main quality dimensions: usability, reliability, availability, 

responsivess, security and elasticity. However, the coverage of metrics mapping to these dimensions is quite low 

where a one-to-one mapping between dimensions and metrics is captured. 
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In [66] a cloud-based quality model is proposed which focuses on the coverage of non-functional, economic and 

technical aspects. For each aspect, a different set of dimensions and respective metrics are specified. This quality 

model seems to cover all service layers. However, we believe that the categorisation of the quality terms is more 

or less inappropriate and some quality aspects like scalability, security and elasticity are not well -covered.  

Li et al. [67]have performed a survey over metrics that can be used to evaluate cloud services and have come up 

with a quite extensive quality model. The quality dimensions covered are partitioned into two main parts: the 

physical and the capacity one. The physical one includes the dimensions of communication, computation, memory 

and storage, while the capacity one includes the dimensions of transaction speed, availability, latency, scalability, 

reliability, variability and data throughput. In addition, the authors show the dependencies between the properties 

in each part and across these two parts. Furthermore, the proposed model also covers economic, elasticity and 

security dimensions, attributes and metrics. For each quality dimension covered, multiple quality metrics are 

defined. However, many of them are benchmark-oriented and cannot be directly used by a monitoring system.   

The SMI index is proposed in [68]  which can be used to express KPIs and enable their respective assessment 

over cloud-based services. This SMI index focuses on 8 main quality dimensions: accountability, agility, assurance 

of service, cost, performance, security, privacy and usability for which 13 quality attributes are defined, covering 

response time, accuracy, availability, reliability, stability and cost and elasticity. For each quality attribute, few quality 

metrics are defined. For instance, for response time, we have average and maximum response time as well as 

response time failure. The quality model proposed seems generic enough to cover the 3 main layers in the cloud 

abstraction stack but does not provide enough details for particular dimensions and attributes.  

Various research approaches have focused on defining meaningful scalability and elasticity metrics as well as 

providing formal definitions for these two quality terms.In [69], the authors distinguish between application and 

platform scalability. Application scalability bears on an application's ability to sustain particular performance levels 

when its workload increases, while platform scalability is similarly defined as the ability of the execution platform to 

provide as many resources as needed. On the other hand, elasticity is defined as the degree to which a system 

can dynamically provision and de-provision resources in an autonomic manner to cover as closely as possible the 

current demand. Then, the authors defined two elasticity dimensions, namely speed and precision that were 

mapped to two main metrics to measure them. In [70], a new elasticity metric is defined which covers well the 

aspects of scalability, accuracy, time and cost and is computed from a function which takes into account these 4 

aspects. The function includes more simple metrics which can be computed from SLA and/or historical information. 

The authors in [71] evaluate elasticity as a financial penalty related to the under- or over-provisioning of resources 

in the context of the cloud service customers. The survey in [72] reviews various approaches focusing on the 

definition of quality metrics covering scalability, elasticity and cloud service efficiency. The approaches are 

evaluated according to whether they cover all three aspects, whether they cater for the service provider or requester 

view and whether they cover the three main layers in the cloud computing stack. Another criterion for evaluation is 

the consideration/coverage of different scalability concepts. Finally, the authors in [73] follow the goal-question-

metric approach in order to come up with metrics measuring cloud service scalability, elasticity and efficiency. The 

final quality model produced includes two metrics for scalability, namely speed and range, two metrics for elasticity, 

namely mean-time-to-quality-repair (MTQR) and number of SLO violations, and two metrics for efficiency, namely 

resource provisioning efficiency and marginal cost. 

Concerning the workflow layer (WfaaS), one of the most prominent work is the one in [11] which defines a quality 

model that covers both the workflow and task level. This quality model considers three main dimensions: time, cost 

and reliability and defines respective quality metrics for them. The metrics defined for the task and workflow level 

are equivalent but the main intuition is that the workflow-level metrics can be derived from the task-level ones by 

also considered the workflow structure. For the time dimension, the parent/root metric is task response time, which 

is broken down into a tree of more simple metrics where at the second level we have the task process and delay 

time. The task cost is the root metric in a shallow metric tree hierarchy where in the second level the total task cost 
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is split into the enactment and the realisation cost. Concerning reliability, two main metrics were defined: system 

failure rate and process failure rate.                

An interesting quality model which focuses mainly on properties and aspects that need to be measured but not 

metrics has been proposed in [74]. This quality model seems to apply mostly on the IaaS and possibly PaaS layers 

and includes the aspects of scalability, elasticity, reliability, adaptability, timeliness, autonomicity, 

comprehensiveness and accuracy. This quality model captures those properties that have to be exhibited by a 

monitoring system in the cloud. Thus, this is yet another perspective with respect to the usual one that concentrates 

on capturing the service provider and/or requester views.  

4.2.1.2 Service Monitoring 

In this sub-section, we present research work that has focused mainly on the monitoring of services. This work is 

not accompanied by a service adaptation sub-system. On the other hand, in section 4.3.1, we will also analyse 

approaches that are able to both monitor and adapt services. 

[75] presents an event-based monitoring approach, developed within the Astro project, which also extends the 

ActiveBPEL engine and defines RTML, an executable monitoring language to specify SBA properties. Events are 

combined by exploiting past-time temporal logics and statistical functions. Monitors run in parallel with the BPEL 

process as independent software modules verifying the guarantee terms by intercepting the input or output 

messages received or sent by the process. This work does not allow for dynamic (re-)configuration of the monitoring 

system in terms of rules and meta-level parameters.  

In [76] the authors present an approach towards extending WS-Agreement. This approach supports monitoring of 

functional and non-functional properties. EC-Assertion is introduced to specify service guarantees in terms of 

different types of events, which are defined in a separate XML schema and it is based on Event Calculus (EC). By 

proceeding in parallel with the business process execution, it leads not only to less impact on performance, but 

also to a smaller degree of responsiveness in discovering erroneous situations.  

A platform for developing, deploying and executing SBAs is proposed in [77],incorporating tools and facilities for 

checking, monitoring and enforcing service requirements expressed in WS-Policy notations. The Colombo platform 

comes with a module that manages policy assertions. Apart from evaluating the assertions attached to particular 

service-related entities at both design and run-time phases, the framework provides the means for policy 

enforcement, e.g., it may approve a delivery of a message, a rejection of it, or defer further processing. 

4.2.1.3 Cloud Monitoring 

Lifting monitoring to the cloud comes along with various requirements compared to traditional server monitoring 

[74]. The monitoring of cloud stack encompasses different layers that need to be monitored, i.e., operating system, 

middleware (PaaS) and the actual application. Further requirements defined by [x] are scalability and elasticity, i.e., 

the monitoring system has to handle a large number of probes and has to cope with dynamic changes of the 

monitored entities.  Tools provided by cloud providers, such as Amazon's CloudWatch44  or CloudMoniox45 suffer 

from vendor lock-in. In addition, further tools are required when data from different cloud providers shall be 

aggregated. Established open source monitoring tools such as Ganglia46 or Nagios47 are designed to monitor large 

distributed systems, but struggle with the dynamicity of cloud environments. More cloud-aware monitoring systems 

such as DARGOS [78] offer a scalable architecture with the focus on OS and customisable application specific 

metrics. Additional service levels like PaaS or SaaS are not considered in the DRAGOS approach. Further, cross-

                                                                 
44 http://aws.amazon.com/en/cloudwatch/  
45 http://cloudmonix.com/  
46 http://ganglia.sourceforge.net/  
47 https://www.nagios.org/  

http://aws.amazon.com/en/cloudwatch/
http://cloudmonix.com/
http://ganglia.sourceforge.net/
https://www.nagios.org/
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cloud monitoring and respective challenges are not addressed at all. The PCMONS [79] approach focuses on 

private cloud infrastructures with an extensible architecture to overcome the vendor lock-in on the IaaS level. 

Higher-level as well as cross-cloud monitoring is not considered by PCMONS. The monitoring system proposed by 

König et. al. [80] targets the monitoring of all cloud service levels by combining service layer specific solutions in 

an integrated monitoring system. Its architecture is based on a peer-to-peer system to provide scalability and offers 

a set of aggregation levels for the gathered monitoring data. This aggregation is provided in a static way and does 

not allow to be changed dynamically at run-time.  

The realisation of a scalable and elastic cloud monitoring system also depends on the applied storage backend of 

the monitoring systems. With the evolution of NoSQL databases and their scalability capabilities  [81] which 

constitute a widely discussed topic in academia, various monitoring solutions rely on such NoSQL databases for 

performance and scalability reasons [82]. In the context of NoSQL databases and their usage for monitoring 

systems, a more monitoring centric database type evolved in the recent years, i.e., the time-series database 

(TSDB). TSDBs typically build upon a NoSQL database and add further monitoring related functionalities like 

statistic-based queries, aggregation capabilities and a monitoring optimised data structure [83]. Typical open source 

TSDB representatives are KairosDB48, OpenTSDB49, InfluxDB50 and Druid51. 

Tower4Clouds52, developed in the context of MODAClouds European project is a monitoring platform able to 

monitor multi-clouds applications. Its main capabilities are: (1) the user defines the QoS constraints, in the form of 

monitoring rules, which need to be assessed at runtime. These rules are cloud-provider independent; (2) the Data 

Collectors that are deployed together with the application send the monitoring data to a central Data Analyzer, 

according to the installed monitoring rules, which specify what and how resources should be monitored. No 

reconfiguration is required after scaling or migration activities. For PaaS applications, an application data collector 

is implemented, which is able to collect response times and throughput measurements; (3) The Data Analyzer 

processes the data gathered by the data collectors, performing aggregations and/or verifying conditions as specified 

in the monitoring rules. Some predefined actions can be defined in a monitoring rule and executed when a condition 

is satisfied. Tower 4Clouds is the monitoring platform selected in the SeaClouds project The SeaClouds platform 

is in charge of automatically deploying the data collectors and configure them once the application is dep loyed. An 

additional data collector was developed to measure the availability of PaaS applications; it is an external mo dule, 

deployed along with the Tower 4Clouds platform. 

A survey paper, which evaluates many cloud monitoring solutions, both proprietary and open-source, can be found 

in [74]. These solutions are evaluated based on the quality model that was referenced in section 4.2.1.1 covering 

the monitoring system performance/quality. This paper provides a nice conceptualisation of the monitoring research 

problem by indicating 4 main aspects applying to it: (a) the need for monitoring; (b) the basic concepts; (c) the 

properties to be measured; (d) open issues and future directions. Concerning the latter aspect, we can clearly see 

some directions that are considered quite relevant with respect to the research that we intend to perform on cloud 

monitoring. These highly-research directions include: (a) cross-layer monitoring; (b) monitoring of federated clouds; 

(c) effectivess; (d) efficiency.   

In [84]  a monitoring data distribution architecture is proposed which enables cross-site compatibility through the 

employment of semantic annotations. In particular, semantic annotations are used for the lifting of the monitoring 

information drawn from different monitoring sources. The ending result is a distributed semantic repository providing 

SPARQL endpoint via which SPARQL queries can be posed on the semantica lly lifted monitoring data. Such 

semantically lifted data are also distributed to potential subscribers via a distribution hub. A nice feature of the latter 
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49 http://opentsdb.net/  
50 https://influxdata.com/  
51 http://druid.io/  
52 http://deib-polimi.github.io/tower4clouds/  
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hub maps to its ability to properly distribute the semantic data according to their type (public/pr ivate) thus satisfying 

respective data policies.  

The authors in [85]  propose the CASVID monitoring architecture, which stands for Cloud Application SLA Violation 

Detection and focuses on supporting not only infrastructural but also application-level monitoring. However, 

connections/dependencies between different-level metrics are not actually considered and thus layer-specific 

monitoring is actually supported. An interesting aspect of the respective monitoring system proposed is that it 

enables the automatic detection of the monitoring/measurement interval through the application of a novel algorithm 

that can be exploited by cloud providers in an individual basis to detect this internal for each application that exploits 

their services. This algorithm considers different sampling intervals until the point of convergence in the provider's 

utility which results into the respective internal to be selected.  

In [86] a fine-grained cloud monitoring solution is proposed which relies on an in-network switch design (by 

employing a low-complexity encoding scheme) in order to compress at the network level the monitoring data (mainly 

status information) that are exchanged. As a proof of concept, the authors highlight the ability of their monitoring 

solution to early detect stragglers. The authors conclude by indicating that the switches complying to the proposed 

design can constitute a compressed status information place to be exploited for both the application and 

infrastructure-level monitoring. 

The authors in [65] propose a combined push and pull model for cloud computing monitoring which intelligently, 

switches from one individual model to another one based on user requirements and monitored resources status. 

The authors claim that this combined model leads to better monitoring performance and caters for different 

privileges and access styles for the virtualised resources to be monitored. Concerning the latter advantage, the 

authors also indicate different types of components and how they more efficiently map to one of the models or the 

combined one. 

In [87] a window-based state monitoring framework for cloud applications is proposed which is more robust to value 

bursts and outliers and follows a respective distributed architecture with two main versions. In the first version, 

centralised parameter tuning is supported while, in the second version, a decentralised one which enables the 

monitoring system to scale to multiple monitoring nodes as these nodes rely on the local information to tune their 

parameters. Two optimisation techniques are also introduced which enable to reduce the communication cost 

between a coordinator and its monitoring nodes: the first enhances the effectiveness of the global push procedure 

at the coordinator side while the second one targets the reduction of unnecessary global polls through enabling the 

performance of local polls when needed.   

A framework for collecting application-level measurements in proposed in [88] which exploits the Complex Event 

Processing (CEP) paradigm. This framework caters for the proper mapping of metrics to event streams as well as 

their correlation to enable the computation of aggregated measurements mapping to complex metrics. While a 

simplified monitoring architecture is proposed with no mentioning of how it can be distributed, an interesting event 

hierarchy is proposed via which correlation can be achieved at the levels of host, resource pool and metric.  

A service for estimating, monitoring and analysing cost for scientific cloud-based applications is proposed in [60]. 

In this service, different cost models are associated to different application execution models and some of the 

models are combined in order to produce cost for advanced scenarios. This service exploits various techniques to 

measure cost for scientific applications which also take into account application component dependencies.      

 In [89] a runtime model for cloud monitoring is proposed that concentrates on common monitoring concerns. 

Through this model, monitoring data are collected via various techniques and used to construct the performance 

profile of a cloud. Based on the proposed runtime model, a distributed monitoring framework has been developed 

with centralised collection/aggregation capabilities which addresses the trade-off between monitoring 
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overhead/load and monitoring capability via adaptively managing the cloud facilities. This monitoring framework 

and model seem to be able to cover different levels in the cloud abstraction stack going up to the application level.      

4.2.2 Scalability / Elasticity Evaluation of Distributed Databases 

Typically, cloud services are on-demand, highly distributed, elastic and scalable. Therefore, the monitoring systems 

has to cope with these characteristics, leading to similar requirements for the storage backend of the monitoring 

engine. In the context of CloudSocket, an increasing amount of deployed BPaaS Bundles with scalable services 

will also increase the amount of monitoring sensors accessing the monitoring engine. Hence, in the context of cloud 

monitoring, the storage and processing of time-series data becomes one of the common challenges. As the 

monitoring engine itself is a cloud service, the advantages of the cloud, i.e., scalability and elasticity, should be 

highly applied. 

Especially in the context of cloud computing and distributed databases, the semantics of scalability and elasticity 

need a more detailed explanation. Following the definition in [90] scalability means support for huge datasets and 

very high request rates. As cloud systems are architected to scale-out, large scale is achieved using large numbers 

of commodity servers, each running copies of the database software, i.e., database nodes. Elasticity  builds upon 

scalability, that provides the ability to have large scale systems. Elasticity means that you can add more capacity 

to a running system by deploying new instances of each component, i.e. database nodes, and shifting load to them.  

Traditional databases like Relational Database Management Systems (RDBMS) were originally designed to provide 

high performance and consistency in a centralised setup [67]. A new database category came up with the evolution 

of NoSQL databases that promise to be ready for the cloud by providing scalability and elasticity in a distributed 

setup [91]. In contrast to RDMS, NoSQL databases do not rely on a fixed schema but focus on performance while 

offering a less strict consistency. Building upon NoSQL databases as storage backend another categegory of 

databses evoloved in the last years, the time series databases (TSDB)  [83], [92].  TSDBs store sets of large 

monitoring data, i.e., time series data and provide enhanced aggregation operators and a graphical visualisation of 

the time series data.  

Gaining a common knowledge over the scalability and elasticity capabilities of NoSQL databases will lead to 

producing/developing TSDBs which constitute the most suitable scalable and elastic storage backend for the 

monitoring engine. Further, this database scalability/elasticity knowledge can be integrated in further environments, 

e.g., database aware adaptation rules or by enriching service descriptions with non-functional specifications of 

database scalability ratings. As a starting point three commonly used NoSQL databases53, namely Apache 

Cassandra54, Couchbase55 and MongoDB56, were benchmarked in the OpenStack infrastructure in order to 

evaluate their capabilities as storage backend for TSDBs.     

4.2.2.1 Evaluated NoSQL databases 

As NoSQL databases can be categorized in four different groups, namely key-value databases, document oriented 

databases, column family databases and graph databases [93]. In the focus of a TSDB storage backend, graph 

databases are not considered due to their data structure. A short description of each evaluated database is 

provided.  

4.2.2.1.1 Apache Cassandra 

Apache Cassandra belongs to the column family databases. It has column groups, updates are cached in memory 

and then flushed to disk, and the disk representation is periodically compacted. Data partitioning and replication 
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are supported. The architecture of Apache Cassandra is built on the multi -master paradigm that is inspired by peer-

to-peer systems [94]. Therefore, each Apache Cassandra node is equal, handling all type of operations. With this 

architecture, Apache Cassandra promises linear scalability on commodity hardware or in the cloud 57. The evaluated 

version of Apache Cassandra is 2.2.6. 

4.2.2.1.2 Couchbase 

Couchbase belongs to the document oriented databases; however, the usage as key value store is also possible. 

Couchbase relies heavily on in memory caching as it uses Memcached58 before the data is asynchronously 

persisted to disk. As Apache Cassandra, the distribution architecture of Couchbase follows the multi master 

paradigm. The evaluated version of Couchbase is 4.0.0 community edition. 

4.2.2.1.3 MongoDB 

MongoDB belongs to the document oriented databases. While former releases of MongoDB relied on caching only 

the index in memory and persisting data synchronously to disk, the new 3.X release changed to an extended 

caching mechanism and asynchronous persistence to disk. In contrary to the architecture of Apache Cassandra 

and Couchbase, MongoDB relies on three different node types: (1) Router nodes act as endpoints for the clients, 

processing their requests; (2) Config Server nodes store the metadata of the cluster. The Router node retrieves the 

actual location of the request dataset from the Config Server node. (3) The actual datasets are stored at Shard 

nodes. The evaluated version of MongoDB is 3.2.0.  

4.2.2.2 Benchmarking Tool 

The de facto standard tool in academia and industry for benchmarking NoSQL databases is the Yahoo Cloud 

Serving Benchmark59 (YCSB)  [95] which was originally developed for benchmarking Yahoo’s own PNUTS 

database [96] and compare it with existing NoSQL databases.  

Figure 22 shows the modular architecture of the YCSB where the Workload Executor and DB Adapter can easily 

be modified or even replaced by custom modules. The Client Threads and Statistics modules are the core 

components of the YCSB and offer various configuration options. As input, the YCSB requires a workload file, 

describing the actual workload to execute. YCSB supports the CRUD (create, read, update, delete) operations per 

default and can be extended for operations that are more complex. A workload file contains the actual number of 

records, the number of operations to execute a distribution of CRUD operations per workload and an algorithm for 

the record selection propability. In order to achieve comparable results we relied on these basic operations as more 

complex operations might depend on the actual query implementation of the respective database. The YCSB allows 

running multiple YCSB in parallel to generate an arbitrary amount of load. The benchmarks were performed with a 

custom version60 of the original version of YCSB release 0.8. The custom version includes updated client drivers 

for the selected databases.  
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Figure 22 - YCSB Architecture 

 

4.2.2.3 Methodology 

Theoretical evaluation and actual benchmarks have been performed in order to evaluate the performance and 

scalability of distributed databases. [97] benchmarks different NoSQL databases with main focus on the 

performance by measuring the overall execution time of a particular workload. However, the evaluation is performed 

in an artificial environment without considering the cloud context. A more on scalability-oriented approach is 

presented in [98]  Different Apache Cassandra cluster sizes are evaluated by measuring again the execution time 

for different workload sizes. The results show that Apache Cassandra scales as the execution time reduces with 

an increasing amount of nodes. The cloud context is taken into account by [99]  by distributing databases across a 

cloud infrastructure. Their benchmarks used different VM configurations to analyse the possible influence on 

throughput and latency. The results led to a first version of a database scalability model. 

 The elasticity aspect is not deeply investigated in the outlined academic publications and also in industry [97]. 

Typically, the benchmark setup encompasses static database cluster configurations where the workload is applied. 

In the context of cloud computing also the elastic provisioning of resources, i.e., database nodes, requires a 

thorough evaluation of the elasticity capabilities of distributed databases. More precisely the elasticity is defined by 

adding nodes to a database cluster during (workload) runtime.  

The actual benchmarking methodology comprises two setups: (1) a static database cluster configurations, 

benchmarked by two YCSB clients. The static cluster configuration for each database is alternatively formulated by 

a 1-node cluster, a 2-node cluster and a 4-node cluster. This approach will provide the basic scalability results by 

comparing the average throughput (operations per second) for each configuration. In addition, it will provide a 

general performance comparison between the evaluated databases. (2) The elasticity will be benchmarked by 

producing a overload situation for the 1-node cluster with multiple YCSB clients and adding an additional node to 

the cluster at runtime, measuring the throughput progress during all steps. An overload situation is reached as soon 

as the throughput drops with an increasing number of client. The overload situation is experimentally induced for 

each database. 

As Figure 23 depicts for both benchmarks setups, all YCSB client VMs and database nodes (VMs) are located in 

the OpenStack cloud of UULM to simulate the typical cloud context. It is ensured that YCSB clients and database 

nodes do not rely on the same physical machine. Further dedicated physical servers are selected to perform the 

benchmarks in order to reduce the risk of whether other cloud services will affect the results. All benchmarks are 

run multiple times to ensure stable results. Each database VM is configured with 4 cores, 8GB of memory and 

80GB of disk as such a configuration is recommended by the Couchbase and Apache Cassandra 
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documentations6162. Each YCSB client is configured with 4 cores, 2 GB of memory and 10GB of disk as the YCSB 

mainly consumes CPU to generate the load.  

 

 

Figure 23 - Benchmarking setups 

  

The scalability benchmark setup encompasses three different workloads: create-only, read-update and read-heavy. 

The specific CRUD ratio for each workload is shown in Table 5. The create-only inserts 1.000.000 records in the 

database for read-update and read-heavy workloads, which execute 10.000.000 operations on the records. All 

workloads use the Zipfian distribution for load generation [95]. The elasticity benchmark is performed with the read-

heavy workload. All databases are configured to use 6GB of memory and the lowest replication degree. In order to 

have a comparable setup no further database specific configurations are applied.  

Workload create-only read-update read-heavy 

Create 100 0 0 

Read 0 50 95 

Update 0 50 5 

Delete 0 0 0 

Table 5 - YCSB workloads CRUD ration in % 
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4.2.2.4 Results 

In the following, the results for the scalability and elasticity benchmarks are presented. The scalability results are 

presented as a comparison table of the three databases for each workload. The elasticity benchmarks are 

presented as time series for each database separately and finally compared in the conclusion.  

4.2.2.4.1 Scalability Results  

Table 6 shows the throughput results for the create-only workload as a comparison between the three databases. 

For each database, Table 6 contains the three different database cluster configurations. Regarding the overall 

throughput only none of the databases increases the througpuht significantly with an increasing cluster. Moreover, 

MongoDB even decrease their throughput in a 2- and 4-node cluster. Regarding the scalability, none of the 

databases scales with a growing amount of nodes for the create-only workload.   

Cluster Configuration Apache Cassandra Couchbase MongoDB 

1 -
Node 

Avg. 
Throughput 
(ops/s) 

21800 21700 26100 

2 -
Nodes 

Avg. 
Throughput 
(ops/s) 

17200 24400 13400 

4 -
Nodes 

Avg. 
Throughput 
(ops/s) 

17000 22300 14700 

Table 6 - create-only workload results 

Table 7 presents the results for the read-update workload. Whereas MongoDB and Apache Cassandra achieve a 

similar throughput in a 1-Node setup, Couchbase achieves a significant higher throughput (across all 

configurations). Regarding the scalability Apache Cassandra achieves an 11% throughput improvement from the 

1- to the 2-node cluster and a 30% improvement from the 2- to the 4-node cluster. Couchbase improves its 

throughput from 1- to 2-node cluster of 10% and to the 4-node cluster again of 14%. Scaling MongoDB does not 

improve the throughput, it even decreases the throughput. 

Cluster Configuration Apache Cassandra Couchbase MongoDB 

1 -
Node 

Avg. 
Throughput 
(ops/s) 

14400 41200 16400 

2 -
Nodes 

Avg. 
Throughput 
(ops/s) 

16100 45700 13900 

4 -
Nodes 

Avg. 
Throughput 
(ops/s) 

23000 52600 12800 

Table 7 - read-update workload results 
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Cluster Configuration Apache Cassandra Couchbase MongoDB 

1 -
Node 

Avg. 
Throughput 
(ops/s) 

15500 45800 32000 

2 -
Nodes 

Avg. 
Throughput 
(ops/s) 

15500 50000 14300 

4 -
Nodes 

Avg. 
Throughput 
(ops/s) 

21000 54900 14000 

Table 8 - read-heavy workload results 

Table 8 shows the results for the read-heavy workload. As in the previous benchmark results MongoDB achieves 

a lower throughput than Apache Cassandra and Couchbase. For the scalability, Apache Cassandra increases its 

throughput with the 4-node cluster of 27%. Couchbase achieves a throughput improvement from the 1- to the 2-

node cluster of 9% and from the 2- to the 4-node cluster again 9%. Couchbase improves its throughput from 1- to 

2-node cluster of 9% and to the 4-node cluster again of 9%. However scaling MongoDB up to 4 nodes does not 

improve the throughput, it even decreases the throughput. 

The benchmark results show that there are significant performance (throughput) differences in general between 

different types of NoSQL databases, where MongoDB achieves the lowest throughput for all workloads, Apache 

Cassandra and Couchbase achieve similar throughput for the create-only benchmark and Couchbase achieves the 

highest throughputs for the read-update and ready-heavy workloads. Regarding the scalability, MongoDB does not 

benefit from scaling its cluster. It even decreases the throughput. For the create-only workloads Apache Cassandra 

and Couchbase only achieve a slight throughput improvement. For the other workloads Apache Cassandra and 

Couchbase, achieve a throughput increase by adding more nodes to the cluster, where Apache Cassandra reaches 

the highest rate of increase.  

For all results, it is taken into consideration, that Apache Cassandra and MongoDB do not allow a configuration 

with no replication factor, whereas Couchbase allows running without replication. This leads to a slightly better 

benchmark starting position for Couchbase.  

4.2.2.4.2 Elasticity Results 

As introduced in section 4.2.2.3 the elasticity benchmark will produce an overload situation for the respective 

database and will add a node to the cluster while the load is continuing. For each database, the overload situation 

is determined individually to determine the required amount of YCSB clients to produce an overload situation.  

Figure 24 presents the resulting time series of the elasticity benchmark for Apache Cassandra.  The overload 

situation for the 1-node cluster is reached after approx. 40s by starting up to four YCSB clients running load on the 

Apache Cassandra node.  The operations per second start to decrease and after approx. 100s a new node is added 

to the Apache Cassandra cluster. Internally Apache Cassandra starts to redistribute the data across the two nodes 

while the YCSB clients still produce load. As the throughput stabilises at 200s as time series indicates, the 
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redistribution is finished. This result shows that adding nodes to Apache Cassandra at runtime overcomes the 

overload situation. However, the 2-node cluster does not achieve the peak of ~ 16000 operations per second. 

 

 

Figure 24 - Apache Cassandra Elasticity Benchmark 

Figure 25 shows the time series of the Couchbase elasticity benchmark. Again, multiple YCSB clients overload a 

1-node cluster. Similar to Apache Cassandra, it requires also four YCSB clients to overload Couchbase. As Figure 

25 depicts is the overload situation reached after approx. 60s. A second node is added to the Couchbase cluster 

and Couchbase internally redistributes the data. The second node is sufficient to handle the overload situation and 

as the time series shows the redistribution is finished at approx. 90s. The resulting time series also shows that the 

throughput has increased with the 2-node cluster compared to the starting 1-node cluster. 

 

Figure 25 - Couchbase Elasticity Benchmark 

 

Figure 26 shows the time series of the MongDB elasticity benchmark with multiple YCSB clients overload a 1-node 

cluster. As Figure 26 depicts the overload situation is reached after approx. 60s and a second node is added. The 

time series shows that the overload situation cannot be overcome as the throughput drops multiple times significant 
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and a 2-node cluster does not increase the throughput. Regarding the scalability results of MongoDB, this behaviour 

could already be expected.  

 

Figure 26 - MongoDB Elasticity Benchmark 

4.2.2.4.3 Conclusion 

The scalability results of 4.2.2.4.1 and elasticity results of section 4.2.2.4.2 have shown that are significant 

differences between the evaluated databases scalability and elasticity. In general, Apache Cassandra and 

Couchbase achieved a clearly higher throughput than MongoDB in all evaluated scenarios. Regarding the 

scalability Apache Cassandra increases its throughput with larger clusters. However, the elasticity benchmark has 

shown that extending the Apache Cassandra cluster under load will solve the overload situation but the throughput 

increase is not significant. Couchbase also achieves scalability with a growing cluster size but the throughput 

increase percentage is not as high as with Apache Cassandra. Regarding elasticity, Couchbase shows the best 

results of the three evaluated databases by overcoming the overload situation and increasing the throughput under 

ongoing load. 

These results show that the selection of a scalable and elastic storage backend for monitoring engine is not a trivial 

decision due to the varying scalability and elasticity capabilities. As the results show, Apache Cassandra or 

Couchbase might be a first appropriate solution to provide scalability and elasticity to the monitoring engine. This 

gained knowledge might also be further used to enrich the semantic description of services relying on one of these 

databases, e.g., defining a scalability and elasticity grade on the service description level.  

4.2.2.5 Future Evaluation Scenarios 

With the gained knowledge of the scalability and elasticity benchmarks in a rather small and artificial setup, a 

starting point for more complex and use-case centered benchmarks is provided. The evaluation of a larger scale 

distributed database cluster (>20 nodes) constitutes one aspect of further benchmarks. In addition, more monitoring 

related operations, i.e., aggregation operations, will be included in the benchmarks. With a further extension of the 

YCSB it will also be possible to benchmark specific time-series databases (TSDBs) which are typically built on top 

of NoSQL databases.  

4.2.3 UULM Approach 

As explained in section 4.1, the vendor lock-in not only affects the deployment of applications in the cloud, it also 

affects the monitoring of applications across multiple cloud providers and across different service levels. This leads 
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to the challenge of supporting not only multi-cloud but also cross-cloud monitoring. For pure multi-cloud systems, 

the monitoring tools of the currently selected cloud operator can gather the monitoring data. While basic monitoring 

data may come free on some cloud providers, often more advanced metrics either cost (Amazon, Rackspace) or 

require the operator to set up additional monitoring tools. For cross-cloud monitoring, using the providers' 

monitoring infrastructure is technically feasible, but it increases tremendously the effort, as multiple tools have to 

be used in parallel. Moreover, it is difficult to assess metrics that involve the crossing of provider domains (such as 

network traffic from provider A to provider B). Furthermore, it is hard to assess application-specific metrics. In 

addition, a sophisticated and configurable aggregation on the metrics is currently not easily possible. 

The monitoring approach followed by UULM provides a generic andextensible monitoring engine, offering the 

capability to reduce the cross-cloud provider network traffic and hence reduce costs, enabling a powerful API to 

customize the monitoring at run-time and a self-scalable architecture [100].The monitoring system is part of the 

Cloudiator framework. The following sections describe the UULM approach with its main components and features.   

4.2.3.1 Monitoring Agent: Visor 

In order to be able to gather the raw monitoring data on the IaaS level from the VMs and component instances, 

Visor63 is introduced as a monitoring agent. Visor is deployed on every VM orchestrated by Cloudiator and provides 

a remote interface in order to configure a particular Visor instance at deploy and at run-time. Figure 27 depicts 

Visor's main functionality. The dynamic configuration of Visor allows the close mapping to the application by also 

only collecting the required metrics, thus saving space and bandwidth. Visor supports the capturing of data on a 

per component instance basis as well as on a per-VM basis. The former is achieved by sensors monitoring basic 

system properties on virtual machine level, e.g. by accessing system properties such as CPU load. The latter is 

performed by exploiting the fact that all component instances run inside a Docker container (cf. section 4.1.2.1) and 

the resource consumption can be retrieved on a per-container basis. By default, Visor offers various sensors 

supporting system metrics such as CPU load, memory consumption, disk I/O, and network I/O. In order to support 

custom metrics, like the request rate of a web server, Visor supports the implementation of custom sensors, by 

providing an easy-to-implement Java interface. It exploits the dynamic class loading properties of Java in order to 

be able to add those implementations at runtime.  

 

Figure 27 - Visor 
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4.2.3.2 Aggregation Levels  

In order to provide the various raw metrics gathered by Visor to further consuming entities like the SLA Engine, the 

raw metrics need to be aggregated. Aggregation includes for instance the computation of average, minimum, 

maximum or simply the normalisation of values. In addition to that, aggregation may include merging of metrics, 

e.g., when computing the average of averages. Hence, aggregation is always BPaaS bundle specific, depending 

on the specified metric model in the CAMEL file. In order to satisfy the requirement for minimum network traffic and 

scale of the monitoring system, the aggregation is preformed as close to the data source as possible. Table 9 

provides an overview of the different aggregation levels with their respective input, aggregation location and output.  

Scope Input Aggregation location Output 

host single VM local VM local storage 

cloud VMs in cloud A any VM in cloud A shared storage (inside cloud A) 

global 
(cross-cloud) 

VMs from at least two 
clouds 

home domain storage at home domain 

Table 9 - Aggregation Levels 

All aggregations that require input data from a single VM will be performed on this VM. We refer to this computation 

to happen in the host scope. For this approach, only a local storage is accessed and no communication is required 

which further reduces latency. Aggregations that need input only from VMs from a particular cloud are performed 

in the cloud scope. Such computations exclusively access the shared space (shared TSDB in Figure 28) spanning 

a cloud. While it is desirable to distribute all computations of a particular cloud scope amongst the affected VMs, 

the definition of a suitable algorithm is currently work in progress. Finally, computations that require input from 

multiple clouds happen in a cross-cloud scope (or global scope). These are performed in the home domain of 

Cloudiator. 

4.2.3.3 Distributed Architecture 

Figure 28 provides an overview of the general distributed monitoring architecture with a sample application 

consisting of two VMs at cloud provider A (Amazon) and another VM at cloud provider B (Openstack). Each VM 

contains a Visor and Aggregator64 instance besides the actual application components; the respective aggregation 

level explicated in Table 9 is indicated by the colouring scheme.  

A key element when computing higher-level metrics especially over larger time-windows is the need to buffer raw 

monitoring data. TSDBs have been designed to store timestamped data in an efficient way and also to provide 

quick access to the stored data. Many TSDB implementations support applying functions on stored data right out 

of the box what makes them a perfect match not only for buffering, but also for aggregation  [83]. The TSDB 

approach needs to be able to work with limited resources to not limit the actual application and increase available 

resources when more VMs are being used. In order to cope with these requirements, the following approach is 

followed: from each VM acquired for an application, we reserve a configurable amount of memory and storage (e.g. 

10%) that we further split between a local storage area and a shared storage area. Both storage areas are managed 

by a TSDB instance running on the VM. The Visor instance running on this VM will then feed all monitoring data to 

the TSDB. The TSDB will store data from its local Visor in the local storage area and further relay the data to other 

TSDBs where such data is stored in the shared storage area. This feature avoids that a TSDB becomes a single 

point of failure, but still enables quick access to local data. In order to keep network traffic between cloud providers 

low, any TSDB will only select other TSDBs running in the same cloud to replicate its data. Hence, this concludes 
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to a ring-like topology that has been introduced in peer-to-peer systems [101]  and is also used by distributed 

databases [94].  

 

Figure 28 - Distributed Monitoring Architecture 

This approach leads to an automated scaling of the monitoring infrastructure with the increasing amount of VMs as 

the size of the TSDB cluster in each cloud grows with the amount of VMs. Therefore, the TSDB provides for 

scalability and elasticity. As a first approach, KairosDB65 with Apache Cassandra as storage backend is  employed 

as the TSDB for all domains. 

 

4.2.3.4 Generic TSDB Layer 

As the benchmarking results of section 4.2.2 have shown there are significant differences in the scalability and 

elasticity of the analyzed distributed databases. As the current monitoring architecture is currently bound to one 

specific TSDB, KairosDB, a more generic TSDB integration will be beneficial for the distributed monitoring 

architecture. Abstracting specific TSDBs through a generic TSDB API will allow the usage of different TSDBs for 

the respective aggregation level and the resulting requirements. Whereas on the host aggregation level a low 

resource consumption is desirable (preferable in-memory operation), on the cloud aggregation level scalability and 

elasticity are added to the requirements. For the global aggregation level, more complex aggregation functionalities 

on the TSDB side are beneficial to support the aggregation component in the home domain.  

Currently the design and implementation of such a generic TSDB abstraction layer is an ongoing process at UULM 

with the focus on the scalability/elasticity capabilities of the TSDB storage backend and the actual aggregation 

capabilities of the TSDB.  Regarding the scalability/elasticity capabilities, the results of section 4.2.2 provide first 

basic knowledge, which will be extended to more specific time series related benchmarks (cf. section 4.2.2.4). 

Regarding the aggregation capabilities, an analysis of common TSDBs (cf. Table 10) has shown that basic 

statistical operations like min, max, average, median, sum are widely supported by the TSDBs considered; however 

the support of more complex operations and the combination of multiple operations depends on the specific TSDB. 

Further, the support of the automated reduction of outdated monitoring data and continuously running operations 
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is only supported by a subset of TSDBs. Table 10 shows an architectural and feature comparison of four common 

TSDBs. 

 

Name KairosDB OpenTSDB InfluxDB Prometheus 

Version 1.0.0 2.1.0 0.13 0.19.1 

Datastore H2 
Apache 

Cassandra 
Apache HBase 

Proprietary (LSM Tree 
based) 

Proprietary (file 
based) 

Distributed No Yes Yes Yes No 

Replication No Yes Yes Yes No 

In-memory Yes No No No Yes 

Reduction No No Yes Yes 

Unique 
features 

  
continuous operations, 

combination of 
operations 

continuous 
operations, rule 

processing 

Table 10 - TSDB feature comparison 

The first version of the TSDB abstraction layer will bring together the specific aggregation operations of the analysed 

TSDBs in one API. This API will be built in a modular way to provide an easy integration of further TSDBs. In 

addition, the API will also integrate common NoSQL databases like Couchbase and use them as a TSDB. As 

common NoSQL databases do not offer aggregation capabilities in the extent of TSDBs, the missing aggregation 

capabilities have to be implemented in the abstraction layer. 

4.2.4 FORTH Approach 

FORTH has developed a distributed cross-layer monitoring framework [102] which is part of its overall cross-layer 

adaptation framework. In the context of this project, this framework is updated while a particular cross-layer quality 

model has been devised. The latter quality model can be used for selecting those metrics that can be exploited to 

form user/BPaaS requirements as well as for explicating the way metrics can be computed in the same as well as 

across different layers. Both contributions are now shortly analysed in the following two sub-sections.    

4.2.4.1 Distributed Cross-Layer Monitoring Framework 

The cross-layer monitoring framework of FORTH was designed mainly to cover all layers and be able to exploit 

cross-layer quality models. Its main idea was that measurements at different layers are encapsulated by sensors 

attached to respective layer-specific components and that these measurements are stored in a highly efficient 

complex event processing engine like Esper. Then, this event processing engine could take care of aggregations 

and enforcing the respective cross-layer dependencies. As measurements directly map to events if their value is 

compared to conditions, the event processing engine was also employed in order to not only report simple  but also 

complex event patterns that could be used to trigger corresponding adaptation rules. For this kind of reporting, a 

publish-subscribe mechanism is used to also enable the distribution of the adaptation functionality enabling different 

instances of an adaptation engine to subscribe to different partitions of events. For example, a particular instance 

of an adaptation engine could focus only on rules involving events covering the security aspect.  
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While the original version of the framework was able to enforce measurability via the respective cross-layer quality 

model exploited along with the respective sensing mechanisms deployed, its architecture was considered simple 

and not fault-tolerant in the sense that the event processing engine constituted a single-point-of-failure. In addition, 

it did not focus on addressing layer-specific scalability aspects, thus actually prescribing only a high-level coarse-

grained monitoring architecture. To this end, in the context of this project, this architecture has been refined and 

such a refinement now guides the update to the development of the respective research monitoring prototype. This 

refinement exactly attempts to address the shortcomings of the initial architecture.  

First, the refined architecture does not involve a single point of failure. This is enabled by replicating components 

as needed and where possible. Second, the architecture now considers layer-specific scalability aspects by 

attempting to scale the monitoring system when needed as well as to replicate the information stored in order to be 

more fault-tolerant. Third, the event production has been decoupled from the measurement aggregation while 

measurement aggregation has become more focused by being applied only on the layer it maps to.  

An overview of the architecture is provided in Figure 29 - The logical architecture of FORTH's monitoring framework. 

As it can be seen, the architecture is split into 5 main parts: (1) an event production and publishing part; (2-4) three 

layer-specific parts focusing on the sensing and aggregation at the same layer; (5) a cross-layer dependency part 

facilitating the propagation of dependencies on the different layers. The event production and publishing part 

retrieves the measurements from each layer via a publish-subscribe mechanism, assesses the respective 

conditions and produces events that are stored in an event database which is replicated/backed-up. This part relies 

on an event processing engine to produce complex event patterns. It also enables the retrieval of all types of events 

produced via a publish-subscribe mechanism.  

The layer-specific parts have the freedom to exploit any kind of measurement database that can assist in the 

respective storage and measurement aggregation. As such, the UULM effort over providing an API, which 

integrates the functionality of different TSDBs, could be quite advantageous here (See section 4.2.3.4). Thus, both 

TSDBs or complex event processing engines could be used or any other kind of suitable database. Apart from the 

measurement database itself, each layer employs respective sensors as well as an aggregation component that is 

able to aggregate the information produced by the sensors and being stored in the database. The implementation 

of this component depends on the level of automation that exists in the respective database. In the c ase of a 

complex event processing engine, the role of this component is limited. It could take the responsibility to transform 

sensor measurements to events as well as to initially produce and load the aggregation rules into the engine. Thus, 

aggregation is more or less performed automatically by that engine. In case of a TSDB, this depends on the level 

of automation offered by the respective implementation (See section 4.2.3.4). In Kairos TSDB, for example, only 

measurements can be stored and thus the aggregation functionality has to be totally performed by the aggregator. 

In other TSDBs like InfluxDB, some aggregation mechanisms are in place so the aggregation could be more or less 

automated with few exceptions. In any case, we consider that in some cases, the aggregation functionality can be 

limited with respect to the aggregation functions that are available. In this sense, the aggregator will act as a 

complementary counterpart that offers the missing aggregation functionality and has the responsibility to realise 

the respective aggregations that have to be performed. Finally, we should note that each layer-specific part offers 

a publish-subscribe mechanism in order to propagate information to interested subscribers which can take the form 

of the event generation and publishing part and the cross-layer dependency part.  

The cross-layer dependency part has the responsibility to subscribe to measurements of one or metrics and 

propagate them to the respective layer-aspect part by considering the QoS dependencies of the cross-layer quality 

model. The propagation maps just to storing the respective measurement on the corresponding layer's 

measurement database.  
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Figure 29 - The logical architecture of FORTH's monitoring framework 

On the physical level, the mapping of logical components to respective instances depends on the layer involved 

and to the nature of the components. On the IaaS layer, we take the view that monitoring is performed in an intrusive 

manner by placing sensors over the user VMs in order to measure low-level metrics (similar to UULM approach - 

see section 4.2.3). These sensors then report measurements on measurement databases coupled with respective 

aggregators. The latter couple of components could be mapped to the physical level in two alternative ways. We 

could have 2 (or even more) measurement databases and respective aggregators in so called Management VMs 

that are placed in each cloud. In this sense, the aggregation overhead is split between the aggregation components 

and we enable a respective degree of replication between the measurement databases. This mapping leads to high 

communication needs as each sensor is configured to report all measurements in a respective measurement 

database. Another mapping approach is to have a more distributed architecture where the triangle of sensor, 

measurement database and aggregator is deployed on each user/BPaaS VM. This of course creates some 

overhead, which should not be significant, to the corresponding VM but has the main advantage that the main 

sensing and aggregation logic pertaining to a specific VM stays mainly on that VM and is not moved to other triangle 

placements. Each triangle in a cloud can replicate some information on other triangles. However, this information 

could be only specific to our analysis and aggregation needs, which can mean replicating only meaningful 

measurements like aggregations over CPU metrics. This alternative mapping reduces the communication overhead 

and can be controlled to exhibit different replication levels. Therefore, it seems to be more suitable than the first 

one. In order to cater for the aggregation at a global level in the IaaS layer (e.g., to calculate average CPU in one 

cloud or all clouds exploited by a BPaaS), enabling the computation of composite IaaS metrics at the same or 

across clous, the database-aggregator couple needs to be deployed in 2 VMs, one constituting the centralised 

aggregation couple for the layer and the other its back-up. To this end, we enable the calculation of the composite 

metrics via the replication of the relevant information produced in each cloud by storing it in the centralised level. 

As such, we also enable to have a stable publish/subscribe mechanism, which can be offered to interested 

components. 

Concerning the SaaS layer, we actually have two main types of services, which can lead to different physical 

deployment options. External services are out of control of the system. In this respect, they can only be measured 
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when the Workflow Engine performs the respective calls. As such, it seems that their measurement could be 

handled at the same place where a Workflow Engine is hosted. On the other hand, an internal service component 

is placed on user/BPaaS VMs. In this respect, it coincides with such VMs and could be handled in a similar way. In 

this respect, our proposal includes the following. Internal service measurements are handled by measurement 

database of the user/BPaaS VMs and are produced by sensors, which are placed on those VMs. Thus, respective 

aggregations can take place inside the same measurement database with respect to IaaS metrics. As such, we 

have one measurement database, different sensors (as they capture different type of information) and logically 

speaking different aggregators to split the aggregation functionality and exploit the advantages that multi -threading 

provides. Concerning external service measurements, these can be handled by sensors that are attached or placed 

in the VMs hosting the Workflow Engine(s), which execute the BPaaS workflows. As we will see later on, in these 

VMs, a measurement database for workflow metrics as well as respective aggregator will be involved. Thus, 

similarly to the case of the internal service measurement, the measurement database will be in common but the 

sensing and aggregation functionality will be split.  

To handle again the global level at SaaS layer (e.g., to calculate mean response time of a service over all BPaaS 

workflow executions), we expect that again we need 2 VMs. These VMs could be the same as those for the IaaS 

global level thus leading to the sharing of the measurement database and the split of aggregation functionality. The 

same can hold for the global level at the WfaaS layer only in case workflows and tasks are shared between many 

workflow engines and not just one.  

Concerning the WfaaS layer, things seems to be similar. We deploy a triangle in each VM hosting a workflow 

engine. Replication of information between engines can take place to cater for the appropriate back-up/replication 

of the information stored. The overall physical deployment architecture can be seen in Figure 30. As it can be seen, 

there are as many VMs as the number of user/BPaaS VMs and VMs hosting the workflow engines plus VMs catering 

for the global and the event publishing levels (along with their respective back-up for the latter). As such, the extra 

cost of monitoring is small, as we actually need only four additional VMs to cover the global level and the event 

publishing one. In case the load at the global level is big, leading to a reduction of the respective aggregation or 

evaluation performance, then new VMs could be deployed on demand with which a split  of the respective 

functionality could be achieved to better load balance the monitoring framework. Moreover, we need to stress that 

the architecture is quite fault-tolerant in the sense that the global and reporting/evaluation level is backed-up.The 

failure of a user/BPaaS or Workflow Engine VM will usually lead either to its re-start or the generation of a new VM 

by the adaptation BPaaS system/framework while the measurement data will not be lost as they will also be 

replicated on other VMs.       

           

4.2.4.2 Cross-Layer Quality Model 

A quality model is a specific of a set of quality terms along with their relationships. Such quality terms span quality 

groups, attributes and metrics. Groups (e.g., performance) enable a specific partitioning of the term spac e, while 

metrics (e.g., average response time) provide the necessary details in order to measure specific attributes (e.g., 

response time) of components (e.g., BPaaS, workflow, task, etc.). In this sense, a group encompasses various 

terms, while an attribute can be measured by one or more metrics. Moreover, attributes can be composite or simple 

mapping to more abstract or concrete properties. Attributes can also be measurable or not. In addition, metrics can 

be raw or composite. Raw metrics (e.g., raw response time) can be directly measured from sensors or the 

component's instrumentation system. On the other hand, composite metrics (e.g., mean response time) can be 

computed by applying specific formulas (e.g., mean) over metrics, attributes or constants.  
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Figure 30 - Physical architecture of the FORTH's cross-layer monitoring framework 

Based on the above analysis, it is apparent that quality models actually explicate how measurements can be 

performed either at the same or across different levels as they explicate how values obtained from sensors can be 

aggregated in order to produce measurements in respective higher-levels. Quality models can be considered to 

include metric derivation trees, which enable this kind of propagation. As such, quality models are the main 

instruments to guarantee measurability.  

Quality models can be specified at different layers of abstraction. Indeed, we have seen layer-specific quality 

models proposed for the WfaaS, SaaS, PaaS and IaaS layers. However, as they include relationships and 

dependencies between quality terms, they can also be used to guarantee cross-layer measurability by connecting 

quality metrics defined at different abstraction layers. As such, cross-layer along with layer-specific quality models 

can lead to the production of a global quality model that can guarantee the measurability across all the layers that 

are relevant in the context of BPaaS services.  

Such a global quality model has been recently proposed by FORTH in the context of th is project. Its overview is 

depicted in Figure 31. This model covers three main layers, WfaaS, SaaS and IaaS, and includes a limited number 

of dependencies among these layers, where some dependencies apply between WfaaS and SaaS and others 

between SaaS and IaaS. This model has been derived by considering the literature with respect to different layers 

as well via the devising of new quality terms to cover aspects not touched or improperly addressed in the literature. 

In the following, we shortly analyse the content of this quality model for each layer and then we explain in short the 

nature of the cross-layer dependencies that have been defined.  

Concerning the workflow layer, the quality terms have been split according to the quality groups o f time, reliability 

and cost. For each group, the terms defined map to both the workflow and task level. In many cases, metrics at the 

task level are used to compute similar metrics at the workflow level. In this computation, the structure of the workflow 

can play a role (this has also been witnessed in service research where service concretisation involves particular 

aggregation formulas, which explicate the way the performance of the service selected per each task propagates 

to the performance at the workflow or composite service level).  
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Figure 31 - Overview of the cross-layer quality model 

Time-based metrics involve the whole processing time of the workflow which can be split into the total execution 

time and the total delay time (covering intra-task as well inter-task (transition) delays). Reliability metrics involve 

attributes mapping to workflow availability, reliability and fidelity [103] as well as respective metrics able to measure 

them (such as mean time between failures, MTBF). Special attention was put to definition of the fidelity metric that 

assesses how well a component/service satisfies the requirements posed to it. It has been decided that this metric 

should be first computed independently between the two main levels, workflow and task, as the amount of 

requirements posed on the latter level could be less than those on the former one (as focus is usually on overall 

performance and not individual one). Via this rationale, the workflow fidelity is c omputed by checking whether a set 

of measurements mapping to the execution history of a BPaaS workflow satisfy the requirements posed on that 

workflow. The average measurement degree of satisfaction is then computed to produce the overall fidelity value. 

A similar procedure is followed for the task level where the focus is now on respective task requirements and 

measurements only. In the future, fidelity computation formula could be slightly modified to account for the age/time 

of the measurements. Finally, cost metrics are proposed for both the workflow and task level. For the workflow 

level, the cost is computed from the cost of all the tasks involved plus the management cost of the workflow. The 

task cost is then split into cost concerning the services and resources exploited to support the respective task 

execution.      

Concerning the IaaS layer, the respective terms have been grouped into the following 6 groups: networking, 

utilisation, storage, bandwidth, scalability and elasticity. Networking metrics considered span packet transfer time 

and mean packet loss frequency while utlisation metrics currently include statistical measures over CPU utilisation 

for single or multi-core architectures. Utilisation metrics will be expanded towards covering the storage aspect. 

Storage metrics include speed of read and writing and RAM access time. Bandwidth metrics map to statistical 

measures of bandwidth like maximum bandwidth. Scalability and elasticity metrics have been mainly drawn from 

respective literature. Concerning elasticity, the metrics considered are the precision of scaling  [69] and the mean-

time-to-quality-repair (MTQR) [73]. Scalability metrics on the other hand include [73] scalability range and speed. 

The SaaS layer was covered by considering some state-of-the-art models [62], [64], [104]. The following groups 

are included: (a) performance, (b) stability, (c) scalability and (d) elasticity. Performance attributes include execution 

time, response time and throughput where also the dependencies between some of them are also outlined. Some 

of the metrics involved are also mapped to more fine-grained metrics that can be easily computed from sensors. 

Stability is considered to cover both service ability to provide a certain level constantly as well as a stable interface. 

It includes attributes like reliability and availability, which are measured by respective metrics like MTBF and raw 

availability. Scalability maps mainly to the metrics of scaling utilisation and precision while elasticity is associated 

to metrics of mean-time-taken-to-react (MTTTR) and performance-scale-factor.   
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The cross-layer dependencies currently considered are of the following nature: (a) similar metrics, which go from 

the SaaS to the task level in the WfaaS layer. For instance, service response time directly maps to the execution 

time of a workflow (service) task. As can be easily understood, the metrics are similar and have a more or less one -

to-one direct mapping but just concern different layers. It has to be noted, though, that this is an over-simplification 

by assuming that each service task maps exactly to one service. However, in other case, one task could map to a 

composition of services. In this respect, we would then have to define a specific computation procedure similar to 

one proposed to cover the gap between the task and workflow level for similar metrics like execution time. In this 

respect, the task execution time would equal to the aggregated response time of the service composition which 

would depend also on the structure of this composition; (b) similar mainly elasticity metrics that go from the IaaS to 

SaaS layer. Again, we have relied on an over-simplification to cover such dependencies but our main goal was to 

identify the mapping and not formulate it in a respective computation formula. In this way, the MTTTR could be 

equal to the scalability speed depending also on the resources needed to be scaled (thus mapping to a one -to-one 

mapping or a mapping that also depends on the amount of resource to be additionally reserved).  

We acknowledge the fact the cross-layer dependency model is minimal. In addition, some aspects have been 

neglected as well as layers. In this respect, the cross-layer quality model proposed will be expanded and this is 

indicated in more detail in section 4.2.6.1.          

4.2.5 Integration / Synergy of Approaches  

The main idea for synergy of the two approaches that have been presented in the previous two sections is that 

each approach focuses on different layers and then there is a global layer covering the generation of the respective 

events derived from these measurements. The corresponding architecture of the proposed cross-layer synergic 

approach is depicted in Figure 32. In this respect and by considering the fact that the IaaS and PaaS layers generate 

most of the monitoring load, it is advocated that the distributed monitoring architecture of UULM is exploited to 

perform the monitoring at these layers by also employing a distributed TSDB which has been proven quite robust 

in handling the respective huge amount of measurements that have to be stored and aggregated. Distribution in 

this case is addressed by: (a) employing monitoring nodes on different clouds; (b) employing replication 

mechanisms inside the architecture to address single point of failure.  

 

Figure 32 - Combined cross-layer monitoring architecture 

On the other hand, by considering that the SaaS and WfaaS layers do not produce a heavy m onitoring load and 

that the respective dependencies are well covered, the distributed monitoring of FORTH can be exploited. 
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Distribution in this case is addressed by: (a) employing monitoring nodes at the same host or near Workflow Engine 

instances with the rationale that most of the monitoring is produced by these instances or sensors either attached 

to them or exploiting log information provided by them; (b) employing similar redundancy mechanisms as in the 

case of UULM framework application.  

The integration itself is confronted via employing publish/subscribe mechanisms between the different frameworks 

and of course considering the cross-layer metric models which highlight how propagation can be performed across 

(all) layers. When one measurement at the IaaS or PaaS layer needs to be propagated to the SaaS or WfaaS layer, 

then the monitoring framework of FORTH would have already subscribed to the metric mapping to this 

measurement. In this sense, it will be able to retrieve it and proceed with the propagation/aggregation of the 

monitoring information. 

All monitoring events that map to SLOs or events in adaptation/scaling rule event patterns are reported on the 

global layer. This means that the same propagation mechanisms can be employed also in this case. In particular, 

the event consuming components of the global layer subscribe to metrics, which are involved in the conditions of 

the events that need to be generated and stored for further analysis and more composite assessment. The event 

assessment can proceed based on the approach of UULM as reported in section 4.3.2.1. Replication is enforced 

also for this layer, mainly in terms of the event database being exploited in order to address the single point of 

failure issues. The global layer is the part of the architecture that communicates with the rest of the components in 

the Execution Environment. To enable such communication, again the publish-subscribe mechanism is employed 

with the sole exception that now the reporting/publishing concentrates on events and not measurements of metrics.     

4.2.6 Future Research 

4.2.6.1 Cross-Layer Quality Model Expansion 

The cross-layer quality model (see section 4.2.4) from FORTH still needs some expansion as cross-layer 

dependencies must be enriched to cover additional metric dependencies in different layers while the PaaS layer 

must also be covered. In parallel to this expansion, the model must be fully specified in a quality specification 

language, such as OWL-Q, CAMEL or a combination of these languages. OWL-Q is supported by FORTH's 

monitoring framework while CAMEL by UULM's monitoring framework. As such, we foresee that OWL-Q is mainly 

used and then its specifications are transformed, when needed, to produce CAMEL specifications to be exploited 

by the UULM monitoring framework. Such transformation will be semantics preserving and lossless as OWL-Q and 

CAMEL are more or less compatible and we foresee including semantic annotations (in OWL-Q) in CAMEL (see 

section 2.2).  

4.2.6.2 Quality Model Realisation 

The cross-layer quality model needs to be exploited by the monitoring framework via realising those leaf-level 

metrics that can guarantee that measurability of the whole quality model hierarchy. For this realisation, sensors 

should be developed for such metrics and be embedded in the respective monitoring frameworks proposed such 

that they can then be attached to those components that need to be measured. Such real isation can rely on re-

using and possibly extending existing tools and mechanisms.  

Some quality dependencies might be BPaaS-specific so they can take a different form depending on the respective 

BPaaS and the corresponding infrastructure on which this BPaaS is deployed. As such, there should be 

mechanisms in place to derive such dependencies according to the current BPaaS and its context. Such 

mechanisms are actually covered by the research direction detailed in section 3.5.3.  
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4.2.6.3 Synergic Cross-Layer Monitoring Approach 

The approach highlighted in section 4.2.5 is still in development. Therefore, it might be modified and adjusted 

accordingly. In addition, this approach needs to be thoroughly evaluated to check its ability to satisfy respective 

monitoring requirements covering aspects like measurement and event accuracy, measurement timeliness, as well 

as the performance and scalability. Such an evaluation could be used as a further feedback to adapt the framework 

that could also lead to a great degree of state-of-the-art advancement. We believe that this synergic  approach will 

lead to a successful research outcome that could result in common publications and could be adopted by the 

CloudSocket implementation prototype.  

4.2.6.4 Monitoring Adaptation 

As indicated in the introduction of section 4.2, any monitoring framework should be robust and flexible to address 

different situation types, whether foreseen or unexpected. As such, the monitoring frameworks proposed must be 

able to adapt themselves to address such situations. Such adaptation could involve scaling the framework to 

address additional load, replacing failing nodes with back-up ones, creating the necessary redundancy or even 

modifying the measurement frequency, if this is allowed based on the requirements posed, to be able to address 

the increased monitoring load. Based on the above, research has to be performed resulting in appropriate 

architectures and methods which appropriately organise the monitoring framework, explicate the way re-

organisation can be performed and include smart structures and redundancy mechanisms to guarantee system 

robustness. For instance, service-oriented architectures could be exploited along with respective adaptation 

mechanisms proposed for service-based applications and systems to enable the monitoring frameworks to become 

self-adaptive and robust.   

4.3 Adaptation 

The capability of a service-based system to adapt itself when critical situations occur is of crucial importance and 

has a major effect on the gains of a service provider as well as its reputation. For instance, if a service provider 

provides an unreliable service that constantly violates its SLAs, then it is quite possible that the gains of this provider 

will be reduced due to SLA penalties as well as due to a reduction in its market share because of customer 

dissatisfaction and reputation decrease. Maintaining an SLA is not an easy business especially if a service is offered 

in dynamic environments. This requires sophisticated monitoring and adaptation mechanisms that are able to even 

detect when a problem (i.e., a SLO violation) will happen and then perform respective actions to prevent it. By 

focusing on adaptation and the context of BPaaS, it is apparent that in the offering of a BPaaS m ay different layers 

are involved including different types of BPaaS components that could fail in a functional or non-functional manner. 

Such a failure can sometimes occur either concurrently or an ordered manner even across different layers. In this 

respect, even if layer-specific mechanisms are in place to handle a specific failure or fault, if these mechanisms are 

not coordinated in a cross-layer manner, then the desired adaptation effects will not be achieved. On the contrary, 

it is highly probable that either similar actions are used to alleviate the problem or event conflicting ones, where 

one action diminishes the effect of the previous one. To this end, there is a need to develop cross-layer adaptation 

systems that can coordinate the layer-specific logic in a suitable manner. By focusing on this issue, we first analyse 

the state-of-the-art for specific layers as well as for cross-layer adaptation and then we analyse the respective 

research approaches that have been proposed by two main research partners in the project, UULM and FORTH. 

As each approach seems to have a different focus, a synergy of the approaches is also proposed which will certainly 

lead to joint research results. Finally, we conclude with interesting research directions that might be followed in the 

next project period that can possibly lead to research results, which are incarnated in the next version of this 

deliverable. 
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4.3.1 State of the Art 

4.3.1.1 Service Monitoring & Adaptation 

The need for monitoring different functional and non-functional requirements, as well as for taking adaptation 

actions is widely recognized by industry and academia, as a means of improving Service -based Applications 

(SBAs). In recent years, a couple of approaches towards monitoring and adaptation of SBAs have been proposed. 

The aim of this subsection is to analyze these approaches, especially the ones featuring cross-layer and Cloud 

aspects, and present their main drawbacks. Our focus is on approaches, which deal with both service monitoring 

and adaptation as these processes are usually coupled in a specific framework or system. Pure service monitoring 

approaches have been analysed in 4.2.1.2.  

The authors in [102] present an approach for self-healing of BPEL processes. This approach is based on the 

Dynamo [105] monitoring framework along with an AOP extension of ActiveBPEL and a monitoring and recovery 

subsystem using Drools Event-Condition-Action (ECA) rules. A composition designer provides assertions for 

invoking, receiving or picking activities in the business process. These assertions can be specified using two domain 

specific languages (WSCoL and WSReL). The problem of selecting alternative services and dealing with possible 

interface mismatches when forwarding a request to an alternative endpoint recovery is not explicitly addressed. 

Additionally, the recovery rules cannot be changed dynamically, as they need to be compiled offline.  

The VieDAME environment [75] extends the ActiveBPEL engine to enable BPEL process monitoring and partner 

service substitution based on various strategies. The services are selected according to defined selectors. 

VieDAME requires service registration to a repository, marking services to be monitored and eventually substituted 

as replaceable. It uses an engine adapter to extend the engine’s functionality, but does not explicitly address fault 

handling. 

The authors in [106] introduce an architecture and a DSL, named MONINA (Monitoring, Integration, Adaptation), 

that allow to integrate functionality provided by different components and to define monitoring and adaptation 

functionality. It is similar to FORTH approach, as monitoring is carried out by complex-event processing queries, 

while adaptation is performed by condition action rules performed. However, it differentiates regarding its scope, 

which aims at the specification of platforms integrated into a Virtual Service Platform (VSP) that provides a unified 

view on the functionality of the integrated service platforms that are connected by control interfaces. In addition, it 

lacks cross-layer and multi-cloud features, as well as experimental analysis of the implemented approach. 

4.3.1.1.1 Cross-Layer Approaches 

In [107] the authors propose a methodology for the dynamic and flexible adaptation of multi -layer applications using 

adaptation templates and taxonomies of adaptation mismatches. Templates are exposed as executable BPEL 

processes that may encapsulate adaptation techniques. The template developers are in charge of associating the 

templates they develop with adaptation mismatches based on the types of mismatches they can cope with . For 

each application layer, one or more taxonomies of adaptation mismatches, which may either be generic or contain 

domain information for particular application domains. The authors use tree-based taxonomies and is-a relationship 

between children and parent mismatches, as well as for the scaled degree of matching between adaptation 

mismatches. The cross-layer dimension of this approach is achieved by linking adaptation templates, 

corresponding to layers where adaptation is needed, either directly or indi rectly. In the former case, a BPEL 

adaptation template invokes the WSDL interface of another BPEL adaptation template. In the latter case, a BPEL 

adaptation template raises an event that will trigger the selection, deployment and execution of another adaptation 

template. This can be achieved by using standard BPEL activities that are invoked to generate events and receive 

or pick branches to receive events. Within each layer, the authors assume the availability of several adaptation 

templates, some of which are linked and which are associated with different taxonomy mismatches.  
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In [108] the authors present an integrated approach for monitoring and adapting multi -layered SBAs. This approach 

is based on a variant of MAPE control loops that are typical found in autonomic systems. All the steps in the control 

loop acknowledge the multi-faceted nature of the system, ensuring that they always reason holistically and adapt 

the system in a cross-layered and coordinated way. The proposed methodology comprises four main steps: (i) 

Monitoring and Correlation, where sensors capture run-time data about the software and infrastructural elements, 

(ii) Analysis of Adaptation Needs, in which the framework identifies anomalous situations and pinpoints where it 

needs to adapt, (iii) Identification of Multi-layer Adaptation Strategies, in which the framework uses the adaptation 

capabilities that exist within the system to define a multi -layer adaptation strategy as a set of software and/or 

infrastructure adaptation actions; and (iv) Adaptation Enactment, where different adaptation engines at the software 

and infrastructure layer enact their corresponding parts of the multi-layer strategy. This approach comprises a set 

of mechanisms to provide multi-layer monitoring and adaptation. Its main drawback is that it does not feature 

proactive adaptation capabilities. In addition, it does not provide in detail how cross-layer monitoring is performed 

in which the various events are synchronized.  

Finally, [109] proposes a holistic SBA management framework, called CLAM, which can deal with cross- and multi- 

layer adaptation problems. This is achieved in two ways. On the one hand, CLAM identifies the application 

capabilities affected by the adaptation actions and on the other hand, it identifies an adaptation strategy that solves 

the adaptation problem by properly coordinating a set of specific adaptation capabilities. This work addresses the 

cross-layer adaptation problem. The tree-based approach for defining adaptation paths seems very interesting 

although it can be time-consuming. In addition, during the ranking process of the adaptation branches, cost is not 

taken into consideration. A drawback of this approach is that it does not elaborate on cross-layer monitoring. Finally, 

this approach has neither proactive adaptation, nor functional aspects handling capabilities. 

4.3.1.2 Languages for Adaptation Plans  

As presented in the previous chapter, adaptation efforts mainly on detecting a critical situations and the target state. 

The description of this state transition mostly unclear or simplified. Cloudiator targets to be open for various 

approaches that is why its adaptation component Axe is not tied to a specific language. 

In other Cloud orchestration tools such as Apache Brooklyn the rules are simple threshold-based on single metrics. 

Any more complex rules or event patterns have to be defined and implemented in an external monitoring tool. Axe 

goes beyond this, as it provides an integrated and easy-to-use solution that even allows changes of the scalability 

configuration at runtime. 

Several projects deal with integrated auto-scaling mechanisms for cloud services. One of them is the EU project 

CELAR66. The language SYBL that specifies elasticity in terms of monitoring, constraints and strategies in multi-

level approach describes the adaptation. There are just a few predefined strategy actions, e.g. scale in and scale 

out, but with the possibility of the specification of user-defined strategies in terms of scripts, which can be called 

with parameters in a SYBL elasticity description. This is an interesting use-case for Axe, but in respect of 

CloudSocket, we will aim for an approach that includes (i) a more sophisticated workflow of the actions, and (ii) an 

awareness of the success of the operation to be able to define fallback strategies, that should lead to a lower 

violation rate of SLAs. 

Bracevac et al. [110] propose the Cloud Platform Language (CPL) that unifies the programming of deployments 

and applications into a single language as opposed to current provider- and domain-specifc languages as e.g. 

CloudFormation. The adaptation plans that the Cloud Provider Engine will be capable of should be able to cover 

the main semantics in which the CPL describes such activities: server spawn, snapshot, image replacement, 

migration and parallelism. 

                                                                 
66 http://www.celarcloud.eu/ 

http://www.celarcloud.eu/
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In the EPICS EU project, Chen et al. [111] propose to have the auto-scaling system in a self-aware and the decision-

making in a distributed way. This means to include the utilization of other services into the own local decision 

process. Modelling the impact of a scaling action on to the other components, may influence the actual auto-scaling 

process, e.g. if the replication of a component would heavily increase the communication between another 

component, the adaptation plan would in this case migrate the latter component to a location near the other 

component. In addition, the auto-scaling process should be aware of the targeted goal and in case of an opposite 

results, e.g. undo the scaling action. Another point is the awareness of the interaction, such as that e.g. a scaling 

action that destroys component x is not executed simultaneously to a scaling action that replicates component x. 

This awareness should be reflected in the adaptation plans that can be specified in the terms of CloudSocket, in 

order to assure having less SLO violations. 

The OASIS TOSCA standard defines the Cloud applications structure as topology and its management as 

workflows, so called plans. TOSCA relies on existing languages like BPMN or BPEL to describe those workflows. 

Kopp et al. [112] propose extensions to BPMN, called BPMN4TOSCA, in order to cater for Cloud-specific tasks 

and data objects, that eases the use of the language for application modeller. Selecting user-defined actions and 

allowing specifying branches and gateways for the adaptation plan, is also necessary Adaptation Engine in 

CloudSocket. Important for CloudSocket is, among the other key benefits of such an workflow approach  [113] , to 

be able to cater for fault-handling, and parallelism. Both are crucial for a financial ly successful and efficient 

deployment. 

The Scalability Rule Language (SRL) was developed in the course of the PaaSage EU project in order to specify 

the elasticity behaviour of an application. Concerning the adaptation plan, a scaling rule triggers the execution of 

an unordered set of scaling actions. This will be improved in the course of the CloudSocket project. 

4.3.2 UULM Approach 

The adaptation approach of UULM focuses on the auto-scaling of services in a multi-cloud context. As monitoring 

and adaptation are complementary functionalities, the UULM approach relies on functionalities provided by the 

Cloud Provider Engine and the UULM monitoring approach. The adaptation framework, namely AXE, is part of the 

Cloudiator Framework (cf. Figure 19) and processes the aggregated monitoring data (cf. Table 9) of the UULM 

monitoring approach to enable its auto-scaling capabilities.  

4.3.2.1 AXE 

UULM’s adaptation approach AXE67 is the first implementation of the Scalability Rule Language (SRL) [4] The 

concept of SRL was developed in the PaaSage project, amongst others by FORTH and UULM. SRL is a provider -

agnostic description language. It provides expressions to define the monitoring raw metric values from VMs and 

component instances and mechanisms to compose higher-level metrics from raw metrics. Moreover, it comprises 

mechanisms to express events and event patterns on metrics and metric values. Finally, SRL captures thresholds 

on the events and actions to be executed when thresholds are violated. A simple SRL rule in prose may be: add a 

new instance of this distributed database if (i) all instances have a 5 minute average CPU load > 60%, (ii) at least 

one instance has a 1 minute average CPU load > 85%, and (iii) the total number of instances is < 6. 

Auto-scaling can be categorised in different classes [114] . SRL, used by AXE, mainly belongs to the threshold-

based rules as well as time series analysis class. SRL links a set of threshold-based conditions with each other 

using binary operators. In addition, any set of thresholds can be linked to the values produced by the metrics. So 

far, Axe supports the triggering of scale out and scale in actions over application components. Yet, the 

                                                                 
67 https://github.com/cloudiator/axe-aggregator  

https://github.com/cloudiator/axe-aggregator
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implementation of further actions, like migration, is an ongoing process. The triggering of rules leads to an 

invocation of the Cloudiator functionality to bring up a new or shut down an existing VM. 

The auto-scaling functionality of AXE builds on top of the monitoring capabilities (cf. section 4.2.3). In particular, 

any of the conditions connected via Boolean operators is considered a metric on its own taking the values 0 or 1. 

When the metric value equals to 1, the respective action will be triggered and forwarded as request to the other 

Cloudiator tools, in particular Colosseum (cf. section 4.1.2). These tasks are executed by the Scaling Engine 

component. 

The Scaling Engine (cf. Figure 19) is the central managing environment of AXE that controls the distribution and 

outsourcing of the computation-heavy work to highly scalable and loosely coupled components, the Aggregators. 

Nevertheless, it is possible to scale the Scaling Engine up to having one instance per scaling rule. 

4.3.2.2 Adaptation Plans 

As already mentioned, the Cloud Provider Engine employs the AXE tool of Cloudiator, which implemented the SRL 

and therefore was in the integral state only capable of execution a set of scaling action, defined as scale up and 

down, but not the execution of more complex, user-defined workflows. 

As seen before, adaptation plans are necessary to realize more complex workflows for highly dynam ic and 

distributed applications. This is of great importance for CloudSocket as the target group are the SMEs. They need 

to benefit of a lightweight IT  resource management, as the business process of such an SME lead to very short-

term, dynamic workflows, the resources consumption has to be aligned with this business strategy. In order to allow 

such plans, we extend the current adaptation engine in Cloudiator by the following adaptation items. 

The adaptation actions can now be defined as a sequence, i.e. each action has a specified order in which the 

engine will execute it. This caters also for parallelism; since an action can´t be executed before, the connected 

previous actions are finished. An action can be attached to an alternative plan, in case it failed. By that, it is 

possible to change the strategy on run-time. In case no alternative is available, the whole workflow will be rolled 

back and an error is propagated to the administration. Cool-down interval, migration and user-defined scripts extend 

the types of actions. The cool-down is the time; the rule engine waits until going over to the next action. Concerning 

migration, also the life-cycle model has to be extended by import and export action, which have to be implemented 

by the user. The return value of export is the input parameter of import, in terms of a URI. The Colosseum will 

provide the means of storing data from the entity that exports its data and therefore the URI will link to the home 

domain of Cloudiator. Still, this is not a fully automatic approach, as the user has to implement the respective 

actions. The same applies to the user-defined scripts that can be associated to an action of the adaptation plan. By 

this, it will be possible to have very specific configurations of the Cloud application that are handled throughout all 

the deployments in an automatic way. The adaptation part of the current interface of the Cloud Provider Engine 

enables that scaling actions as well as adaptation plans can be directly executed and not only by attaching it to a 

certain condition (threshold to monitoring data). This allows having a convenient management of the scaling also 

by third-party tools. Adaptation plans, that might block each other, are not executed simultaneously. For this, the 

highly distributed AXE instances will be aware of the on-going activities in other instances. Concerning service 

substitution, it is possible to change the communication of a component towards another component, which results 

in an extension of the life-cycle actions by a wiring command, which can be called independently in an adaptation 

plan. 

Figure 33 shows an example adaptation plan that vertically scales up a component x, but before that it horizontally 

scales out the same component in order to have no downtime due to the restarting of the vertically scaled 

component. This might be necessary, if the user has a very strict SLA concerning downtime. It also shows an 

alternative plan that, in case the scaling failed, describes the substitution of the service (represented by component 

x) with another one (here on component z) that is hosted somewhere else and already running. This can be the 
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case if two services are capable of the same functionality but logically separated for some reasons, e.g. avoid 

overload or just a component to enable fault-tolerance. In this example component y is for a short time connected 

to component z, while component x is scaled up. 

 

Figure 33 - Example of an adaptation plan with component scaling and short -term service substitution 

The concept of adaptation plans is currently work in progress for which the theoretical basis was achieved and 

worked into the model entities of Cloudiator and later in CAMEL. The implementation and feasibility check is 

scheduled for the upcoming period of CloudSocket. 

4.3.3 FORTH Approach 

As already mentioned in section 4.2.4, FORTH has developed a cross-layer monitoring and adaptation framework 

[99, 114]. By focusing on adaptation, the framework's architecture can be seen in Figure 34. This architecture has 

been adopted in the context of this project. It comprises mainly seven main components: (a) Rule Engine, (b) 

Adaptation Engine, (c) Transformer, (d) Rule Derivator and (e-g) layer-specific services (for WFaaS, SaaS, and 

IaaS layers). The Rule Engine is responsible for detecting which adaptation rules are fired based on the events that 

have been delivered from the Monitoring Engine. These adaptation rules currently take the form of a mapping 

between event pattern names to names of adaptation strategies and are specified via the Drools respective 

language, as Drools is the implementation technology behind this engine. In case two or more rules are fireable, 

the current practice is to select the one with the highest priority. Such practice could be modified in the near future 

to more dynamically select the best possible alternative according to the current context. Once the respective 

adaptation strategy name is identified, then the Adaptation Engine, being a normal Workflow Engine with additional 

capabilities, is invoked with that name in order to create a specific adaptation workflow instance and execute it. In 

this sense, there is a fixed mapping between adaptation strategy names and adaptation workflow descriptions. The 

respective workflow comprises tasks, which map to specific adaptation actions that are layer-specific and map to 

specific layer-specific services, which deliver the adaptation functionality in each layer. It is the job of the workflow 

modeller to know which adaptation actions are currently involved in the system/framework in order to specify the 

respective workflow by mapping the corresponding tasks to those services or pieces of software code that map to 

these actions.  
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Figure 34 - FORTH's Adaptation Framework 

Following the above analysis, there is a need for a set of adaptation services that include the respective adaptation 

actions needed. In this respect, as the Cloud Provider Engine could be seen as a service, it could be involved in 

order to perform adaptation actions at the IaaS layer (like scaling or migration ones). Apart from these services, 

sometimes there will also be a need to include adaptation software code into the Adaptation Engine to be involved 

in respective automated adaptation workflow tasks. This code is not depicted in Figure 34 as it is considered internal 

to the Adaptation Engine.   

The mapping between event patterns and adaptation strategies is derived in a semi-automatic manner by following 

a logic-based event pattern discovery approach [118] over the execution history of the BPaaS workflow. This 

approach is encapsulated in the Rule Derivator.  In particular, by considering a set of SLOs that must hold for the 

BPaaS workflow, the Rule Derivator attempts to find those event patterns that lead to the violation of one or more 

of these SLOs. As soon as new event patterns are discovered, they are mapped to specific adaptation strategies 

that need to be performed to alleviate the respective SLO violations. Such strategies are derived in a  semi-

automatic manner via simple adaptation rules that are manually provided by the expert. These simple rules take 

the form of a mapping between single events to one adaptation action to be perform to address it. Then, by 

considering the set of events included in the respective event pattern discovered, the corresponding adaptation 

actions mapping to these events are combined in order to produce the relevant adaptation strategy. The space of 

possible action combinations can be filtered by knowing which ac tions have similar effects or contradictory ones 

and which actions can be parallelised or executed only in sequence. In the end, actually a set of adaptation 

strategies are derived, as workflows of adaptation actions, that need to be selected in order to specify the more 

complex adaptation rule. The selection currently mainly relies on considering the priorities put on the simple 

adaptation rules from which the more complex candidate ones have been derived. The candidate adaptation rule 

with the highest multiplication of involved priorities is selected. Please note that apart from the final generation and 

modelling of the complex adaptation rule, the respective workflow has to be constructed mapping to its name. In 

this respect, the internal structure of the adaptation strategy, as produced from the Rule Derivator, has to be 

automatically transformed into a workflow. This is actually done by the Transformer.       
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4.3.4 Integration / Synergy of Approaches 

By considering the analysis of the two adaptation approaches in the previous two sections, we regard that these 

approaches are more or less complementary. In fact, one of the approach could be considered as part of the other. 

In particular, as the Cloud Provider Engine currently covers the IaaS layer and the performance of scaling plus 

migration actions on this layer, then it can be considered as a composite service that offers the respective 

adaptation functionality in this layer. By following then the approach of FORTH, we could exploit this service along 

with others provided in the rest of the layers in order to completely cover complex adaptation scenarios cross all 

the possible layers.  

To enable this composition of approaches, the Cloud Provider Engine should be offered as a service that needs to 

expose the respective adaptation functionality. The current prototype of FORTH does not need to be heavily 

modified apart from the fact that it also needs to be offered as a service that could be exploited by a  BPaaS 

Execution Environment. However, also other details need to be fixed which can have an effect on the respective 

prototype implementation code. Section 2.4.1 highlights the need for introducing a specific adaptation rule DSL as 

a sub-DSL of CAMEL which will enable the specification of the cross-layer adaptation behaviour to handle advanced 

adaptation scenarios. As such, once this extension is in place, it will have to be adapted by the adaptation approach 

of FORTH. One thought of how this could be performed would be to modify the Rule Engine in order to be able to 

process CAMEL adaptation rules. Here we have mainly two possibilities: (a) the Rule Engine implementation is 

modified - for instance, it could be argued that there is no need for an actual rule engine but for a system which can 

identify which rules are triggered based on specific events. Different techniques could then be exploited like the 

ones employed by the UULM approach in the case of scaling rule triggering; (b) the Rule Engine implementation is 

not modified but an additional component is added in the overall architecture responsible for translating CAMEL 

adaptation rules to Drools rules. Apart from possibly adapting the Rule Engine, the Transformer might also need to 

be adapted such that it is able to transform the action parts in the CAMEL adaptation rules to respective adaptation 

workflows.  

4.3.5  Future research 

Apart from the pending combination of FORTH and UULM adaptation approaches to cover a complete cross-layer 

BPaaS adaptation, there are also certain research directions that are worth investigating, followed and implemented 

in the respective research prototypes. These directions are analysed in the following sub-sections. 

4.3.5.1 Dynamic Adaptation Workflow Concretisation 

A system may not have stable adaptation capabilities. Systems evolve and respective capabilities have to be 

updated and expanded. As such, by considering the case of adaptation workflows, it is better not to be fixed but 

dynamically derived on demand, when the need to perform the respective adaptation is raised, based on the current 

adaptation capabilities of the system. In this sense, the same adaptation rule can be realised in different ways at 

different time points and different realisations might lead to better adaptation performance. Performance does 

matter as the longer an adaptation workflow takes to finish, the higher is the risk that the respective adaptation 

actions are not performed in time such that the corresponding SLO violation is avoided.  

Concerning the way the abstract to concrete adaptation workflow concretisation can be achieved, the same logic 

can be followed as in the case for abstract BPaaS workflow allocation via exploiting semantics to accurately 

discover those actions that map to a certain adaptation workflow task. Moreover, the same techniques as in 

(composite) service concretisation can be exploited to select the best alternatives for each workflow task in order 

to satisfy global quality constraints overall adaptation workflow.  
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4.3.5.2 Optimised Derivation of Adaptation Strategies 

While the priority of an adaptation action over the handling of a specific event can enable the respective composition 

of actions to formulate an adaptation strategy, it still maps to a subjective approach as such priorities are given by 

the rule expert and can reflect only common situations. In this sense, a more dynamic approach must be followed 

which handles the cold start problem via the original approach but then dynamically modifies the adaptation strategy 

selection decisions according to actual runtime/execution knowledge. For example, if one adaptation strategy 

consistently fails to remedy the problem (e.g., a SLO violation) to be solved, then an alternative strategy needs to 

be employed. Moreover, by considering individual actions in each strategy, similar derivations can be reached about 

which individual actions should be preferred over the others. As such, by following the execution knowledge, the 

system reaches more optimal points, which enable it to better address the various problematic situations that occur 

or are about to occur. Relevant work on this subject includes [88], which could be adopted in the context of the 

project and the respective frameworks that are exploited. 

4.3.5.3 Layer-Specific Adaptation Action Realisation 

To address complex adaptation situations in a cross-layer manner, respective adaptation functionality in each layer 

must be in place. T hus, there is a need to equip the adaptation system with a collection of such functionalities and 

advance research over particular types of functionalities. For example, while horizontal scaling is well supported by 

both existing research and commercial prototypes, this is not the case for stateful component migration. As such, 

the research work currently performed in UULM attempts to address this kind of migration for specific types of 

stateful components, i.e., databases, is a very nice starting point.  

Concerning the SaaS level, existing functionality delivered by FORTH already exists including components 

supporting dynamic service discovery and functional as well as non-functional service composition. Such 

components could then be easily offered as a service and included in the respective combined adaptation system. 

Some of these components might need to be slightly updated, e.g., the service composition to adapt just a part of 

a currently running workflow and not the whole workflow. 

Concerning the WfaaS level, research work, to be adopted, has focused on addressing mainly the instance 

migration problem. However, the workflow re-composition problem should be also addressed as is relevant in 

different cases: (a) critical service functionality mapping to one or more tasks ceases to exist; (b) non-functional 

requirements are changed and this leads to no possibility for concretising the current structure of the workflow. 

Similar principles as in service re-composition could apply but the issue here is that we are dealing with a different 

level with each own peculiarities. Fortunately, the same or similar problems as in the determination of an abstract 

workflow in the context of a BPaaS also apply here.   
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5 INTERACTION WITH OTHER ENVIRONMENTS 

5.1 Required Input 

The previous sections have shed light on particular research items or approaches that have been mainly pursued 

by the research partners of this project. However, these approaches or items require particular forms of input in 

order to function as expected. In the sequel, we focus on each of the items and indicate the kind of input that is 

required from those environments that map either to a phase before the allocation one (i.e., the Design 

Environment) or to cross-environment functionality (like the registries offered by the Marketplace). 

Smart service discovery and functional composition. As indicated in section 3.2, the respective algorithms proposed 

work over OWL-S and OWL-Q semantic functional and non-functional specifications, respectively. However, they 

could be modified to obtain respective input from a semantic or semantically annotated service repository. In this 

case, the major issue here is to have some sorts of semantics that accompany the description of services whichever 

is the place on which these descriptions are stored. In this sense, what is actually expected from these algorithms 

is a semantically-enhanced service repository which can then exploit in order to produce their own structures that 

assist in the speed-up of the service discovery and composition processes.   

Non-Functional Service Composition / Concretisation. The respective algorithm needs to have a semantically 

annotated workflow structure covering all possible requirements posed over this structure. These semantic 

annotations are needed for service discovery purposes, i.e., to discover those services that functionally and non-

functionally match a particular workflow task. They are also needed in order to properly format the optimisation 

problem on which the service concretisation algorithm relies. As already indicated in the previous paragraph, the 

respective service discovery and composition algorithms could function even in the non-presence of specific 

semantic service description formalisms. However, there is a need to deliver a formalism which enables the 

semantic annotation of BPaaS workflows in a global and local (task) level. Such an annotation can rely on the 

different annotation mechanisms as indicated in D3.1. The respective tools support to produce these annotations 

is already in place as indicated in D3.2 (with the sole exception of OWL-Q annotations that are still not possible). 

Functional annotations should rely on the use of domain concepts while non-functional annotations should rely on 

the use of semantic quality models which need to be specified via OWL-Q. Please note that these annotations 

should concern the technical and not the business level. This means that, for instance, non-functional annotations 

can refer to more technical quality terms rather than business ones (e.g., workflow processing time instead of 

business process duration - while it is apparent in this case that the latter is equal to the former). This is suitable in 

order to be able not only to perform BPaaS workflow concretisation but also assist in the specification of SLAs as 

well as for the subsequent BPaaS workflow monitoring. Concerning functional annotations, different ontologies 

might be involved with respect to the business level. In particular, a business process model can be annotated via 

concepts representing business objects while a workflow model should be annotated via concepts representing 

more technical concepts.   

Monitoring Approaches. Semantic annotation on technical non-functional requirements should be in place. This is 

exactly what is also demanded by the previous algorithm. The main issue, however, here is the compositionality of 

the quality terms as this enhances the monitorability of the requirements. In particular, while technical requirements 

at the workflow level can include high-level quality terms like metrics, there should be a way to decompose these 

terms into terms that can be computed in case that a sensor is not available for the measurement of the high -level 

quality term. To assist in this matter, it is suitable to have a semantic metric repository/registry, relying on OWL-Q, 

via which high-level quality terms are completely defined, including the ways that they can be computed from lower-

level metrics. Apart from this, in terms of technical requirements that are specified via CAMEL, we need to stress 

here the need to enable semantic annotations on the CAMEL's metric meta-model. This can be of course 
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considered as an internal (based on the context of this deliverable) input requirement that is demanded by the 

Execution Environment and has to be provided by the Allocation Environment.   

Deployment Plus Adaptation Approaches. Both deployment and adaptation need to benefit from existing 

deployment/selection and adaptation rules that are provided by experts. Such rules could be based on a high -level 

specification language like DMN and be provided by the Design to the Allocation Environment. Then, by following 

the approach sketched in section 3.4, DMN specifications can be mapped to adaptation rules specified in CAMEL 

as well as to deployment knowledge (rules) that can assist in the production of the most suitable deployment plan. 

While not yet explicated, deployment rules could be specified in CAMEL or via any other formalism. They could 

also lead to a small extension of the BPaaS workflow concretisation algorithm in order to transform them into 

respective constraints of the optimisation problem to be solved. However, another use for them would be to enable 

more dynamic deployment scenarios where some deployment logic is not concretely specified in the deployment 

plan but has to be concretised during deployment by the Cloud Provider Engine.   

Deployment Approach. The Cloud Provider Engine requires the existence of a service registry which can indicate 

the services available at the IaaS and PaaS layers. Such a registry could be exploited to drive the dynamic 

deployment behaviour based on the aforementioned scenarios in the previous paragraph. Moreover, it could also 

be the case that the deployment plan refers to respective entries of this registry from which the Cloud Provider 

Engine will obtain information that can support the instantiation of the respective components (software or VM). 

This would lead to a more lightweight approach in deployment plan specification.      

5.2 Exploitable Output 

Based on the current logical interaction order between the different environments, it is apparent that the Allocation 

Environment produces output that is mainly exploited by the Execution Environment in a indirect manner (i.e., after 

the purchase of a specific bundle). However, there is an additional case which needs to be accounted. This 

concerns the fact that the Allocation Environment would not be able to define a BPaaS bundle out of a specific 

corresponding design package due to various technical reasons. These can include: (a) over-constrained 

requirements at the business level that cannot be satisfied at the technical level (e.g., performance requirements 

not met by any service composition); (b) missing technical requirements or technical observations/facts that could 

also influence business decisions (e.g., high cost of the bundle). In such a case, an interaction with the Design 

Environment should take place in order to either change the high-level requirements or to provide new ones to 

cover the missing technical ones. We can possibly consider either a kind of notification mechanism employed in 

order to inform the Design Environment about this problematic case and enable the adjustment of the requirements 

or the interchangeable usage of the environments by the same individual (e.g., a technical expert, hired by the 

BPaaS broker, involved in the design of the workflow and its allocation).  

The main exploiter of the Execution Environment is the Evaluation one which needs to retrieve the most suitable 

knowledge from the execution of one or more BPaaSs in order to appropriately and properly perform the respective 

analysis tasks. To assist in the different types of analysis, we foresee the following im plications: 

 direct or indirect semantic annotation of measurements: either measurements have to be directly 

annotated with the respective metric that they refer to or they need to point to a metric specification in 

which semantic annotations have been included. Through this semantic annotation, the semantic lifting 

of measurements can be achieved and their exploitation by the semantic KPI analysis approach 

envisioned for the Evaluation Environment.  

 other BPaaS execution information: some of the remaining analysis mechanisms of the Evaluation 

Environment need to derive best deployment plans for BPaaS and discrepancies in BPaaS workflows. 

To enable the proper functioning of such mechanisms, respective information should be made available 

by the Execution Environment which ideally would be nice if it is already semantically annotated. Such 
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information spans: (a) workflow log files from which we can inspect all workflow tasks that have been 

performed, the timing of their execution and the respective order; (b) SaaS, IaaS and PaaS logs from 

which we can derive information about when services executed and how long did their execution last; 

(c) live allocation information mapping component instances to each other all the way up until the 

workflow level (such that we know which IaaS instances were used to host which internal software 

component instances which realise the functionality of which task instances in the BPaaS workflow). 

While (a) can be easy to gather as most workflow execution engines do provide or can be configured to 

provide such logs, it is not the case for the rest of the information. Thus, the respective components in 

the Execution Environment should either already offer or be enhanced to offer such information.     
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6 SUMMARY: RESEARCH SHOWROOM 

This chapter provides a brief summary of all research blueprints presented in this deliverable. Each research 

blueprint is categorized in respect to its current state, while in the end the handover process for the respective 

research assets of the blueprints to WP4 is outlined. This chapter concludes with an overall summary and outlook 

to the forthcoming research. 

6.1 Research assets 

In the following, the research assets of the respective Blueprint categories (BPaaS Modelling Blueprint, Allocation 

Environment Blueprint, & Execution Environment Blueprint) are briefly analysed. This analysis will ease the 

handover process to WP4 as it provides a solid overview and maturity level for each asset to the consortium. Each 

asset analysis includes a short summary with the focus on the added value, the asset type and the research state. 

The asset type defines the relation to existing components of the CloudSocket. Possible types are: new asset, 

enhancement of component X or replacement of component X. The research state indicates the actual state of the 

asset and the estimated time in months to provide a first prototype, estimated time to prototype (ETTP in months). 

Possible research states are idea (ETTP ~ 12), concept (ETTP ~ 9), in process (ETTP ~6) and alpha version (~3). 

In order the ease the evaluation and also have an indication of the integration effort required for WP4, attributes 

like the existing/targeted license and the dependencies to existing components are also included (along with an 

explanation of why these dependencies hold). The analysis over all research assets for each Blueprint category is 

incarnated in the following tables. 

 BPaaS Modelling Blueprint 

Name 1. PaaS/SaaS support of CAMEL (cf. chapter 2.2.2) 

Summary Provide a cloud service level agnostic modelling approach for services 

Dependencies Allocation Environment, Cloud Provider Engine 

Asset Type Extension of CAMEL 

Research State In process 

License Open-Source 

Name 2. SLA support in OWL-Q (cf. chapter 2.3.2) 

Summary Extend OWL-Q to support the semantic specification of SLA (templates) 

Asset Type Extension of OWL-Q 

Research State Alpha version 

License Open-Source 

Table 11 - BPaaS Modelling Blueprint assets 
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 Allocation Environment Blueprint 

Name 
3. Smart Service Discovery and Composition Tools (cf. chapter 3.2 and 
3.3) 

Summary 
Semantic functional and non-functional service discovery and composition 
tools enabling automatic mapping of abstract to concrete BPaaS workflows 

Dependencies Registries (service and provider/IaaS/PaaS) 

Dependency 
Explanation 

Cloud Service Offerings must be specified in the registries. Moreover, semantic 
annotations should be in place for specific types of cloud services. The tools 
need to be extended in order to be able to operate over these annotations and 
not just service specifications conforming to a specific semantic description 
language 

Asset Type New asset 

Research State Alpha version 

License Open-Source 

Name 4. DMN to CAMEL Mapping (cf. chapter 3.4) 

Summary Semi-automatic generation of CAMEL based on business values 

Dependencies CAMEL, Registries 

Dependency 
Explanation 

The dependency to registries is required in order to be able to map high-level 
decisions to low-level ones which map to the selection of particular services that 
are fully described in the registries. The conditions over service selection will 
also rely on metrics that are defined in the metric registry. 

Asset Type New asset 

Research State Idea 

License Open Source 

Table 12 - Allocation Environment Blueprint assets 

 Execution Environment Blueprint 

Name 5. PaaS orchestration and abstraction layer (cf. chapter 4.1.2.3) 

Summary 
Enabling Multi-PaaS orchestration by abstracting PaaS provider specific 
characteristics 

Dependencies Cloud Provider Engine 

Asset Type Extension to Cloud Provider Engine 

Research State In process 

License Open-Source 
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Name 6. Dynamic IaaS Selection at Runtime (cf. chapter 4.1.3.1) 

Summary 
Dynamic selection of IaaS to host internal BPaaS components based on 
different criteria like tenant location 

Dependencies Registries 

Dependency 
Explanation 

IaaS registry needs to be populated accordingly such that this algorithm can 
really function as expected and provide respective results 

Asset Type New asset 

Research State Idea 

Name 
7. Distributed and self-scalable Monitoring Architecture (cf. chapter 

4.2.3) 

Summary 
Provide self-scaling Monitoring Architecture with a flexible TSDB storage 

engine and customisable sensors 

Dependencies Metric Registry, CAMEL/OWL-Q (BPaaS bundle) 

Asset Type Enhancement of Monitoring Engine 

Research State In process 

License Open-Source 

Name 8. Cross-Layer Monitoring Framework (cf. chapter 4.2.4) 

Summary 
Cross-layer monitoring framework for BPaaS which provides measurements 

on metrics at different layers of abstraction 

Dependencies Metric Registry, CAMEL/OWL-Q (BPaaS bundle) 

Dependency 
Explanation 

Need to know the metrics that need to be sensed or aggregated as well as the 
components whose properties are measured by these metrics. The Metric 
Registry provides the specification of the metrics but there is also a need for 
having access to the BPaaS bundle description and especially the monitoring 
part in CAMEL such that we have the knowledge about the respective 
conditions and metric contexts that have to be accommodated. 

Asset Type Replacement of Monitoring Engine 

Research State In Process 

Licence Open-Source 

Name 9. Synergic Cross-Layer Monitoring Framework (cf. chapter 4.2.6.3) 

Summary 
Cross-layer monitoring framework produced by combining the monitoring 

frameworks from FORTH and UULM 

Dependencies Metric Registry, CAMEL/OWL-Q (BPaaS bundle) 
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Dependency 
Explanation 

Need to know the metrics that need to be sensed or aggregated as well as the 
components whose properties are measured by these metrics. The Metric 
Registry provides the specification of the metrics but there is also a need for 
having access to the BPaaS bundle description and especially the monitoring 
part in CAMEL such that we have the knowledge about the respective 
conditions and metric contexts that have to be accommodated. 

Asset Type Enhancement of Monitoring Engine 

Research State Concept 

Licence Open-Source 

Name 10. AXE Adaptation Framework 

Summary 
An adaptation framework supporting the Scalability Rule Language for 

enabling complex BPaaS adaptations on the IaaS level 

Dependencies 
CAMEL (BPaaS bundle), Cloud Provider Engine, Metric Registry, 

CAMEL/OWL-Q (BPaaS bundle) 

Asset Type Enhancement of Adaptation Engine 

Research State Alpha version 

Licence Open-Source 

Name 11. Cross-Layer Adaptation Framework (cf. Chapter 4.3.3) 

Summary 
An adaptation framework for BPaaS enabling to perform adaptation strategies 

in a cross-layer manner to resolve respective problematic situations 

Dependencies CAMEL (BPaaS bundle), Component Registries 

Dependency 
Explanation 

Need to know what are the adaptation strategies that have to be triggered in 
terms of adaptation rules and this information will be available in the forthcoming 
CAMEL extension (see section 2.4.1). In addition, if adaptation actions are 
considered as software components, then we need their description in the 
software component registry. 

Asset Type Replacement of Adaptation Engine 

Research State Concept 

Licence Open-Source 

Name 12. Synergic Cross-Layer Adaptation Framework (cf. chapter 4.3.4) 

Summary 
Adaptation framework produced from the combination of the adaptation 

frameworks of FORTH and UULM. 

Dependencies CAMEL (BPaaS bundle), Component Registries 
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Dependency 
Explanation 

Need to know what are the adaptation strategies that have to be triggered in 
terms of adaptation rules and this information will be available in the forthcoming 
CAMEL extension (see section 2.4.1). In addition, if adaptation actions are 
considered as software components, then we need their description in the 
software component registry. 

Asset Type Enhancement of Adaptation Engine 

Research State Concept 

Licence Open-Source 

Table 13 - Execution Environment Blueprint assetss 

6.2 Blueprint handover process 

Some of the presented research blueprints and assets may be selected to be integrated into the stable CloudSocket 

architecture through WP4. The blueprint/asset analysis in the previous section facilitates the hand over process of 

the respective blueprints. The handover process covering both D3.3 and D3.4 is depicted in Figure 35. All described 

assets are presented to the whole consortium, especially the WP4 stakeholders. With continuous demonstrations 

along general assemblies and remote session an agile interac tion with the end users is achieved.This interaction 

passes the initial presentation of the research ideas and WP4 provided an initial feedback. Further, the results of 

D3.3 are presented in order to derive a first prioritization of the blueprints from a WP4 perspective. This provided 

overview of the ongoing research blueprints can then be already considered for the upcoming Deliverable D4.5 

“Final CloudSocket Architecture” which is due in M21. As not all research blueprints might be considered with a 

high priority, the involved WP3 partners have to take the decision, which blueprints they will follow in order to 

provide prototypes.    

 

Figure 35 - Research blueprint handover process 

Based on the feedback from WP4, the focus will be placed on the higher prioritized research assets in order to 

present the progress of respective blueprint prototypes during upcoming demonstrations. During the prototype 

development process, WP4 is able to monitor it via periodic conference calls and technical workshops.   



 

Copyright © 2016 UULM and other members of the CloudSocket Consortium 
www.cloudsocket.eu  Page 111 of 118 

6.3 Summaray and Future Work 

This document comprises the mapping and execution from higher level business processes and workflows to 

deployable BPaaS Bundles. Therefore, the three Blueprint categories, BPaaS Modelling, BPaaS Allocation 

Environment Blueprints and BPaaS Execution Environment Blueprints are presented. The identified research 

challenges (cf. section 1.2) are addressed for each Blueprint category by the research assets that have been 

presented in the previous section 6.1. 

The developed research assets of each Blueprint category are evaluated and prioritised by WP4. This allows the 

WP3 to focus and push the most benefic ial assets in each Blueprint for CloudSocket in order to provide deployable 

prototypes in the context of D3.4 “BPaaS Allocationand Execution Environment Prototypes”. Further, the presented 

Blueprints allow a smooth transition into the D3.5 “BPaaS Monitoring and Evaluation Blueprints” by providing 

respective input data and interfaces facilitating the harvesting of such data.  
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ANNEX A: LIST OF ABBREVIATIONS 

List of abbreviation used into the document: 

 API: Application Programming Interface 

 BKM: Business Knowledge Model 

 BPaaS: Business Process as a Service 

 BPEL: Business Process Execution Language 

 BPMN: Business Process Model and Notation 

 CAMEL: Cloud Application Execution Modelling Language 

 CAMP: Cloud Application Management for Applications 

 CEP: Complex Event Processing 

 CIMI: Cloud Infrastructure Management Interface 

 COAPS API: Compatible One Application and Platform Service API 

 DMN: Decision Model and Notation 

 DT: Decision Table 

 DSL: Domain Specific Lanugage 

 ETTP: Estimateted T ime To Prototype 

 IaaS: Infrastrucutre as a Service 

 JVM: Java Virtual Machine 

 OCL: Object Constraint Language 

 OCCI: Open Cloud Computing Interface 

 OWL-Q: Web Onthology Language – Query Language 

 QoS: Qualitiy of Service 

 PaaS: Platform as a Service 

 RDBMS : Relational Database Management Systems 

 REST: Representational State Transfer 

 SaaS: Software as a Service 

 SLA: Service Level Agreement 

 SLO: Service Level Objective 

 SOA: Service Oriented Architecture 

 SOAP: Simple Object Access Protocol 

 SRL: Scalability Rule Language 

 TOSCA: Topology and Orchestration Specification for Cloud Applications 

 TSDB: T ime Series Database 

 UML: Unified Modelling Language 

 USDL: Unified Service Description Language 
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 VM: Virtual Machine 

 WADL: Web Application Description Language 

 WSDL: Web Service Description Language 

 Web application ARchive 

 YAML: YAML Ain't Markup Language 

 YCSB: Yahoo Cloud Serving Benchmark 
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