

www.cloudsocket.eu

EXPLANATORY NOTES:

FIRST BPAAS PROTOTYPE
D4.2 - D4.3 - D4.4

Editor Name Joaquin Iranzo (ATOS)

Submission Date June 30, 2016

Version 1.0

State FINAL

Confidentially Level PU

Co-funded by the Horizon 2020

Framework Programme of the European Union

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 2 of 99

EXECUTIVE SUMMARY

This document acts as an explanatory report to introduce the first BPaaS prototype, which integrates the

complete BPaaS lifecycle through the different BPaaS environments, while it unifies and summarises the

prototype deliverables: i) D4.2 First BPaaS Design and Evaluation Environment, ii) D4.3 First BPaaS Execution

Environment and iii) D4.4 First BPaaS Allocation Environment.

The BPaaS Environments that support the BPaaS lifecyle are (a) BPaaS Design Environment, (b) BPaaS

Allocation Environment, (c) BPaaS Execution Environment, and (d) BPaaS Evaluation Environment. Additionally

the BPaaS Marketplace is required to enable the BPaaS Customer to find and buy the BPaaS bundle. All

environments are independent; nevertheless, they expose different interfaces to be integrated and define the

structures of the interchange data. This means that the first prototype has started to be integrated and aligned

from the very beginning of the development phase. This has allowed to harmonize the different interfaces and

interactions, which have been clearly defined in the CloudSocket architecture (deliverable D4.1 [1]), allowing to

have a complete lifecycle including all the BPaaS environments.

In order to harmonize the implementation, a simple business process has been introduced as a guiding example

for all the phases, being the main thread that runs through the complete lifecycle. This process concerns the

sending of Christmas Greeting cards by email automatically. It is simple and includes all the basic concepts

allowing the integration of the BPaaS first prototype, fluidly.

As this deliverable deals with the reporting of a software prototype, it includes: i) The definition of all software

pieces, i.e., components, in the component wiki [19] and the respective sources to be downloaded (in case it is

open-source) from the GitLab repository [20], iii) a summary documentation for the components drawn from their

complete specification in the component wiki and ii) details about component instances offered as SaaS (e.g.,

actual endpoint), deployed on the UULM and YMENS infrastructure. Besides, it is complemented by

demonstration videos [29] and web presentation [30] that allow understanding the BPaaS prototype but not only

having a list of software components.

The document introduces the First BPaaS/CloudSocket prototype from different perspectives based on the main

actors (BPaaS Customers and Brokers) who interact with the platform in the context of the respective running

example, as it is shown in the demo videos [29]. Afterwards, the main deliverable sections include a basic level of

detail for the different environments by also supplying links catering for a more detailed inspection, such as the

wiki component description [19], source repository [20] and instances as SaaS. Therefore, the document explains

first the demonstration and then the details of the respective environments, allowing different kinds of readers to

understand it.

The structure of the document leads the reader from the prototype introduction to an in-depth view of all

environments structured by the two perspectives to cover the complete lifecycle. It is not the intention to introduce

all the content of this live documentation into this document; therefore, this document only contains the most

relevant information to understand the prototype and the different environments, following the same structure for

all of them.

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 3 of 99

PROJECT CONTEXT

Workpackage WP4: BPaaS Implementation

Task T4.2 – T4.3 – T4.4

Dependencies Input to D4.1, WP3, WP5, WP8

Contributors and Reviewers

Contributors Reviewers

Daniel Seybold, Frank Griesinger (UULM)

Kyriakos Kritikos (FORTH)

Antonio Gallo, Simone Cacciatore (FHOSTER)

Radu Davidescu, Alex Ganga (YMENS)

Joaquin Iranzo, Roman Sosa (ATOS)

Wilfrid Utz, Damiano Falcioni (BOC)

Internal Review 16.06.2016: Kyriakos Kritikos
(FORTH), Antonio Gallo, Simone Cacciatore
(FHOSTER), Daniel Seybold, Frank Griesinger
(UULM), Joaquin Iranzo, Roman Sosa (ATOS),
Damiano Falcioni (BOC)

Final Review 23.06.2016: Robert Woitsch (BOC),
Simone Naldini (MATHEMA), Diana Irimia (YMENS)

Approved by: Joaquin Iranzo (ATOS) as WP4 Leader

Version History

Version Date Authors Sections Affected

0.1 May 03, 2016 Joaquin Iranzo Initial version, TOC

0.2 May 13, 2016 Joaquin Iranzo Agreement of the TOC and the
content, including the partners’
comments.

0.3 May 30, 2016 Joaquin Iranzo, all
contributors

All the sections, inclusion of the first
version to consolidate the
contributions.

0.6 June 15, 2016 Joaquin Iranzo, all
contributors

First version for internal review.

0.9 June 21, 2016 Joaquin Iranzo, all
contributors

Consolidation for final version to be
reviewed

1.0 June 23, 2016 Joaquin Iranzo, all
contributors

Final version to be reviewed

2.0 June 30, 2016 Joaquin Iranzo, all
contributors.

Final version

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 4 of 99

Copyright Statement – Restricted Content

This document does not represent the opinion of the European Community, and the European Community is not

responsible for any use that might be made of its content.

This is a restricted deliverable that is provided to the community under the license Attribution-No Derivative

Works 3.0 Unported defined by creative commons http://creativecommons.org

You are free:

to share within the restricted community — to copy, distribute and transmit the work within the
restricted community

Under the following conditions:

Attribution — You must attribute the work in the manner specified by the author or licensor (but not
in any way that suggests that they endorse you or your use of the work).

No Derivative Works — You may not alter, transform, or build upon this work.

With the understanding that:

Waiver — Any of the above conditions can be waived if you get permission from the copyright holder.

Other Rights — In no way are any of the following rights affected by the license:

o Your fair dealing or fair use rights;

o The author's moral rights;

o Rights other persons may have either in the work itself or in how the work is used, such as publicity or
privacy rights.

Notice — For any reuse or distribution, you must make clear to others the license terms of this work.
This is a human-readable summary of the Legal Code available online at:

http://creativecommons.org/licenses/by-nd/3.0/

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 5 of 99

TABLE OF CONTENT

1 Introduction ... 10

2 CloudSocket First Prototype ... 14

2.1 Implementation Approach .. 22

2.1.1 BPaaS Sample .. 23

2.2 Architecture .. 24

2.3 Actors and Perspectives .. 25

3 PERSPECTIVE: BPaaS Customer ... 28

3.1 Introduction .. 28

3.2 Demonstration .. 28

3.2.1 Involved roles... 28

3.2.2 Purchase the Christmas Greetings Cards ... 29

3.2.3 Deep-dive into the infrastructure .. 31

3.2.4 Preparation of the Christmas Cards... 33

3.3 Environments ... 35

3.3.1 BPaaS Marketplace ... 35

3.3.1.1 Marketplace .. 36

3.3.1.2 Repository Manager .. 39

3.3.2 BPaaS Execution Environment .. 45

3.3.2.1 Workflow Engine ... 47

3.3.2.2 Monitoring Engine ... 54

3.3.2.3 Cloud Provider Engine .. 57

3.3.2.4 Adaptation Engine ... 62

3.3.2.5 SLA Engine ... 65

4 PERSPECTIVE: CLOUDSOCKET Broker .. 69

4.1 Introduction .. 69

4.2 Demonstration .. 69

4.2.1 Involved Roles ... 69

4.2.2 Assessment of indicators for running BPaaS bundles ... 71

4.2.3 Creation of new design package ... 72

4.2.4 Allocation and deployment of the new bundle ... 74

4.2.5 Publication of the new bundle .. 77

4.3 Environments ... 78

4.3.1 BPaaS Evaluation Environment ... 78

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 6 of 99

4.3.1.1 Hybrid Business Dashboard ... 80

4.3.1.2 Conceptual Analytics Engine .. 80

4.3.1.3 Semantic Repository ... 83

4.3.2 BPaaS Design Environment .. 85

4.3.2.1 BPaaS Design Tool ... 85

4.3.2.2 Executable Workflow Modeler... 89

4.3.3 BPaaS Allocation Environment .. 89

4.3.3.1 Allocation Tool .. 90

4.3.4 BPaaS Marketplace .. 95

4.3.4.1 Marketplace .. 95

5 Conclusions .. 97

6 References ... 98

Annex A: List of Abbreviations .. 99

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 7 of 99

LIST OF FIGURES

Figure 1 - CloudSocket portal: demonstration BPaaS Customer perspective ... 11

Figure 2 - Work item definition table .. 22

Figure 3 - CloudSocket Architecture .. 24

Figure 4 - CloudSocket ecosystem .. 26

Figure 5 - BPaaS Customer perspective ... 28

Figure 6 – Login Marketplace .. 29

Figure 7 – Browsing the offer of the broker. .. 30

Figure 8 – View BPaaS bundle details. ... 30

Figure 9 – Marketplace cart ... 31

Figure 10 – Notification message for the purchased BPaaS bundle ... 31

Figure 11 - BPaaS Deployment ... 32

Figure 12 - OpenStack dashboard and console VM .. 33

Figure 13 – Email for the notification of purchased BPaaS bundle.. 33

Figure 14 – Creation of the instance for the purchased BPaaS bundle ... 34

Figure 15 - Workflow Engine GUI and received email ... 34

Figure 16 - CloudSocket architecture with the environments involved in the BPaaS customer perspective outlined

with a red rectangle ... 35

Figure 17 - Internal architecture for the BPaaS Marketplace ... 36

Figure 18 - Component diagram of the Marketplace ... 37

Figure 19 - Deploy diagram of the Marketplace ... 38

Figure 20 - Marketplace web page. ... 39

Figure 21 – Internal architecture of the Repository Manager .. 42

Figure 22 - User interface of the Software Component Registry ... 44

Figure 23 - Internal architecture for the Execution Environment.. 46

Figure 24 - Internal architecture for the Workflow Engine. .. 49

Figure 25- Artefacts of the Workflow Engine. .. 53

Figure 26 - Instance of the Workflow Engine. .. 54

Figure 27 - Internal architecture for the Cloudiator framework of the home domain. ... 60

Figure 28 - Internal architecture for the Cloudiator framework of the remote domain.. 60

Figure 29 - SLA Engine architecture.. 66

Figure 30 - SLA Dashboard ... 68

Figure 31 - Broker perspective .. 69

Figure 32 – Monitor & Assess ... 71

Figure 33 – Hierarchal view for BPaaS bundle .. 71

Figure 34 - Analytic dashboard .. 72

Figure 35 – Design & Document ... 72

Figure 36 – New Easter Greetings card (business model) .. 73

Figure 37 – New Easter Greetings card (executable workflow) ... 73

Figure 38 – BPaaS Design Environment API .. 74

Figure 39 – BpaaS Design Package Repository ... 74

Figure 40 – Allocation tool ... 75

Figure 41 – Available BPaaS Packages .. 75

Figure 42 – Definition of the BPaaS bundle... 76

Figure 43 – Definition of the technical details .. 76

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 8 of 99

Figure 44 – BPaaS bundle ready to be published ... 77

Figure 45 - Allocation environment .. 77

Figure 46 - Marketplace for mobile device ... 78

Figure 47 - CloudSocket architecture with the environments involved in the Broker perspective outlined with a red

rectangle .. 78

Figure 48 - The component diagram of the BPaaS Evaluation Environment .. 79

Figure 49 - The component diagram of the BPaaS Design Environment .. 85

Figure 50 - Internal architecture of Allocation Environment ... 90

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 9 of 99

LIST OF TABLES

Table 1 – Prototype Components of Design Environment ... 14

Table 2 - Prototype Components of Allocation Environment ... 15

Table 3 - Prototype Components of Marketplace and Execution Environment ... 20

Table 4 - Components of Evaluation Environment .. 21

Table 5 - Details of the Marketplace component ... 37

Table 6 - Functionalities of the Marketplace .. 39

Table 7 - Registries information accessed by Environments ... 41

Table 8 - Details of the Repository Manager ... 41

Table 9 - Functionalities of Repository Manager ... 43

Table 10 - Details of the Workflow Engine ... 48

Table 11 Functionalities of the Workflow Engine ... 52

Table 12 - Functionalities of the Monitoring Engine ... 55

Table 13 - Functionalities of the Monitoring Engine ... 57

Table 14 - Description of the Cloud Provider Engine ... 59

Table 15 - Functionalities of the Cloud Provider Engine .. 61

Table 16 - Description of the Adaption Engine .. 63

Table 17 - Functionalities of the Adaption Engine ... 64

Table 18 - SLA Engine details. .. 66

Table 19 - Functionalities of the SLA Engine ... 68

Table 20 - Details of the Conceptual Analytics Engine .. 81

Table 21 - Functionalities of the Conceptual Analytics Engine .. 82

Table 22 - Details of the Semantic Repository .. 83

Table 23 - Functionalities of the Semantic Repository .. 84

Table 24 - Details of the Design Environment ... 86

Table 25 - Details Functionalities of the Design Environment ... 89

Table 26 - Details of the Allocation Tool .. 91

Table 27 - Functionalities of the Allocation Tool .. 94

Table 28 - Functionalities of the Marketplace .. 96

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 10 of 99

1 INTRODUCTION

This document explains the First BPaaS/CloudSocket Prototype, integrating the complete BPaaS lifecycle and

delivering the platform with all the respective environments involved. This document is an addendum of the three

official deliverables:

• D4.2 First BPaaS Design and Evaluation Environment (M18) - First prototype implementing the BPaaS

design and evaluation/analysis functionality according to requirements.

• D4.3 First BPaaS Execution Environment (M18) - First prototype implementation of the BPaaS adaptive

provisioning functionality according to requirements

• D4.4 First BPaaS Allocation Environment (M18) - First prototype for the CloudSocket allocation

modelling and BPaaS publishing functionality for the CloudSocket broker

The original reason to have one consolidated deliverable is to be uniform and have a complete picture for the

status of the whole prototype, although the three prototypes that have been delivered separately in form of D4.2,

D4.3 and D4.4. The content of these documents can be identified clearly in the following sections:

• The content of D4.2 can be found mainly inside the analysis of the Broker perspective in Section 4,

which includes two main and related subsections: Section 4.3.1 for the BPaaS Evaluation Environment

and Section 4.3.2 for the BPaaS Design Environment.

• The content of D4.3 is covered mainly by the analysis of the BPaaS Customer perspective in Section 3.

The main related subsections are: Section 3.3.1 for the BPaaS Marketplace and Section 3.3.2 for

BPaaS Execution Environment.

• The content of D4.4 is related mainly to the analysis of the Broker perspective in Section 4. The main

related subsection is Section 4.3.3 mapping to the analysis of the BPaaS Allocation Environment.

Although the environments are independent (aligned with tasks T4.2, T4.3 and T4.4), the project has started to

integrate and align them from the very beginning of the development phase. This allows harmonizing the different

interfaces and interactions, which have been clearly defined in D4.1 [1], allowing to have a complete lifecycle

including all the BPaaS (management) phases.

This harmonisation is enabled through the introduction of a simple business process that is used by all the

phases in order to produce, publish, adaptively provision and evaluate the respective BPaaS bundle(s). As such,

this process constitutes a common example utilised as the thread that runs through the complete lifecycle. The

process concerns the automatic sending of Christmas Greeting cards via email and is shortly analysed in Section

2. This process, although simple, includes all the basic concepts, allowing integrating the platform and provoking

discussion to introduce new concepts and functionalities or enhance the existing ones offered, such as the

definition of the registries, the common understanding to deploy software components and services in the cloud,

and the harmonization of the process definition.

This deliverable is a software prototype, so it includes:

• Access information to the software tools and service developed

• The definition of all software pieces, i.e. components, in the component wiki [18] and the respective

sources to be downloaded (in case it is open-source) from the GitLab repository [20]

• Summary documentation for the components drawn from their complete specification in the component

wiki [18].

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 11 of 99

• Details about component instances offered as SaaS (e.g., actual endpoint), deployed on the UULM and

YMENS infrastructure.

• Besides, demonstration videos [30] and web presentation [30] in order to facilitate the understanding of

the BPaaS prototype.

The document, which describes this deliverable, is not a “standardised” software development technical report

which should be read only by software developers. On the contrary, it comprises content which can be

understood by different kinds of readers. This is mainly enabled via the introduction of the First

BPaaS/CloudSocket prototype from different perspectives based on the main actors (BPaaS Customers and

Brokers) who interact with the platform in the context of the respective running example, as it is shown in the

demo videos [29]. Moreover, it is also enabled via supplying a basic level of detail for the different environments

by also providing links catering for a more detailed inspection for the interested reader.

The readers can access this additional documentation such as the wiki documentation [18], CloudSocket portal

[23] [30] (Figure 1), demonstration videos [29] and CloudSocket GitLab repository [20], which complement the

document with more detailed and deep analysis for the different environments and components. Such

documentation has been the continuous result of the use of online and live tools for the documentation and

source repository, as introduced in D5.1 [21]. Taking advantage of these tools, technical descriptions and

manuals have been referenced in order to reduce the complexity of the document; allowing reading it

incrementally and going deeper into each of the component references.

Figure 1 - CloudSocket portal: demonstration BPaaS Customer perspective

The structure of the document leads the reader from the prototype introduction to the two perspectives in order to

cover the complete lifecycle, allowing identifying every environment and component in the correct context. The

document comprises the following sections:

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 12 of 99

• Section 2 – CloudSocket First Prototype: this is a core section that summarizes all the components,

allowing to identify quickly what the readers need in order to later go into deeper details. Hence, this

section presents the First BPaaS prototype in order to (a) understand better the overall integration and

platform through the introduction of the running example process for sending Christmas cards to

illustrate the idea of a BPaaS and (b) provide instant access to the deployed tools and services. In

addition, it aligns the prototype to the architecture defined in D4.1 [1]. Finally, the different actors are

introduced to present the two main perspectives that the document brings to the prototype.

• Section 3 – BPaaS Customer Perspective: this section covers the different steps of an BPaaS

Customer when interacting with the BPaaS prototype. It is structured into two different main subsections

in order to facilitate the reading:

o Section 3.2 - Demonstration: The involved roles are explained in order to better understand

the different individual role actions as well as the interactions involved. Such interactions are

first identified and then shortly analysed. All the references to the CloudSocket Portal and

videos of the demonstration [29] have been introduced to enable a more interactive

demonstration mode in conjunction to the explanations provided in the main deliverable text.

o Section 3.3 - Environments. After showing the demonstration, this section introduces the

involved environments in the different BPaaS management phases related to this

demonstration. For all the environments, the components are introduced via the same

structural analysis which is complemented by the references for the live documentation (i.e.,

through the portal, wiki and gitlab) and for the different environment instances offered as a

SaaS.

• Section 4 - Broker Perspective: this section covers the CloudSocket Broker perspective and especially

the use of process analytics to identify potential improvements of an existing BPaaS and the necessary

steps to create and publish a new BPaaS bundle into the Marketplace. It is similarly structured as in

section 3 in different subsections so as to facilitate the reading.

o Section 4.2 - Demonstration: The same approach, as used in section 3.2- Demonstration for

the End-User perspective, is followed for this section, but now focusing on Broker-based

respective interactions.

o Section 4.3 - Environments. The same approach, as used in Section 3.3 - Environments for

the End-User perspective, is followed for this section.

• Section 5 - Conclusion: This section concludes this deliverable and outlines the future work to be

conducted and reported in the next and final version of this deliverable (consolidated form of D4.6-4.8

deliverables).

As it has been mentioned, the document is aligned with the wiki documentation and the Gitlab repository. It is not

the intention to introduce all the content of this live documentation into this document; therefore, it only contains

the most relevant information to understand the prototype and the different environments. Hence, the same

analysis structure is followed for all the components. Nevertheless, the environments can have their own

peculiarities with respect to the component architecture involved: i) in some cases, the environment maps to an

overall component that is offered as a whole (e.g., in the form of a SaaS or tool) and only this component is

detailed; ii) in other cases, the environment maps to multiple main components with their own internal architecture

and the analysis focuses one all these main components.

This same analysis structure of the components comprises the following 7 parts provided with the order of their

subsequent presentation. In some cases, particular parts, like the architecture design, are not provided, as the

component may not comprise an internal architecture:

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 13 of 99

o Summary: introduces a general overview, the functionalities, the kind of interfaces as well as the actors

and roles involved. It also includes a classification to quickly see the details of the component:

o Type of ownership: Indicates the type of relation of the owner with this component. The

possible values are: i) Creation (indicates that it is a new development to cover specific

functionalities), ii) Extension (indicates that a part of existing functionalities is used and

extended), and iii) Usage (the component is used directly without any change).

o Original tool: Indicates the original tool on which this component is based. This is correlated

with the “Type of ownership” field, highlighting that an existing component is re-used and

mapping to options ii) Extension or iii) Usage.

o Planned OS License: Type of license either open-source, closed-source or proprietary.

o Reference community: Indicates the community that can provide support to the component.

o Lead Partner: Indicates the partner is leading the component.

o Architecture design: details the specific internal component architecture.

o Functionalities: includes a list of functionalities offered by the component. For each functionality, it is

indicated if it is complete for this release and what is its level of integration with the rest of the

components (in the same or different environment). For example, the core functionality may be finished

but it is pending to be integrated with other components by also having the complete lifecycle tested in

the end for verification and debugging reasons.

o Manuals: introduces a short explanation, when needed, and references in order to facilitate the reading

of more details about the installation guide, the offered API description, handbooks, and unit tests.

o Download: includes links to download the code in case it is open- or closed-source.

o Instances: includes the links of the instances to be used in the integration environment for the

prototype.

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 14 of 99

2 CLOUDSOCKET FIRST PROTOTYPE

In the following, the software components contained in each environment are introduced using a common

factsheet to ease navigation and accessibility. Detailed contextual information for each artefact is available in the

documentation provided in Sections 3 and 4.

BPaaS Design Environment

The BPaaS Design Environment has the overall goal to model aspects of a BPaaS by focusing on higher
levels of abstraction. This leads to a generation of a BPaaS Design Package which describes an un-allocated
BPaaS at the IT/cloud level by including various types of information, such as a domain specific business
process model, an executable workflow-model, and a set of KPIs/requirements mapping to these two models.
In addition, to enable the re-use of design knowledge as well as the automatic or semi-automatic alignment
between business process and workflow models, the BPaaS Design Environment enables the storage,
querying and retrieval of all model artifacts generated and their semantic annotation.

Component Description

BPaaS Design
Tool

The BPaaS Design Tool has been created on the base of the CloudSocket metamodel and
provides the possibility to model domain-specific business processes, execution workflows,
decision models and key performance indicators.

Access SaaS Deployment: https://www.cloudsocket.eu/ADONISNP36/
(user credentials on demand)

Experimentation Version Download: https://www.adoxx.org/live/web/cloudsocket-developer-
space/downloads

License Closed source

Further Details Demonstration: Section 4.2.3

Technical Details: Section 4.3.2.1

Manual https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/Design+Environment+Components

Lead Partner BOC

Table 1 – Prototype Components of Design Environment

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 15 of 99

BPaaS Allocation Environment

The goal of the BPaaS Allocation Environment is to configure allocation directives and rules for an executable
workflow model to be deployed and executed in the cloud. An executable workflow model, as produced by the
BPaaS Design Environment, does not contain information in terms of which concrete services can be exploited
to realise the functionality of the workflow tasks. The respective selection of services per workflow task is
supported by the BPaaS Allocation Environment. Similarly, driven by the same set of requirements, the same
environment can also be used to address the selection of IaaS offerings to support the deployment and
provisioning of (internal) BPaaS software components. Apart from these basic allocation decisions, the BPaaS
Allocation Environment covers the specification of adaptation rules that drive the adaptation behaviour of a
BPaaS as well as the specification of SLAs and marketing meta-data (e.g., pricing) for a certain BPaaS. In the
end, the resulting product is a BPaaS bundle that can be published in the Marketplace.

Component Description

Allocation
Tool

It is responsible for selecting a BPaaS Design Package (previously created via the Design
Environment) and creating a BPaaS Bundle ready to be published in the Marketplace and
deployed in the Execution Environment.

Access SaaS Deployment: https://hs21.fhoster.com/cloudsocket/Allocation_prototype/Engine.jsp
(user credentials on demand)

License Proprietary

Further Details Demonstration: Section 4.2.4

Technical Details: Section 4.3.3

Manual https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/Allocation+Environment+Components

Lead Partner FHOSTER

Table 2 - Prototype Components of Allocation Environment

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 16 of 99

BPaaS Marketplace and Execution Environment

The BPaaS Execution Environment deploys and executes a BPaaS bundle, once this has been purchased by
a customer at the BPaaS Marketplace. The BPaaS deployment proceeds according to the deployment plan
included in the bundle, along with additional configuration activities taken to enable the proper deployment of
the workflow into a workflow engine and of the monitoring infrastructure. Once a BPaaS is successfully
deployed, it can be run and managed by the BPaaS Customer. In addition, it is automatically monitored in a
cross-layer manner and adapted, when needed, in order to keep up with the SLOs promised in the enclosed
SLA of the BPaaS bundle.

BPaaS Marketplace

Component Description

yCONNECT It is an online frontstore through which customers discover, analyse and purchase BPaaS
bundles by also initialising the respective BPaaS deployment in the cloud environment.
Therefore, it is responsible for linking the Allocation to the Execution Environment, giving
the client the opportunity to buy and configure the BPaaS bundles received from the
Allocation and to send the configured bundles to the Execution for provisioning.

Access SaaS Deployment: http://csmarket.ymens.com:8080/ (user credentials on demand)

License Proprietary

Further Details Demonstration: 3.2.2 and 4.2.5

Technical Details: Section 3.3.1

Manual https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/Marketplace+Component

Lead Partner YMENS

Repository
Manager

It is responsible for managing the information related to different entities such external
services, software components, and cloud providers. It is a transversal component allowing
the population, browsing and search of this information using standard web technologies.

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 17 of 99

Access SaaS Deployment: http://134.60.64.221/ (user credentials on demand)

Download: as docker images

• mongodb: https://hub.docker.com/_/mongo/

• restheart: https://hub.docker.com/r/softinstigate/restheart/

Restheart SchemaForm UI: https://omi-gitlab.e-technik.uni-ulm.de/cloudsocket/restheart-
schemaform-ui

Registry Client Library: https://omi-gitlab.e-technik.uni-ulm.de/cloudsocket/registry-client.

License GNU AGPL v3.0 [3]

Further Details Demonstration: Section 4.2.5

Technical Details: Section 3.3.1

Manual https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/Repository+Manager+Component

Lead Partner FHOSTER, ATOS

BPaaS Execution Environment

Component Description

Workflow
Engine

It is responsible for managing the deployment, execution and management of the different
workflow instances of a purchased BPaaS workflow at the execution phase.

Access http://134.60.64.132/activiti-webapp-explorer2/ (deployed as part of a bundle and user

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 18 of 99

credentials on demand)

Download Engine: https://omi-gitlab.e-technik.uni-ulm.de/cloudsocket/workflow-engine.

Download Workflow Parser: https://omi-gitlab.e-technik.uni-ulm.de/cloudsocket/workflow-

parser.

License Apache License Version 2.0 [7]

Further Details Demonstration: Section 3.2.3

Technical Details: Section 3.3.2.1

Manual https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/Workflow+Engine+Component

Lead Partner ATOS

Cloud Provider
Engine

It is responsible for the complete deployment and lifecycle management of all the required
components of the BPaaS bundle, including software components and VMs across multiple
clouds, with transactional semantics (at least for the deployment part).

Access Colosseum: http://134.60.64.155:9000

Entrypoint: http://134.60.64.155:9012/job

Download: https://github.com/cloudiator/

Download EntryPoint Wrapper: https://omi-gitlab.e-technik.uni-
ulm.de/cloudsocket/execution-environment-simple-entrypoint

License Apache License Version 2.0 [7]

Further Details Demonstration: Section 3.2.3

Technical Details: Section 3.3.2.3

Manual https://github.com/cloudiator

https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/Execution+Environment+Entrypoint

Lead Partner UULM

Monitoring
Engine

It is responsible to monitor a BPaaS and correlate/aggregate monitoring data from different
levels, from atomic services or cloud components up to the level of workflows.

Access http://134.60.64.155:8080

Download: https://github.com/cloudiator/visor.git

License Apache License Version 2.0 [7]

Further Details Demonstration: Section 3.2.3

Technical Details: Section 3.3.2.2

Manual https://github.com/cloudiator/visor

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 19 of 99

Lead Partner UULM, FORTH

Adaptation
Engine

It is responsible for reconfiguring the BPaaS possibly across different levels (via e.g.,
service substitution, workflow recomposition, horizontal and vertical scaling) to resolve the
problematic situations identified by triggered adaptation rules.

Access http://134.60.64.155:9000/api/composedMonitor

http://134.60.64.155:9000/api/componentHorizontalOutScalingAction

http://134.60.64.155:9000/api/componentHorizontalInScalingAction

Download: https://github.com/cloudiator/axe-aggregator

License Apache License Version 2.0 [7]

Further Details Demonstration: Section 3.2.3

Technical Details: Section 3.3.2.4

Manual https://github.com/cloudiator/visor

Lead Partner UULM, FORTH

SLA Engine The SLA Engine represents the component responsible for generating, storing and
observing the formal documents describing electronic service level agreements between
the parties involved in a BPaaS offering (CloudSocket broker, cloud service providers
supporting the BPaaS functionality), including of course the BPaaS customer

Access SaaS Deployment for SLA Dashboard: http://134.60.64.232:8000 (user credentials on
demand)

Core SLA Engine: http://134.60.64.232:8080

Download: https://omi-gitlab.e-technik.uni-ulm.de/cloudsocket/sla-framework

License Apache License Version 2.0 [7]

Further Details Demonstration: Section 3.2.3

Technical Details: Section 3.3.2.5

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 20 of 99

Manual https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/SLA+Engine+Component

Lead Partner ATOS

Table 3 - Prototype Components of Marketplace and Execution Environment

BPaaS Evaluation Environment

The BPaaS Evaluation Environment has the overall goal to evaluate a BPaaS in order to provide optimization
suggestions to its designer. This evaluation comes in various forms: (a) the assessment of KPIs, (b) the
derivation of best deployments for the BPaaS, (c) the production of adaptation event patterns and rules and (d)
the discovery of bottlenecks and problematic business model parts. Thus, the externally seen functionality of
the BPaaS Evaluation Environment maps to initiating the performance of analysis tasks as well as the retrieval
and graphical presentation of the various evaluation/analysis results produced according to suitable graphic
metaphors by a business dashboard.

Component Description

Semantic
Repository

A semantic repository enabling performing different types of analysis.

Access http://134.60.64.222:8080/rest-test-swagger-0.0.1-SNAPSHOT/

Download: https://github.com/openlink/virtuoso-opensource.

License GPL v2 [27]

Further Details Demonstration: Section 4.2.2

Technical Details: Section 4.3.1.3

Manual http://docs.openlinksw.com/virtuoso/.

Lead Partner FORTH

Conceptual
Analytics

Engine

Provides an API through which KPI assessment can be performed on top of the semantic
repository

Access http://134.60.64.222:8080/rest-test-swagger-0.0.1-SNAPSHOT/

Download: https://omi-gitlab.e-technik.uni-
ulm.de/cloudsocket/evaluation_skb/repository/archive.zip?ref=master.

License Mozilla Public Licence (MPL) 2.0 [28]

Further Details Demonstration: Section 4.2.2

Technical Details: Section 4.3.1.2

Manual https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/Conceptual+Analytics+Engine

Lead Partner FORTH

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 21 of 99

Hybrid
Business

Dashboard

Enables the visualisation of the analysis information via the use of suitable metaphors.
Guides the user in properly performing the different types of analysis

Access SaaS Deployment: https://www.cloudsocket.eu/ADONISNP36/
(user credentials on demand)

License Closed source

Further Details Demonstration: Section 4.2.2

Technical Details: Section 4.3.1.1

Manual N/A

Lead Partner BOC

Table 4 - Components of Evaluation Environment

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 22 of 99

2.1 Implementation Approach

The different environments are aligned with the respective tasks in WP4: i) T4.2 is responsible for the Design and

Evaluation Environment, ii) T4.4 for the Allocation Environment, and iii) T4.3 for the Marketplace and Execution

Environment. Despite the fact that these environments are independent, the project has started to integrate and

align them from the very beginning of the development phase. This allows to harmonize the different interfaces

and interactions, which have been clearly defined in D4.1 [1], allowing to have a complete lifecycle including all

the BPaaS (management) phases.

This approach has been incremental by following the four following steps: i) detailing the interfaces and

identifying the basic functionalities for the different environments and components; ii) passing internal testing for

internal components or between different (internal) components of the same environment; iii) inter-integration

between environment pairs; iv) final integration of all components and covering all phases and environments.

This integration has been followed up through short periods; identifying the risk and problems as soon as possible

in order to take corrective actions, if needed. A shared excel file has been introduced to review the details of the

work items and the respective functionality realisation status and their planning, besides the dependencies and

blocked actions. Every environment has been covered by different sheets where the components report the

status of their work items. Morover, this file also defines the different sprints and their integration at the different

levels. WP4 has realized periodic meetings every two weeks to analyse the integration, the work items per

component and to identify the new parallel discussions, such as the definition of a registry-based approach, the

CAMEL integration/extension, and the metric definition.

Figure 2 - Work item definition table

This simple approach allows to integrate the different environments at their early states and it is completely

aligned with the Task T4.5 CloudSocket Integration and Consolidation, which will introduce more efficient tools for

managing the continuous integration for all the levels; spanning not only the development, for example a ticketing

system to cover the development, but also integration, bugs, and management of different environments (test,

integration and production).

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 23 of 99

This document describes and summarizes the first prototype that covers all the phases of a BPaaS Bundle

defined in D4.1, through respective environments and components. So, the first prototype comprises the:

• description of the components [19],

• access to the software. If it is open-source, we link directly to the Source Code [20]. If it is proprietary,

then it is provided the access of the component as a SaaS,

• available instances for the prototype as SaaS, deployed onto the UULM and YMENS infrastructure,

• summary documentation for the components drawn from their complete specification in the component

wiki [18].

The project team decided to introduce a simple business process which includes all the basic concepts allowing

to harmonize and integrate the environments accordingly. This process concerns the sending of the Christmas

greeting cards automatically via email. This process is shortly analysed in the following subsection.

2.1.1 BPaaS Sample

The project has used the business process for sending Christmas cards to illustrate the idea of a BPaaS.

Although it is obvious that such a simple business process is embedded in a Customer Relationship Management

software that may be provided as a SaaS solution, we use this well-known example to introduce the vision of

BPaaS and enable the integration of the different BPaaS Environments.

First, the business process flow describes the activities of Christmas card distribution, such as using pre-selected

images or creating own images, entering the text, uploading the recipient email-list or sending the email. Those

actions, when executed in the cloud, may cause particular issues, which have been identified by respective

business requirements, related to image copyrights, legal compliance of text and of storing private data – such as

email addresses – and, finally, the IT resources allocation, in case all emails are to be sent at the same time.

Such issues or requirements can drive the conduction of Cloud-specific extensions on the business processes

that are necessary to configure the technical behaviour of: (a) the workflow – e.g. by introducing service tasks

that check the copyright of an image vs. manual acceptance of terms - and (b) the IT-infrastructure – e.g. by data

processing of private data within Europe.

The domain specific business processes are transferred into executable workflows by considering current IT-

cloud offerings and enabling either automatic alignment between the business and IT level or a manual one via

the interaction of the respective roles (business process and workflow designers). For example, in manual

alignment, the integrator can gather more information in order to identify potential cloud services to cover the

defined features and the business analyst can support the integrators in finding the best option together, in order

to avoid entering unnecessary loops, or worse, having misunderstandings that might lead to an incorrect

definition of the business process.

Once an executable workflow is generated, it needs to be allocated accordingly. Two different types of allocations

actually take place: i) each service task in the workflow is mapped to a respective atomic service able to realise

its functionality; ii) for each internal service mapping to a workflow service task, we need to discover the best

possible infrastructure (IaaS or PaaS) services able to support its deployment and provisioning. Apart from this

basic allocation decisions, additional information needs to be captured in order to produce a respective BPaaS

bundle. This information includes: i) Service Level Agreements (SLA) that specify the service level to be delivered

by the BPaaS along with penalties to be applied if this level is deteriorated; ii) adaptation rules that drive the

BPaaS runtime behaviour in order to still keep up with the service level promised or violate it in the least possible

way; iii) marketing data covering categories, tasks, and pricing for the BPaaS bundle.

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 24 of 99

Such a BPaaS is published and offered in a marketplace similar to a SaaS marketplace. After this BPaaS is

purchased, it is automatically deployed in a multi-cloud infrastructure and its operation is monitored with the main

goal to react as quickly as possible to respective problematic situations. Semantic abstraction, conceptual

analytics and human interaction enable the abstraction back from BPaaS logs to high-level business information

visualised in business dashboards, indicating that all data has been stored in Europe, no data violation took

place, and cloud-bursting had been performed within the limits of additional IT costs. This dashboard enables a

learning cycle as well as to optimise the BPaaS such that its performance is improved and possibilities for

increased broker gains are examined.

2.2 Architecture

The CloudSocket prototype architecture was defined in D4.1 [1], which created a technical and detailed common

understanding, hence enabling a coordinated initial implementation of the BPaaS environments that compose the

so-called CloudSocket. Additionally, it specified the functional capabilities, involved roles, competencies and data

interchange formats of the five BPaaS environments in order to enable the combination or exchange of those

environments to create personalized adaptations with the BPaaS environments developed in this project or by

exchanging environments with alternative implementations.

Figure 3 introduces the four major building blocks as well as their relationships and the data exchanges. Each of

the four building blocks supports one phase of the BPMS paradigm when applied for business process

management in the cloud. The BPaaS offerings are provided to the customer via the Marketplace, whereas the

BPaaS Execution Environment enables their operation in the cloud. This is the main reason that these latter two

environments look consolidated in the architectural image. The conceptual challenge of bridging domain specific

business processes to executable workflows that are in production in the cloud and are constantly improved via

evaluation information, is performed by the other BPaaS Environments.

Figure 3 - CloudSocket Architecture

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 25 of 99

The BPaaS Environments that support the BPaaS lifecyle are: i) the BPaaS Design Environment enabling to

model business processes, business requirements (KPIS), business decisions, workflows and semantic

annotations, ii) the BPaaS Allocation Environment able to link deployable workflows to concrete services, iii) the

BPaaS Execution Environment enabling to deploy, execute, monitor and adapt the BPaaS workflow, iv) the

BPaaS Evaluation Environment which lifts monitoring information and logs to key performance indicators at the

business level as well as provides additional types of BPaaS analysis, and v) the BPaaS Marketplace being the

main place where customers can browse, search, select, and purchase BPaaS bundles as well as receive billing

reports for the BPaaS bundles that they have bought. More details can be found in D4.1 [1].

2.3 Actors and Perspectives

The project has considered a classification of the stakeholders, which are all the individuals, groups, units or

communities which (a) could be interested in project development and exploitation or (b) just follow the project

results and especially those activities of CloudSocket that could have a direct or indirect impact on them, as

described in the internal deliverable (D8.1- First Explotation and business plan). These stakeholders have been

split into 2 main levels: i) the different groups of project partners which indeed are involved in RDI work and

CloudSocket concept development as well as are directly linked to project success and further exploitation, ii) all

further groups of stakeholders which are not directly in charge of the project execution but are somehow

interested in its results. Therefore, the first prototype is aligned with this first level, where the following

stakeholders are considered (see Figure 4):

• End-End User can be Small and Medium Enterprises (SMEs), founders and start-ups, both IT and not

IT-based, which in case of CloudSocket project represent potential broker customers. These end-end

users are identified in the sequel of this deliverable as BPaaS Customers as they represent potential

purchasers of the BPaaS offerings provided by the CloudSocket Brokers.

• End-Users of the platform also known as CloudSocket Brokers. Such brokers do not operate only as a

third-party business that is an intermediary between the purchaser of a cloud computing service (SMEs

and start-ups) and the provider of that service (Marketplace with its multi-clouds offer) but can also act

as a consultant to support SMEs in transforming their business processes into the cloud, after assessing

their readiness to move to the cloud. Moreover, such brokers can realize the whole lifecycle of cloud-

based business processes thus saving for SMEs/startups the work of attempting to perform the

business-to-IT alignment themselves as well as the investment of resources and time in order to support

this lifecycle.

• Technology providers are all the project partners, which provide their software components/products

such as base CloudSocket functionality realization or add-on functionalities or other (commercial)

organisations which offer replacements of software components that have been developed by the

members of the CloudSocket consortium. We foresee that such technology providers might also offer

the whole CloudSocket prototype to brokers in order to enable the respective management of the BPaaS

to be generated and offered to BPaaS Customers. In some cases, such providers may also offer

particular environments, like the Marketplace, to be exploited by brokers, leading to a more loosely

coupled instantiation of a running CloudSocket platform comprising different environments that are

maintained by different operators.

• Researchers are university representatives (researchers, academics) and research groups (universities,

institutes) focusing on research and development of future results and new sciences, elaborating their

teaching courses, building network and research communities, consolidating and conceptualizing of

abstracts or general ideas. This stakeholder kind performs research and development tasks which can

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 26 of 99

result in add-on or component replacement prototypes that could be embraced in existing CloudSocket

product variants.

Figure 4 - CloudSocket ecosystem

The first prototype focuses at this first level of stakeholders, and the demonstration covers the two main actors,

the BPaaS Customers and the CloudSocket Brokers; integrating all the necessary environments and components

to cover the complete BPaaS lifecycle:

• BPaaS Customers map to the End-end users in the stakeholders’ classification. They are different

organizations, which are interested to purchase and use the published BPaaS bundles offered by the

different brokers.

• CloudSocket Brokers are the End Users of the platform in the stakeholders’ classification. They are

directly the brokers that identify a business process and create the respective BPaaS bundles of this

process to be published in their marketplace in the demonstration.

Therefore, the two main actors and their perspectives have been considered to show the demonstration in the

following sections:

• BPaaS Customer Perspective: Involves entities such as SMEs, founders or start-ups that want to reduce

their costs and create added value for their business processes by moving some parts of them (or fully)

in the cloud. They can search, review and purchase the different BPaaS bundles, which have been

published previously by the CloudSocket Brokers. Afterwards, the purchased BPaaS Bundle is deployed

automatically in the cloud and it is ready to be used by the customer.

• CloudSocket Broker Perspective: The CloudSocket Brokers want to create a BPaaS bundle in order to

expose them to possible customers that might be interested in them. They need to interact with the

Design and Allocation Environments to create the bundle. Afterwards, they can publish the bundles in

the marketplace such that these bundles are exposed and available to their customers. Finally, the

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 27 of 99

brokers can analyze the results of the Evaluation Environment to optimise existing BPaaS or create new

ones by identifying the respective needs to be covered.

These two perspectives are explicated in the next two sections by relying on respective demonstrations of the

CloudSocket prototype.

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 28 of 99

3 PERSPECTIVE: BPAAS CUSTOMER

3.1 Introduction

This demonstration showcases [30] how the BPaaS Customer interacts with the CloudSocket BPaaS

Marketplace to search, review and buy a fitting BPaaS Bundle. Once the respective bundle is purchased, the

Execution Environment deploys all necessary BPaaS components in the cloud and, upon success, it informs the

BPaaS customer that the BPaaS is ready to be used.

An explanation is given over all the steps followed by the Execution Environment in order to deploy and make

available the BPaaS purchased.

The demonstration is concluded with the BPaaS customer accessing the Workflow Engine in order to create and

execute instances of the BPaaS workflow deployed.

Figure 5 - BPaaS Customer perspective

3.2 Demonstration

3.2.1 Involved roles

In this demonstration the involved roles, which have been defined in the CloudSocket architecture (D4.1 [1]),

and/or map to the CloudSocket roles in the common understanding wiki [22], are:

• BPaaS Customer who has interest to analyse, purchase and use the different available BPaaS bundles.

There are defined kinds of associated roles depending on the respective skills and responsibilities

required in the interaction of the customer with the CloudSocket platform.

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 29 of 99

o Business Engineer with business skills is responsible for finding and purchasing the different

BPaaS bundles in the Marketplace.

o Process Responsible with technical skills is responsible for dealing with the Execution

Environment and managing the deployed BPaaS workflows (e.g., instance creation, execution,

pausing, resuming and cancellation).

o Knowledge Worker is responsible for managing the interaction with the manual workflow tasks

of BPaaS bundle purchased.

• CloudSocket Operator is responsible for hosting the CloudSocket platform instance also guaranteeing its

continuous operation. In addition, it also ensures a smooth communication between the different BPaaS

environments. We foresee that this role could be split into 5 sub-roles mapping to the respective BPaaS

environments that need to be operated. This can map to internal roles of the organisation undertaking

the operation of a CloudSocket platform instance. It can also map to the case that the platform instance

is collaborately operated by different operators responsible for the proper functioning of each BPaaS

environment needed. In this sense, the BPaaS Execution Environment (smooth) operation could be the

responsibility of an Execution Environment operator.

In the demonstration, there are different actors assigned to different roles:

• Radu acting as a user of the BPaaS customer on the marketplace undertaking the role of a Business

Engineer.

• Daniel acting as the Execution Environment operator (within or independently from the CloudSocket

Operator role)

• Joaquin acting as a user of the BPaaS customer responsible for running the BPaaS in the cloud

(undertaking the roles of the Process Responsible to instantiate the purchased BPaaS workflow and the

Knowledge Worker to deal with the different user/manual tasks involved in this workflow).

3.2.2 Purchase the Christmas Greetings Cards

Radu acting as a business engineer on behalf of his company, wants to distribute to all customers a Christmas

card this year. As a founder, he is keen to have good customer relations to his early adopters and network; at the

same time he is very busy to organize this activity. At an event, he learns about CloudSocket and the BPaaS

idea. Interested in the topic, he logs into the CloudSocket Marketplace (Figure 6), whose URL was given by the

respective broker in the event (Figure 7).

Figure 6 – Login Marketplace

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 30 of 99

Figure 7 – Browsing the offer of the broker.

After being successfully logged in (Figure 6), Radu searches for appropriate BPaaS bundles that are being

offered by the broker and identifies a fitting one. As he wants to save money but still have anyone in his network

messaged, he decides to go for the medium sized BPaaS bundle from those realising the required business

process, which matches the required number of the recipients of the greetings to send as well as has a suitable

and reasonable price. Radu has the chance to view related details of the selected BPaaS bundle in both a textual

and graphical manner (Figure 8). The respective marketplace information is provided as descriptions, tags,

bundle prices and (bundle) categories.

Figure 8 – View BPaaS bundle details.

Radu performs a checkout to his cart and buys the bundle (Figure 9). A notification window provides information

on the deployment run that has been triggered, attempting to deploy the BPaaS bundle (along with all related

assets) in the cloud (Figure 10). Radu will be notified by email as soon as the deployment has been completed.

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 31 of 99

Figure 9 – Marketplace cart

Figure 10 – Notification message for the purchased BPaaS bundle

The following video shows how Radu buys a Christmas Greetings BPaaS bundle to satisfy his requirements:

https://youtu.be/G9Qqi0p6yWg

3.2.3 Deep-dive into the infrastructure

The deployment has been triggered by the interaction of Radu with the marketplace. Parallelly, Daniel checks, as

acting an Execution Environment Engineer Operator, the new deployments from the UI of the Cloud Provider

Engine and intervenes if something wrong takes place.

The deployment of the bundle is performed transparently for the BPaaS Customer organization; nevertheless we

take a deep dive into the Execution Environment to understand the different steps of the setup happening on the

backend.

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 32 of 99

The BPaaS Execution Environment will deploy the Software components over an infrastructure automatically (in

our case OpenStack) and also setup related services (e.g., monitoring) in the infrastructure. Figure 11 gives a

simplified overview of all technical steps executed during the BPaaS deployment, while the following two

paragraphs shortly analyse the main functionality of these steps.

Figure 11 - BPaaS Deployment

(1) The cloud provider engine receives the BPaaS bundle from the Marketplace, when Radu has finished the

order process. The bundle mainly contains the BPMN file, the CAMEL file and the SLA template along with other

information. The Cloud Provider Engine processes the CAMEL file. (2) Based on the CAMEL description, the

Cloud Provider Engine will access the specified cloud provider and provision the required virtual machines, install

the services, configure the monitoring and receive the actual endpoints for the (internal) service instances. Figure

12 shows a sample screenshot mapping this deployment process to the selected UULM cloud infrastructure,

which has been selected for the demonstration. The OpenStack dashboard in Figure 12 shows the VMs that were

created by the Cloud Provider Engine.

As soon as all required services are successfully setup by the Cloud Provider Engine, (3) the BPMN file with the

actual service endpoints is passed to the Workflow Engine in order to update the BPMN workflow file and deploy

it. (4) Now, the Workflow Engine can manage the deployed workflows, which include these actual endpoints

services; and create its instances, which are able to access to all the specified services for the deployed BPaaS

Bundle during their execution.In step (5) the SLA template is passed to the SLA Engine in order to configure the

BPaaS Bundle specific SLAs (6) Finally, after all deployment actions for the BPaaS bundle have been deemed

successful, Radu gets notified that the bundle was successfully deployed and receives the required details to

execute the workflow via the Workflow Engine (see Section 3.2.4).

With the completed BPaaS Bundle deployment, the Monitoring Engine provides the BPaaS monitoring data to the

SLA Engine and the Adaptation Engine. Based on this monitoring data the SLA Engine evaluates the bundle

specific SLAs and the Adaption Engine is able to trigger the adaptation actions that are specified in CAMEL.

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 33 of 99

Figure 12 - OpenStack dashboard and console VM

Now we can have a detailed look at the Execution Environment to see what has been triggered after Radu

purchase of the BPaaS bundle in the following video https://youtu.be/pTH1mTSI5qg

3.2.4 Preparation of the Christmas Cards

Radu forwards the confirmation email to Joaquin in order to take care of the respective workflow execution; both

belong to the same organization. Then, Joaquin receives it with the confirmation and the link to execute the

BPaaS bundle (see Figure 13). Acting as a process responsible, he logs in the Workflow Engine and creates a

new instance of the workflow deployed for the BPaaS bundle that has been purchased previously (see Figure

14).

Figure 13 – Email for the notification of purchased BPaaS bundle.

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 34 of 99

Figure 14 – Creation of the instance for the purchased BPaaS bundle

The workflow instance is started and Joaquin, acting as the Knowledge Worker role, receives different user tasks,

which are fulfilled by specifying the necessary inputs (image, text, recipient list) (see Figure 15). The workflow

executes and automatically sends the custom Christmas cards to the specified recipients.

Joaquin is satisfied that he was able to run this process without additional effort, thus fulfilling the main goal of

this organization, and concludes the execution by providing (customer satisfaction) feedback (see Figure 15).

Figure 15 - Workflow Engine GUI and received email

How Joaquin interacts with the Workflow Engine to prepare the Christmas card and send it to his customers is

showed in the following video https://youtu.be/wTJdHFSlMwU

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 35 of 99

3.3 Environments

The involved environments are detailed and outlined by the red board in Figure 16:

 Figure 16 - CloudSocket architecture with the environments involved in the BPaaS customer perspective outlined

with a red rectangle

The following sections, organised according to the environment that they concern, analyse in more detail the

components that belong to the involved environments.

3.3.1 BPaaS Marketplace

The Marketplace’s role is to link the BPaaS Allocation to the Execution Environment, giving the client the

opportunity to buy and configure the BPaaS bundles received from the Allocation and to send the configured

bundles to the Execution Environment for provisioning.

This BPaaS Marketplace provides the following high-level features: i) BPaaS & SaaS Product Catalogue; ii)

Decision Support System for BPaaS procurement; iii) Customer & User Registration & On-boarding; iv) Identity

Provisioning & Identity Lifecycle Management; v) Cloud Service Provider registration of atomic cloud services; (vi)

Registry Services; vii) Authorization (at service level) & Authentication (at user level).

In order to support the aforementioned functionalities, the BPaaS Marketplace comprises two main components.

These components are the following:

• Marketplace (yCONNECT) allows the customers to discover, analyse and purchase a BPaaS bundle in

the cloud environment. Thereforem, this is the actual Marketplace which enables the customers to

browse, analyze and buy the BPaaS bundles.

• Repository Manager is responsible for managing the information related to different entities, such

external services, software components, cloud providers and so on. It is a transversal component, with

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 36 of 99

respect to the rest of the Environments, allowing the population, browsing and searching of this

information using standard web technologies.

Figure 17 shows the detailed scheme of the CloudSocket Reference Architecture and the location of the different

components.

Figure 17 - Internal architecture for the BPaaS Marketplace

The BPaaS Marketplace components in each level interact with each other in order to properly deliver and

visualise the functionalities of the environment. More information about how these interactions are performed and

what are the respective scenarios covered can be found at the following URL: https://www.cloudsocket.eu/uml/5-

Marketplace/remotedocu/modeldocu/27012016151357/modelContentHTML/ in which the corresponding UML

diagrams [2] can be viewed. This information was also covered in the D4.1 deliverable [1].

3.3.1.1 Marketplace

For BPaaS Customers, as SME or other organizations, the CloudSocket Marketplace offers a place for

registration. Registration process is ensured by the Account Registration component. Only registered users are

allowed to buy BPaaS bundles.

Through the Catalog component, BPaaS Customers browse and view details of published bundles. By using the

Shopping Cart component, the BPaaS Customer can purchase the bundles.

The Marketplace will expose the following interfaces:

• A public graphical user interface of a BPaaS Shop.

• A graphical user interface for authentication and authorization through IdM.

• A graphical user interface for registered users which provides checkout capabilities for BPaaS as well as

the non-shop related capabilities mapping to the Portal

The main functionalities are:

• Register users and companies through Registration component.

• List available BPaaSs through Catalog component.

• Checkout BPaaSs through Shopping cart, Order manager and Provisioning service components.

• Manage various user related information through User portal component.

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 37 of 99

The following table indicates the details of the component.

Type of ownership Extension

Original tool
GRADY (Grails Rapid Application Development for

Ymens)

Planned OS License Proprietary. Component available only as service

Reference community YMENS R&D staff

Lead Partner YMENS

Table 5 - Details of the Marketplace component

Comprises

• Shop – main module that manages shopping experience

• Portal – module that manages non-shop related interactions of the users (purchase history, account

details, access provisioned items)

• Service API – provides data for Web UI and core workflow functionality (Execution Environment –

provision endpoint)

• Identity provider – ensures M2M and U2M authentication and authorization flows

Depends on

• Allocation Environment – to provide BPaaSs to be listed in the Marketplace

• Execution Environment – to provision in cloud BPaaSs purchased by the user

Architecture design

The general architecture of this component can be viewed in grey, in Figure 17.

The Figure 18 introduces the deployment SOA model of the Marketplace.

Figure 18 - Component diagram of the Marketplace

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 38 of 99

Deploy Diagram

Figure 19 - Deploy diagram of the Marketplace

Functionalities

Table 6 indicates the covered functionalities and their status:

Functionality Description
Completed
for release

Integrated (which level)

Shop The module provides BPaaS listings into
the shop environment and allows registered
users to checkout items

Yes

(1st release)

Complete lifecycle.

Service APIs The module ensures API connectivity of the
Marketplace in the CloudSocket value
stream (Product API – used by Allocation
Environment; Provisioning API and Order
Management – used by Execution
Environment)

Yes

(1st release)

Complete lifecycle

Portal The module enables users access to
purchased BPaaSs as well as shopping
history visualisation and account
information management

Partially

(1st release)

Identity provider This module provides authentication and
authorization services for the Marketplace
as well as for the entire CloudSocket value
chain

Yes

(1st release)

Complete M2M with
Allocation Environment

Complete M2M with
Execution Environment

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 39 of 99

In progress U2M with
Execution Environment

Table 6 - Functionalities of the Marketplace

Table 6 highlights these functionalities while details about the workitems and the respective functionality

realisation status can be found at the follow-up excel file, which has been referenced in Section 2.1. Details about

the interactions required to realise them can be found at D4.1 [1] and especially the MP UC2 - Publish BPaaS

Bundle to Product Catalogue, MP-UC2-Purchase BPaaS Bundle, MP-UC3-Register New Customer User and

MP-UC-4-Onboard Cloud Service Provider along with respective UML diagrams [2]

Manuals

The manual, API description, and handbooks are detailed in the alive wiki documentation:

https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/Marketplace+Component

Download

yCONNECT CloudSocket Marketplace is built on top of GRADY (Grails Rapid Application Development for

Ymens) platform that is a collection of open tools for proprietary development.

Grails, the open source framework and the baseplate for GRADY is available at: https://grails.org/download.html

Instances

The yCONNECT CloudSocket Marketplace is available at: http://csmarket.ymens.com:8080/ .

Figure 20 - Marketplace web page.

3.3.1.2 Repository Manager

Summary

Some components of the CloudSocket Environments need to access a set of information related to different

entities, such as external services, software components, and cloud providers. For this reason, the CloudSocket

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 40 of 99

project needs a specific transversal component allowing the population, browsing and searching of this

information using standard web technologies.

The Repository Manager has the responsibility to satisfy those functionalities and has a key role into the

CloudSocket architecture because it’s exploited by all the CloudSocket Environments to access this information,

which for now, there is only one structural level of registries is offered. For the next release, the consortium might

consider leveraging upon this structural level in order to create a semantic one on top of it so as to be also

aligned with the research results in WP3. This will allow the posing of more advanced and semantic queries

which can enhance the different scenarios/tasks that can be performed by the respective exploiting components

as well as enable better query response accuracy levels.

The repository manager offers the information needed by the CloudSocket Environments by the means of a

number of registries. The main registries identified for the CloudSocket context are the followings:

• Cloud Provider Registry: it contains the information about a cloud provider like the name, the type of

offering that it provides (i.e. Platform as a Service or Infrastructure as a Service) and technical details,

specified using the CAMEL language, which enable the Cloud Provider Engine to have the exact

knowledge of how to access and exploit the (cloud) services of this Cloud Provider.

• Virtual Machine Offering Registry: it contains the information about a Virtual Machine offering provided

by a specific Cloud Provider. Such information includes the number of cores, the size of the main

memory and disk storage as well as the price of the given offering.

• Abstract Service Registry: it contains the information about abstract services mapping to an abstract

functionality; these services are of course not real in the sense that they are not developed, deployed

and executed and thus available in a certain endpoint. Such information includes the abstract service

name, short textual description, and interface. It also includes the specification of semantic annotations

oriented towards semantically explicating the exact service functionality as well as the respective input

and output that is provided by each method of this service. Such information can enable a semantic

discovery of services which has been proven to reach higher discovery accuracy levels.

• Concrete Service Registry: it contains the information about concrete atomic services already up and

running. Such information includes the name, the description, the interface definition, the interface

protocol (i.e. SOAP or REST) and a list of instances for this service which are associated to a pair of

location and endpoint URL (thus enabling us to know exactly where each instance of a certain atomic

service is available).

• Software Component Registry: it contains the information about software components developed. Such

information includes the name, the description, the set of commands to install the software component to

specific operating system images, the communication port(s) exposed, the minimum hardware

requirements for the proper functioning of this component and the dependencies it has with other

components.

• Metrics Registry: it contains the information about the metrics handled by the CloudSocket platform.

Such information includes the name of the metric, its short description, the property that is being

measured, the definition of the sensor which captures the measurements for a raw metric, the derivation

formula for composite metrics, the unit and the type of the metric as well as default measurement

schedule and window information.

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 41 of 99

The Table 7 shows which registries information is accessed by which CloudSocket environment:

 Design
Environment

Allocation
Environment

Execution
Environment

Evaluation
Environment

Cloud Provider Registry -- X -- --

Virtual Machine
Offering Registry

-- X -- X

Abstract Atomic Service
Registry

X X X --

Concrete Service
Registry

X X X X

Software Component
Registry

X X X X

Raw Metrics Registry X X -- X

Table 7 - Registries information accessed by Environments

The following table indicates the details of the component.

Type of ownership New development

Original tool MongoDB[4] and Restheart [5]

Planned OS License GNU AGPL v3.0. [3]

Reference community MongoDB, Restheart

Lead Partner FHOSTER, ATOS

Table 8 - Details of the Repository Manager

Comprises

• Data Layer

• Functional Layer

• User Interface Layer

Architecture design

The general architecture of this component can be viewed in yellow in Figure 17, while Figure 21 shows the
Repository Manager's internal architecture.

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 42 of 99

Figure 21 – Internal architecture of the Repository Manager

The Repository Manager follows a classic three-tier architecture pattern in which the user interfaces

(presentation), functional process logic, computer data storage and data access are developed and maintained

as independent modules. The three layers are described in detail below:

• In the Data Layer, there exists a sole component mapping to the MongoDB NoSQL database: The

latter is a free and open-source cross-platform document-oriented database. It is classified as a NoSQL

database. MongoDB [4] avoids the traditional table-based relational database structure in favour of

JSON-like documents with dynamic schemas (MongoDB calls the format BSON), making the integration

of data in certain types of applications easier and faster. It is used to implement the persistency layer to

store the registry JSON documents. Each JSON document of the registry describes a different resource.

The resources can refer to each other. For example, we are able to describe a Virtual Machine offering

as a JSON document and associate it using an object id reference to a specific Cloud Provider.

• Functional Layer: There lies the Restheart WebAPI which is a Java open source Web API server built on

top of the MongoDB database [4]. RESTHeart [5] exposes a RESTful application programming interface

with CRUD operations, following the Hypertext Application Language (HAL) standard. RESTHeart

naturally fits an architecture where there is the need to invoke document-oriented data services on top of

MongoDB [4] via HTTP. The main features of the framework are the followings:

o Lightweight Server: the API is ready to use and does not require any coding;
o Built on standards like HTTP, JSON, RESTful, HAL, json-schema;
o Pluggable Authentication and Authorization with ready to use Identity Managers and role based

Access Manager. This feature will be used in order to integrate the Repository Manager with
the Identity Manager provided by the Marketplace;

o Data operations API enabling document management and including the following operations:
create, read, update, delete and query documents;

o Data validation with json-schema.

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 43 of 99

• User Interface Layer: There lies, the Restheart SchemaForm UI which is a custom AngularJS

application, developed by FHOSTER for the CloudSocket project, based on two main angular-js
modules:

o angular-restheart: it is the client provided by RESTHeart project to facilitate the access to the
webapi from an angular-js client;

o angular-schemaform: it is a set of AngularJS directives (and a couple of services) to generate
Bootstrap 3 ready forms from a JSON Schema. The main features of this angular-js module
are:

� Validates the form using a JSON Schema;
� Fine tunes presentation with a form definition, changes field types, changes order and

so on;
� Lots of basic form types out of the box;
� Supports array with drag'n'drop or in tabs;
� Easily extended with custom form field types.

The web application has all the features useful to access the content of the registries and modify the
content of each object. It provides mechanisms for validation of the data and a user-friendly interface
that simplifies the population process of the registries.
It allows also to create new kind of registries by providing the JSON Schema and a form definition
compliant with the angular-schemaform framework which instructs it on how to render the form of the
registry object.

Functionalities

Table 9 indicates the covered functionalities and their status:

Functionality Description
Completed
for release

Integrated (which level)

Registry object
persistence

The MongoDB [4] database allows to store
the registry documents into a NoSQL
database.

Yes

(1st release)

Complete lifecycle.

Create\Edit\Delete\Update
registry object

Restheart SchemaForm UI allows CRUD
operations on each registry.

Yes

(1st release)

Complete lifecycle.

Browsing registry object Registry Client Library is a Java client
which allows the browsing of registries
object.

Yes

(1st release)

Complete lifecycle

Document Semantic
Enrichment

Restheart SchemaForm UI will allow to
enrich registry document with some
semantic information in order to improve
the discovery of the registries object.

No

(2nd release)

Table 9 - Functionalities of Repository Manager

Manuals

The manual, API description, handbooks are detailed in the alive wiki documentation:

https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/Repository+Manager+Component

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 44 of 99

The Repository Manager can be installed entirely as Docker [6] containers since all the components are available

as Docker images.

In Figure 22 below there is a screenshot of the user interface, showing the Software Component Registry form.

Figure 22 - User interface of the Software Component Registry

Since the registries are accessed by some of the CloudSocket environments, to avoid that each environment has

its own client to access the registry contents, a common Registry Client Module has been built and is available as

a Java library. The client has all the CRUD features to access the registries, it handles the authentication and all

the functionalities for filtering and paginating the registry objects.

Download

The docker images can be found at the following url:

• mongodb: https://hub.docker.com/_/mongo/

• restheart: https://hub.docker.com/r/softinstigate/restheart/

The Restheart SchemaForm UI project can be found at the following url: https://omi-gitlab.e-technik.uni-

ulm.de/cloudsocket/restheart-schemaform-ui.

The Registry Client Library can be found at the following url: https://omi-gitlab.e-technik.uni-

ulm.de/cloudsocket/registry-client.

Instances

The prototype instance of the Repository Manager can be found at the following URL: http://134.60.64.221/.

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 45 of 99

3.3.2 BPaaS Execution Environment

The CloudSocket Execution Environment enables managing, monitoring and adapting the execution of the

BPaaS bundles generated during the allocation phase, which have been published via the Marketplace. The

environment covers the whole steps of execution phase: i) deploy and configure all components required to

execute the bundles, which comprise the workflow, SLA, adaptation rules, and details of the third-party services

involved; ii) allow to manage the BPaaS Customer’s workflow instances, when a BPaaS workflow bundle has

been deployed; iii) visualize the conformance levels to associated agreements and the respective monitoring

data; iv) generate and manage the violations incurred as well as trigger the respective BPaaS bundle adaptation

rules, allowing the environment to adapt the BPaaS instances to maintain the promised service level.

In order to support the aforementioned capabilities, the BPaaS Execution Environment comprises several

components. These components are the following:

• Workflow Engine is responsible for deploying the executable workflows and executing the different

workflow instances at the execution phase.

• Cloud Provider Engine is responsible for the complete deployment and lifecycle management of all the

required components of the BPaaS bundle, including software components and VMs across multiple

clouds, with transactional semantics (at least for the deployment part).

• Monitoring Engine is responsible for cross-level monitoring a BPaaS and correlate/aggregate monitoring

data from different levels, from infrastructure and software services up to the level of the workflow.

• Adaptation Engine is responsible for the reconfiguration of the BPaaS deployment possibly in a cross-

level manner (e.g., different services, service configurations and workflow structure modification) to

resolve the problematic situations identified by adaptation rules.

• SLA Engine is responsible for generating, storing and observing the formal documents describing

electronic service-level agreements (SLAs) between the parties involved in CloudSocket.

• Process Data Mediator is offered as a service to the Adaptation Engine in order to cover the cases

where services are substituted and their replacements need to communicate properly with the rest of the

services in the execution order of the current BPaaS workflow.

Figure 23 shows the detailed scheme of the CloudSocket Reference Architecture and the location of the different

components.

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 46 of 99

Figure 23 - Internal architecture for the Execution Environment.

The architecture differentiates between two main levels: (a) one covering the components that have an interaction

with the actors through a GUI, such as Web interface for the Workflow Engine, SLA dashboard and Monitoring

dashboard and (b) another including the core engines to cover these functionalities. There is another hidden

level, the data one which is covered internally by the internal architecture of each component but due to

complexity reasons it is not shown in Figure 23.

The components in each level interact with each other in order to properly deliver and visualise the functionalities

of the environment. More information about how these interactions are performed and what are the respective

scenarios covered can be found at the following URL: https://www.cloudsocket.eu/uml/3-

ExecutionEnvironment/remotedocu/modeldocu/27012016104208/modelContentHTML in which the corresponding

UML diagrams [2] can be viewed. This information was also covered in the D4.1 deliverable [1].

In the following, we describe only those components that are part of this first release of the CloudSocket

prototype. These components are the Cloud Provider Engine, Workflow Engine, SLA Engine, Monitoring Engine

and Adaptation Engine. In this respect, it becomes apparent that the Process Data Mediator Engine has not been

implemented yet and it will be incorporated in the next and final release of the CloudSocket prototype. This

means that the automatic mediation to substitute different services with different interfaces is not yet supported by

the BPaaS Execution Environment.

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 47 of 99

3.3.2.1 Workflow Engine

Summary

It is responsible for managing the deployment, execution and management of the different workflow instances at

the execution phase. It is multi-tenant leading to executing a workflow instance on behalf of one organisation by

also taking care of the corresponding workflow and organisation data level.

This component exposes two interfaces (see also the manual section):

• A graphical user interface for interacting with the different actors involved in the lifecycle of a workflow.

• A REST API interface allowing programmatic access to the different types of functionalities offered.

The main functionalities are:

• Deploy/redeploy a workflow in the workflow-engine, instantiate it and execute it.

• Manage (start, suspend, resume, stop…) and monitor the workflow instances, according to the workflow

description in BPMN.

• Interact with manual tasks of the workflow.

• Manage the workflow engine environment such as the defined roles, users and tenants, the database

and the running instances of the workflows.

Moreover, the executable workflows are designed by the integrated Editor Workflow based on the abstract

workflows. Their design has to be aligned with the workflow engine, since the standard BPMN2.0 specification

does not cover the complete definition of workflow execution details but it is allowed to be extended in order to

cover it. As the deployment will be executed on the cloud, it is mandatory to define dynamically the self-contained

executable workflows, which are included in the BPaaS bundle, following these standards.

The main roles to interact with the functionalities are:

• CloudSocket Customer, who wants to use the purchased BPaaS bundles, which has been deployed

automatically in the cloud. The customer can interact via the use of different roles: i) Knowledge Worker

is responsible for managing the manual task of the workflows; ii) Process Responsible (technical skills)

is in charge of dealing with the workflow engine, managing the workflow instances and following their

status.

• Broker, who is responsible for the configuration of the Workflow Engine, for performing tasks on behalf

of customers (e.g., workflow instances actions), for inspecting/monitoring the status of all workflows

deployed and especially the status of respective SLAs.

• Platform operator, who may be the broker itself, and is responsible for checking if the Workflow Engine

works as expected.

Additionally, there is a role that covers the functionalities for creating the executable workflow, which will be

included in the BPaaS bundle, during the design phase. Therefore, this role is not directly related with the

execution phase, but the internal Workflow Designer component is completely integrated with the whole Workflow

Engine component.

• Workflow Designer, which is responsible to design the executable workflows using the executable

workflow editor in order to include the necessary information to transform the abstract workflows

(independent of the workflow engine) to the executable workflows (associated to a specific workflow

engine).

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 48 of 99

All the actors will interact directly with the graphical user interface and the system will manage automatically the

authorization of the appropriate functionalities (see the user guide in the Manual section).

The following table indicates the details of the component.

Type of ownership Extension

Original tool FIWARE and Fed4FIRE project

Planned OS License Apache License Version 2.0.[7]

Reference community Activiti community

Lead Partner ATOS

Table 10 - Details of the Workflow Engine

Comprises

• Web UI of workflow Engine (Graphical User interface)

• Workflow Engine (core functionalities)

Depends on

• IdM Marketplace

• Repository Manager

Architecture design

The general architecture of this component can be viewed by checking the components coloured in yellow, in
Figure 23.

Figure 24 introduces in more detail the different internal components of the Workflow Engine. The components
are split into two main parts: i) one part is responsible for exposing the interfaces with the external actors (other
components, BPaaS Customers or Brokers); ii) the other is responsible for managing the business logic and the
data layer.

The two layers allow decoupling the components between the presentation layer, which is directly related to the
exposed interfaces (Graphical user interfaces and REST API) and the backend, which is responsible to provide
all the functionalities and their persistence. Thus, the interface layer will focus on the look and feel or how to
expose these interfaces. Moreover it will manage the necessary calls to the backend layer, which will execute the
actions.

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 49 of 99

 Figure 24 - Internal architecture for the Workflow Engine.

Front End layer:

• REST Workflow module is responsible for exposing all the functionalities of the Workflow Engine through

a REST API, allowing other components to interact with the engine programmatically, without human

interaction. The main interactions are with the Cloud provider Engine (Section 3.3.2.3), which is

responsible to orchestrate the deployment of the BPaaS bundle in the cloud environment, and the

Adaptation Engine (Section 3.3.2.4), which is responsible to modify the environments and the currently

running workflow instance in order to cover the new conditions.

• Editor Workflow module is responsible for the editing of the executable workflows at the design phase. A

graphical user interface is used for editing, modifying and generating the executable workflows, while the

involved actors are the workflow designer, who can be contracted by the brokers to take care of the

workflow design task. However, the module cannot interact directly with the customers and their

companies; it is thus exploitable only by brokers. Nevertheless, this editor is necessary to align the

definition of the concrete workflows with the technology adopted in the workflow engine in order to

deploy and execute them correctly in the cloud environment.

• Explorer Workflow module is responsible for exposing a graphical user interface in order to interact with

the human actors, such as brokers and customers. Hence, through this exposed dashboard, the

different actors can manage the complete lifecycle of the deployed workflows, allowing interacting with

the platform in an easy way, increasing the quality of experience (QoE).

Back End Layer

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 50 of 99

• Core Workflow Engine module is responsible for managing all the functionalities of the Workflow Engine.

Hence, the complexity of the business logic of all these functionalities is delegated to this module and an

interface is exposed to interact with them. It is also responsible to interact with the data layer and to

persist the workflow, its instances and the rest of the entities.

• Workflow Parser module is responsible for managing the functionalities related to workflow parsing, such

as the introduction of the real endpoints of the software components and the automatic generation of the

service task tags to invoke WS and RESTFul services.

• Bind Proxy is a small module to facilitate the interaction with the database. It is responsible for managing

the binding between service tasks and the associated services. It has been introduced to avoid using the

Core Workflow Engine module as a proxy, to only connect with the database in order to manage the

binding actions. In this manner, using this module, the Workflow Parser is decoupled from the Core

Workflow Engine.

Data layer

• Workflow Data Base module is responsible for persisting all the data in order to support all the

functionalities. The model definition is based on an entity-relationship schema to represent all the

entities, including tenants, roles, workflows, instances, jobs… It exposes a standard interface to connect

with the data base; nevertheless it is not its responsibility to create an Object-relational mapping to

interact with the entities such as JPA in java or SQLAlchemy [10] in Python [11], since that is delegated

to the Core Workflow Engine and the Bind Proxy to provide it.

All the components expose different types of interfaces in order to cover nonfunctional requirements, such as

scalability, modularity and replaceability. Nevertheless, some of them are more coupled than others, since they

work to provide features together.

• The REST Workflow, Explorer Workflow and Core Workflow Engine components are working jointly in

order to arrange the workflow execution. Therefore, it is possible to replace these components with

implementations such as Camunda [12] or BonitaSoft [13]; and re-implementing the adaptation and

extension developed in these components based on Activiti [14].

• The Editor Workflow is partially independent of the base line workflow engine as its main duty is to

create the executable workflow to be deployed in the specific engine, which might include concrete

extensions on the standard BPMN. In this sense, this component could also be extended in order to

work for other workflow engines. In addition, it could also be replaced by another workflow editing

component which could be coupled to a specific workflow engine like Activiti or the one which totally

replaces the agglomeration of the previously referred components in the previous bullet.

• The Parser Workflow Manager and Bind Proxy have isolated functionalities and expose a Restful

interface. Hence, it is feasible to substitute them by other components, if they maintain the exposed

APIs.

• Finally, the Workflow Engine use a persistence framework with support for custom SQL, stored

procedures and advanced mappings, this allow to substitute the Workflow Data Base module by other

relational databases as long as the new option follows the standard connectors, since this persistence

framework creates an abstraction layer between the entities and their persistence in the data base

Functionalities

Table 11 indicates the covered functionalities and their status:

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 51 of 99

Functionality Description
Completed
for release

Integrated (which level)

Deployment of a BPaaS
bundle workflow

The component will allow deploying the
executable workflow included in the BPaaS
bundle.

Yes

(1st release)

Complete lifecycle.

Workflow Instance
Management

Manage and follow the status of workflow
instances, according to the workflow
description in the BPaaS bundle.

Yes

(1st release)

Complete lifecycle

Manage the workflow
execution.

When workflow instances are running, all
kinds of actions, such as service tasks
(invoke remote services) and user tasks
(interact with the customer), need to be
properly managed according to the
workflow definition.

Yes

(1st release)

Complete lifecycle

End-Point adaptations
for the deployment
phase.

Adaptation of the real endpoints for the
atomic services and software components
when the workflow is deployed

Yes

(1st release)

Complete lifecycle.

Multi-Tenant The component has to be deployed for
multiples tenants using the same workflow
engine instance. This allows introducing a
SaaS-based solution for CloudSocket.

Yes

(1st release)

Complete lifecycle.

Manage the workflow
instance engine
environment

The component has to manage and follow
up the complete workflow instances and the
deployed BPaaS bundles for the different
tenants

Yes

(1st release)

Complete lifecycle

Design of Executable
workflows

The component has to assist the creation of
the executable workflows, including the
calls to the associated services.

Yes

(1st release)

Complete lifecycle

Integrated, but it needs to
be improved to be aligned
with the registry and the
automatic code generation
(2nd release).

Assist in the creation of
the executables
workflows.

The component has to be integrated with
the Registry in order to facilitate the
creation of the executable workflows,
besides generating automatic code based
on this registry data.

Partially

(1st release)

Complete lifecycle.

Only integrated with the
software component
registry.

Monitor at the workflow
level

The component has to provide the
feedback for the defined metrics at the level
of the workflow to the monitor engine.

Partially

(1st release)

Complete Lifecycle.

The component provides
some simple metrics in
order to be integrated with
the monitoring.

Centralized
authentication and
authorization

The component will delegate the
authentication and authorization to an
external Identity Manager, following the
standards (OAuth2 and SCIM).

No

(2nd release)

Working on the adaptation
of the component to
support the standards.
Now, the component uses
internal authentication and

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 52 of 99

authorization solution.

End-Point adaptations
for the execution phase

Adaptation of the real endpoints for the
atomic services and software components
when the workflow is executed and the
Adaptation Engine decides to modify a
workflow execution to handle undesired
situations.

No

(2nd release)

Discover of the most
appropriated services to
be included in the
BPaaS bundle

The component will use more complex
searching mechanisms in order to assist in
the workflow design via employing a
semantic approach.

No

(2nd release)

Table 11 Functionalities of the Workflow Engine

Table 11 highlights these functionalities while the details about the workitems and the respective functionality

realisation status can be found at the follow-up Excel file, which has been referenced in Section 2.1. Details about

the interactions required to realise them can be found at D4.1 [1] and especially the EE-UC-1-Deployment of

BPaaS, EE-UC-2 – Execution of the BPaaS and EE-UC-4 – Workflow Environment Management along with

respective UML diagrams [2].

Manuals

The installation manual, the API description, unit test and handbooks are detailed in the alive wiki documentation

https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/Workflow+Engine+Component

The component is developed in java based on Activiti 5.18; several frameworks are used such as Vaadin [8],

Spring [9] and mybatis [15]. A MySQL database is used [16].

As a build automation tool, the components have used maven [26], which describes how they are built, and their

dependencies. This allows building and generating automatically the artifacts for the different environments

(development and production) and their configuration for example with Eclipse. Besides, the use of this artifact

will facilitate the continuous integration, which will be covered in Task T4.5 CloudSocket Integration and

Consolidation.

The installation manual takes advantage of these tools, facilitating the installation at the different environments

and describing the necessary steps to install the component and its modules. Figure 25 indicates the generated

artefacts and their dependencies.

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 53 of 99

Figure 25- Artefacts of the Workflow Engine.

The handbook is split in two parts to cover the exposed interfaces:

• RESTful Interface is described to indicate the header, the method, the json structure of the request and

the response. Besides, it is included the associated unit tests.

• User manual is responsible to explain the covered functionalities through the screenshots and

description of the interface.

Download

The source code has been published in the CloudSocket GitLab repository [20]. The developers can clone the

repository for the different components and follow the installation manual.

As it was indicated in the Architecture section, the REST Workflow, Explorer Workflow, Bind Proxy and Core

Workflow Engine components are working together and the code is available at the link https://omi-gitlab.e-

technik.uni-ulm.de/cloudsocket/workflow-engine. The Workflow_Parser component is available at the link

https://omi-gitlab.e-technik.uni-ulm.de/cloudsocket/workflow-parser.

The schema of the data base is created automatically during the first installation; hence it is not necessary to

have the dump file or the script creation.

The download section of the CloudSocket portal [23] contains the software components for the Execution

Environment.

Instances

There is an available instance deployed on the UULM infrastructure to integrate the first prototype:

http://134.60.64.132/activiti-webapp-explorer2/. This instance is published as software as a service for

multitenancy in the cloud and it is completely integrated with the rest of components of the Execution

Environment

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 54 of 99

Figure 26 - Instance of the Workflow Engine.

3.3.2.2 Monitoring Engine

Summary

It is responsible to monitor a BPaaS and correlate/aggregate monitoring data from different levels, from

infrastructure and software services up to the level of workflows. It exposes an API in order to allow components,

such as the SLA Manager and the BPaaS Evaluation Environment, to draw the information monitored by

subscribing to particular metrics and perform respective related tasks. In the case of the SLA Manager, this will

involve performing an SLO evaluation, while, in the case of the BPaaS Evaluation Environment, this will involve

performing background analysis of the monitored information in order to discover interesting patterns in the

context of one or more business processes. The component will cover both raw metrics (direct measurements

provided by deployed sensors or external measurement systems like PaaSs) and aggregated metrics (formulas

to exploit metrics are already implemented and produce the respective aggregated measurements). This

component will also handle the monitoring of contextual information which will be handed over (through exposing

a particular API) to the Adaptation Engine to enable it to completely assess adaptation rules.

As metrics are involved in SLO and contextual conditions, it is essential that they need to be defined beforehand

in order to allow the Monitoring Engine to measure them and thus enable the evaluation of such conditions. The

BPaaS Evaluation Environment has an interface to this component via the publish-subscribe mechanism in order

to have the respective support to its analysis activities, especially with respect to the assessment of KPIs.

This component will expose:

• A REST interface to configure sensors

o Input: Description of metrics (Sensor configuration for raw metrics and metric formula
description to allow aggregation); Reference to user-defined sensors as software components
in the respective registry (which includes how to download the implementation, for example as
a rar file);

• Java-based interface to be implemented for user-defined sensors.

• A Time-Series Database system to store the measurements

o Output: Measurement DB (which can be realized by a time series database or a semantic
database or even both); Context DB (storage & update of contextual information); Notification
system (measurements as notification to subscribers).

The main functionalities are:

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 55 of 99

• Provide a framework for sensors providing measurements of:

o Raw and composite metrics

o Platform-specific metrics (domain-independent metrics)

o BPaaS-specific metrics (domain-dependent metrics)

• Allow implementation and description of user-defined metrics

• Monitor and aggregate metrics

• Metric specification modification leading to changing the monitoring infrastructure/environment, and new

metrics definition for a BPaaS

• Inform interested parties about fresh metric values through the publish/subscribe mechanism

• Inform interested parties about historical metric values through the use of the REST-API

• Inform interested parties about contextual information

The following table indicates the details of the component.

Type of ownership Extension

Original tool Visor (of Cloudiator framework)

Planned OS License Apache License Version 2.0. [7]

Reference community
Communities around Cloud Monitoring,
Cloudiator developers, mainly UULM

Lead Partners UULM, FORTH

Table 12 - Functionalities of the Monitoring Engine

Comprises

• REST interface, also wrapped and used by the Cloud Provider Engine - see Section 3.3.2.3 (User

interface)

o Based on the Colosseum API of Cloudiator and currently also KairosDB as TSDB

• Sensor and measurement system (core functionalities)

o Based on Visor and Colosseum of the Cloudiator tool suite

Depends on

• Loosely depending on CAMEL due to the definition of metrics

• Cloud Provider Engine for deploying part of the monitoring engine (e.g., sensors, collectors, TSDBs) in

respective clouds whose services are to be monitored

Architecture design

The component is part of the open-source software Colosseum of the Cloudiator framework, which is used to
realize the Cloud Provider Engine. We will go into detail in the architecture section of the Cloud Provider Engine -
see Section 3.3.2.3.

Replaceability: The monitoring is very generic and can be fed with measurements of external software, so it is
open to use additional software for this task. The whole monitoring engine could be substituted by another one
provided that the respective exposed interfaces are supported. However, please bear in mind that currently this
engine depends on the Cloud Provider Engine for the deployment of some of its parts. In this sense, in order to
completely substitute this engine, we also need to modify the way the monitoring deployment is performed by the
Cloud Provider Engine.

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 56 of 99

Functionalities

Functionality Description
Completed
for release

Integrated (which level)

Measure Raw Metrics Ability to measure raw metrics and store
them in a (time series) database

Yes

(1st release)

Complete lifecycle.

Distribute TSDB Distribute the TSDBs in a hierarchical and
adjustable manner

Partly

(1st release)

Already able to distribute
raw monitoring data, but
missing distribution of
composed metrics across
the clouds.

Sensor Interface Provide an interface to be implemented by
BPaaS-specific/broker-defined sensors

Yes

(1st release)

Complete lifecycle.

Remote Dynamic
Sensors

Provide a way to dynamically integrate new
sensors in the running instance remotely

No

(2nd release)

-

Aggregate Metrics Definition of aggregated metrics Partly

(1st release)

Basic composite metrics

are possible, while more
complex metric
composition scenarios
are planned to be
supported (e.g.,
including ordered and
dynamic compositions).

Higher Level Sensors All levels of BPaaS-specific metrics also
covering PaaS, SaaS and WfaaS

No

(2nd release)

Currently only loosely
coupled BPaaS-specific
metrics by the Workflow
Engine.

Metric Subscription Provide a way to subscribe to metrics Partly

(1st release)

So-called Monitor
Subscriptions already
possible but not yet
integrated.

Metric Report Push interface to integrate third-party
monitoring tools

Partly

(1st release)

The monitoring agent
Visor already provides a
push interface, but not yet
integrated.

Interfacing with the
SLA Engine

Adjust the reporting tool to create
measurements in a usable format for the
SLA Engine

No

(2nd release)

-

IdM Integration Integrate with the IdM No

(2nd release)

-

Multiple Report
Modules

Allow to report to multiple different receiving
units in one instance of the monitoring
agent. A receiving unit is currently the

No

(2nd release)

-

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 57 of 99

TSDB but could be simultaneously be a log
system in order to e.g., realize fault-
tolerance

Table 13 - Functionalities of the Monitoring Engine

Table 13 highlights these functionalities while details about the workitems and the respective functionality

realisation status can be found at the follow-up excel file, which has been referenced in Section 2.1. Details about

the interactions required to realise them can be found at D4.1 [1] and especially the EE-UC-1-Deployment of

BPaaS, EE-UC-2 – Execution of the BPaaS and EE-UC-3 – Monitoring of Agreement Status along with

respective UML diagrams [2].

Manuals

We refer for this component to the general documentation of the main project under:

https://github.com/cloudiator/visor

We do not have a separate Wiki page for this, since we wanted to have the interface compatible with the main

project. Also the sensors are configured through the main REST interface of the Cloud Provider Engine

(Colosseum subcomponent).

Download

The official version can be downloaded from: https://www.cloudsocket.eu/download

The monitoring agent that gets deployed on the VMs as well as the basic sensors can be downloaded from

github. It features also an own branch for the CloudSocket-specific features, which are not needed for the general

purpose of this project: https://github.com/cloudiator/visor.git

The components are released here under the Apache 2.0 license.

Instances

The instances depend on the current deployment. Each deployed virtual machine will be delivered with an

instance of the monitoring agent. The monitoring agents gather the measurements. The REST interface of the

Cloud Provider Engine is used to configure the Monitoring Engine. An instance of the Monitoring Engine is

deployed in a VM at the OpenStack cloud of UULM and is available at the following URL:

http://134.60.64.155:8080

3.3.2.3 Cloud Provider Engine

Summary

This component is responsible for the complete deployment and lifecycle management of all the required

components of the BPaaS, including software components and VMs across multiple clouds, with transactional

semantics (at least for the deployment part). These capabilities will be managed by different subcomponents of

the Cloud Provider Engine to provide a modular, flexible and scalable architecture. To exhibit these capabilities,

the Cloud Provider Engine will build upon existing functionalities offered through the interfaces exposed by the

cloud providers.

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 58 of 99

The BPaaS deployment with transactional semantics will be managed by the Deployment Engine, responsible to

deploy, configure and operate all appropriate software and VM components before deploying a workflow in the

Workflow Engine. In essence, the Deployment Engine will be responsible for executing the deployment plan

included in the BPaaS bundle by orchestrating all necessary steps. This deployment plan will not only cover

component deployment but also agreement registration and validation, monitoring infrastructure deployment and

configuration, and workflow deployment in the Workflow Engine in order to guarantee that in the end the workflow

of the BPaaS bundle will be ready for execution. If something goes wrong, then the transactional/failure

semantics, which is defined as part of the deployment plan, will dictate what actions will have to be performed to

remedy for this, which could involve rolling back the system or compensating previous deployment actions and

performing new ones with the same goal.

The Cloud Provider Engine will expose two interfaces: (a) an interface to enable the performance of re-

deployment actions in order to interact with the Adaptation Engine component, and (b) an interface to interact

internally with the Deployment Engine for managing deployment transactionally.

The Deployment Engine sub-component will comprise different plug-ins to connect to the different clouds (by also

exploiting previously generated end-user cloud credentials), allowing to interact with these clouds to execute a

common action as, e.g., the concrete deployment actions for a VM will be different depending on the cloud

provider, but the actual abstract action is the same: deploy a VM. Hence, this sub-component will allow providing

an abstraction over the different specificities of cloud providers with respect to cloud management actions and it

will be responsible for transforming abstract management actions to cloud-specific ones.

This component will expose:

• A REST interface to configure the deployment onto different cloud providers

o Input: Deployable workflow (BPaaS bundle integrated via CAMEL adapter):
� BPMN file (workflow definition)
� SLA agreement definition (including Service Level Objectives with conditions over

quality metrics)
� List of adaptation and alternative allocation rules to be applied, whereas the allocation

rules are currently hardwired into the CAMEL deployment plan.
� Semantic Metadata (describing metrics or adaptation actions) to allow taking decisions

in the execution phase.
o Deployment plan along with transactional semantics, further deployment actions to be executed

in the context of adaptation rules which are dictated by the Adaptation Engine (as part of the
BPaaS bundle)

o Output: The status and result of the current deployment plan can be viewed constantly on run-
time.

• A REST interface to configure the service instances during run-time

The main functionalities are:

• Manage the complete BPaaS deployment.

• Manage and abstract from current IaaS capabilities and later also from PaaS capabilities.

• Manage the relationships with the different cloud providers.

• Offer scaling & migration capabilities to the Adaptation Engine

The following table indicates the details of the component.

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 59 of 99

Type of ownership
Extension & Adaptation (for some components also

Creation)

Original tool
Colosseum, Sword and Lance (of Cloudiator

framework)

Planned OS License Apache License Version 2.0. [7]

Reference community Cloudiator developers, mainly UULM

Lead Partner UULM

Table 14 - Description of the Cloud Provider Engine

Comprises

• REST interface, wrapped by the Execution Environment Entrypoint

• Cloudiator framework

• Execution Environment Entrypoint

• CAMEL Adapter

Depends on

• Workflow Engine

• Monitoring Engine

• Adaptation Engine

• SLA Engine

Architecture design

Technically speaking, the Cloud Provider Engine relies on the Cloudiator framework. This consists among others

on the Colosseum, Lance, Sword, Axe and Visor components.

The main part is the Colosseum, which is the entry point of the framework and engages the other components.

Cloudiator works in two domains: the home domain and the remote domain. The home domain is the central point

where this so-called cloud orchestration tool is run from. Figure 27 shows the home domain, in which Colosseum,

Axe and Sword run. Colosseum has components to: (a) discover the offers of cloud providers; (b) store the offers

and metadata in registries; (c) manage the deployment of application components and (d) justify about the best-

suited configurations (via the use of a broker). Axe consists of the Scaling Engine, which evaluates the monitoring

data from the Time-Series Databases and reacts on described situations (incarnated in adaptation rules), e.g. by

enacting scaling actions. Sword is the abstraction layer from any Cloud Provider. Currently only abstraction on

IaaS level is supported, but it is work-in-progress to also support the PaaS level.

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 60 of 99

Figure 27 - Internal architecture for the Cloudiator framework of the home domain.

The remote domain is deployed along with the deployment of any virtual machine. Figure 28 shows the

respective components involved. The Lifecycle Agent packs application components into a container and takes

care of executing life-cycle actions. The Monitor Agent (Visor) senses the platform and application, and pushes

the data into a local Time-Series Database (TSDB). The Aggregator (Axe) can aggregate and reason over

existing metrics (from local or remote TSDB). Finally, it executes adaptation actions or stores aggregated values

into a local TSDB.

Figure 28 - Internal architecture for the Cloudiator framework of the remote domain.

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 61 of 99

Functionalities

Functionality Description
Completed
for release

Integrated (which level)

Deploy BPaaS bundle Use the deployment plan of the BPaaS
bundle to instantiate the cloud services at
different cloud service providers

Yes

(1st release)

An enhanced configuration
interface is under
development

Mange multi-cloud
deployments on IaaS
level

Deploy services across different cloud
providers by abstracting the underlying
cloud provider

Yes

(1st release)

Complete lifecycle.

Manage Cloud
Providers on higher
service levels

Manage Cloud Provisioning on PaaS and
SaaS level. For each level an abstraction
layer should be provided.

Partly

(1st release)

A proposal for the PaaS
integration in CAMEL is in
the making of the research
documented in D3.3

Complex Life Cycle
Actions

In addition to the generic imperative life-
cycle actions, the Cloud Provider Engine
should be open to more complex actions
and a user-defined execution of them

No

(2nd release)

-

Integration of well-
known DevOps tools

The application component configuration
should additionaly specified via Chef
recipes or Puppet modules

No

(2nd release)

-

Simplified access to
the log files

The user should have an easy and
supportive way to access the logs

Partly

(1st release)

The raw output was added
to the entry point, but not
for each component
instance and VM.

Web GUI In addition to the REST interface, a GUI
should support the user

Partly

(1st release)

The web-based GUI for
the Cloud Provider Engine
is not yet finished.

Integration of IdM Switch from user/pw to token-based
authentication against cloud providers

No

(2nd release)

-

Interfaces for
Adaptation Engine

Extended API to offer adaptation actions
(on each level) and their analysis on VM,
platform and service level

Partly

(1st release)

Simple horizontal scaling
is already integrated,
complex adaptation plans
missing in the Cloud
Provider Engine.

Table 15 - Functionalities of the Cloud Provider Engine

Table 15 highlights these functionalities while details about the workitems and the respective functionality

realisation status can be found at the follow-up excel file, which has been referenced in Section 2.1. Details about

the interactions required to realise them can be found at D4.1 [1] and especially the EE-UC-1-Deployment of

BPaaS along with respective UML diagrams [2].

Manuals

We refer for this component to the general documentation of the main project under: https://github.com/cloudiator

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 62 of 99

We do not have a separate Wiki page for this, since we wanted to have the interface compatible with the main

project. Also the sensors are configured through the main REST interface of the Cloud Provider Engine

(Colosseum subcomponent).

The REST interface for the BPaaS bundles is provided in the Entrypoint:

https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/Execution+Environment+Entrypoint

Download

The sources are hosted on github. All projects are referenced on the main page. Where applicable, the

repositories feature an own branch (namely cs-master) for the CloudSocket-specific features, which are not

needed for the general purpose of the Cloudiator project: https://github.com/cloudiator

The components are released under the Apache 2.0 license.

The Entry-point, as a wrapper for the Cloudiator toolset, can be found here: https://omi-gitlab.e-technik.uni-

ulm.de/cloudsocket/execution-environment-simple-entrypoint

Instances

The colosseum component is deployed in a VM at the Openstack cloud of UULM and is available at the following

URL: http://134.60.64.155:9000

The Entrypoint is deployed in the same VM and available at the following URL: http://134.60.64.155:9012/job

3.3.2.4 Adaptation Engine

Summary

This component is responsible for the reconfiguration of the BPaaS deployment (different services, modified

service configuration and workflow structure) to resolve the problematic situations identified by adaptation rules.

Different types of adaptations will be performed at different levels of abstraction. In particular, adaptation actions

on VMs (deploy, migrate), services (substitute, rebind), workflow tasks (e.g., re-execute, map to different service

compositions) and the workflows themselves (recompose workflow) shall be offered.

The management of the adaptation rules will be covered by a subcomponent called Rule Engine, which is

responsible to take decisions based on the environment variables and the performance levels encountered. So, it

should interact with the Monitoring Engine and the SLA Engine to collect the needed data required for the

evaluation of the rules exploited. The required data include SLO violations communicated by the SLA Engine as

well as contextual information produced by the Monitoring Engine (in which the Rule Engine needs to subscribe).

Such data are required in order to assess SLO and contextual conditions which constitute the left part of

adaptation rules. In case that one or more rules are triggered, the respective adaptation actions will be executed -

based on the settings from the BPaaS Allocation Environment - to maintain the quality of the service promised

and of the experience of the stakeholders by, e.g., migrating services to other providers and deploying software

components over different clouds.

The need for adaptation will be indicated by the Rule Engine as it possesses the knowledge of the adaptation

rules (covering scalability and the fault-tolerance) and be supported by the Adaptation Engine which includes an

adaptation library of actions that can be exploited to perform the different types of adaptation needed at the

different levels. The Adaptation Engine will need to perform either one or more adaptation actions. In the first

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 63 of 99

case, it will be responsible for just executing or delegating this action to another component (e.g., Cloud Provider

Engine). In the second case, the actions to be executed will be described in a form of a workflow which will also

dictate the sequence in which the adaptation actions have to be run; hence, there is a need for a (possibly

internal to the Adaptation Engine) workflow engine able to execute the adaptation workflows.

This component will expose:

• A REST interface to manage the rules:

o Input: Violations, Metrics, description of adaptation rules (including event patterns that lead to
their triggering) to adapt a BPaaS, policies for adaptation (e.g., max amount of VMs or service
instances, cost limits), which are specified in the Allocation environment. The following
functionalities are covered:

� register adaptation rules,
� modify adaptation rules on demand,
� get adaptation history for a certain BPaaS,
� allow executing normal as well as personalized/customized adaptations.

o Referencing of the actual adaptation workflow (by the Rule Engine which is a sub-component of
the Adaptation Engine) in rules stored in the Rule Engine, part of the Adaptation Engine, to
allow its instantiation when a respective adaptation need arises.

o Keep track of the result of the executed adaptation

The main functionalities are:

• Evaluate adaptation rules which involves assessing contextual and SLO conditions (where the latter are
already evaluated and sent in the form of SLO violations to the Adaptation Engine)

• Manage the execution of an adaptation strategy (in the context of the triggering of a specific rule)

• Adapt the BPaaS according to the adaptation strategy provided.

The following table indicates the details of the component.

Type of ownership Extension & Adaptation

Original tool Axe (of Cloudiator framework)

Planned OS License Apache License Version 2.0. [7]

Reference community Cloudiator developers, mainly UULM

Lead Partner UULM, FORTH

Table 16 - Description of the Adaption Engine

Comprises

• Rule Engine (i.e. the Scaling Engine of Colosseum)

• Distributed aggregators

Depends on

• Cloud Provider Engine

• Monitoring Engine

Architecture design

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 64 of 99

The Adaptation Engine highly relies on the Axe component and the Scaling Engine of the Colosseum component
of the Cloudiator framework, which is used for the Cloud Provider Engine. You can see the architecture of Axe in
the Cloudiator framework in Figure 27.

Functionalities

Functionality Description
Completed
for release

Integrated (which level)

Basic Scaling
Functionality

Provide a way to describe simple threshold-
based rules to trigger horizontal scaling
actions.

Yes

(1st release)

Complete lifecycle.

Event / Measurement
Registration

Register to Monitoring & SLA Engines to
obtain events for the evaluation of
adaptation rules

Partly

(1st release)

Registration is not
completed, but events can
be attached as sensors
and the adaptation/scaling
rules can be specified in
CAMEL.

Obtain adaptation
rules

Expose interface to retrieve adaptation
rules from the Cloud Provider Engine

No

(2nd release)

-

Realise adaptation
functionality

Map events to adaptation rules and start
their execution

Partly

(1st release)

Currently available for
simple adaptation/scaling
actions.

Adaptation plan Provide a sophisticated way to define the
workflow of an adaptation action and its
interdependence

Partly

(1st release)

The current definition
effort for the integration in
CAMEL is described in
D3.3.

Migration of stateful
services

Ability to migrate stateful service to another
cloud provider

No

(2nd release)

-

Table 17 - Functionalities of the Adaption Engine

Table 17 highlights these functionalities while details about the workitems and the respective functionality

realisation status can be found at the follow-up excel file, which has been referenced in Section 2.1. Details about

the interactions required to realise them can be found at D4.1 [1] and especially the EE-UC-1-Deployment of

BPaaS and EE-UC-2 – Execution of the BPaaS along with respective UML diagrams [2].

Manuals

We refer for this component to the general documentation of the main project under:

https://github.com/cloudiator/visor

We do not have a separate Wiki page for this, since we wanted to have the interface compatible with the main

project. Also the Adaptation Engine is configured through the main REST interface of the Cloud Provider Engine

(Colosseum subcomponent).

Download

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 65 of 99

The official version can be downloaded from: https://www.cloudsocket.eu/download

The sole axe-aggregator, which gets deployed on the VMs as well as the basic sensors can be downloaded from

github. It features also an own branch for the CloudSocket-specific features, which are not needed for the general

purpose of this project: https://github.com/cloudiator/axe-aggregator

The components are released here under the Apache 2.0 license.

Instances

As the adaptation engine is subcomponent of Cloudiator, it is deployed on the same VM at the Openstack cloud

of UULM. The respective adaptation actions can be set via the following API calls:

http://134.60.64.155:9000/api/composedMonitor

http://134.60.64.155:9000/api/componentHorizontalOutScalingAction

http://134.60.64.155:9000/api/componentHorizontalInScalingAction

3.3.2.5 SLA Engine

Summary

The SLA Engine represents the component responsible for generating, storing and observing the formal

documents describing electronic SLAs between the parties involved in CloudSocket: BPaaS bundle customers,

brokers and cloud providers.

The component follows the WS-Agreement (WSAG) specification. This means that the documents representing

templates and agreements are valid according to the schema defined in this specification. The specification is

extended where needed to cover some specific CloudSocket needs.

This component will expose:

• A graphical user interface for checking the status of agreements,

• A REST API interface allowing programmatic access to the different types of functionalities offered.

The main functionalities are:

• Generation of WS-Agreement templates and agreements.

• Management of SLA related entities: templates, agreements, providers, violations, penalties

• Assessment of SLOs and corresponding penalties when an SLO is violated.

• Notification of detected violations and incurred penalties to interested parties.

The following table indicates the details of the component.

Type of ownership Extension & Adaptation

Original tool SLA Framework asset

Planned OS License Apache License Version 2.0. [7]

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 66 of 99

Reference community Atos Research & Innovation (ARI) developers

Lead Partner ATOS

Table 18 - SLA Engine details.

Comprises

• SLA Core (core functionalities)

• SLA Dashboard (Graphical User Interface)

Depends on

• Monitoring Engine

• Repository Manager Engine

Architecture design

Figure 29 - SLA Engine architecture

The general architecture of this component can be viewed in Figure 29. The SLA Management in CloudSocket is

composed of two main components:

• SLA Core. It relies on the Atos SLA Framework asset, with some CloudSocket-related modules. It

contains all the basic functionality. The main subcomponents are:

o Repository. Database of WSAG related entities.

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 67 of 99

o Assessment. It is in charge of the evaluation process of the SLA agreements. It notifies raised

violations and penalties to interested observers (i.e., an Accounting component).

o REST Service. It is the REST interface of the SLA Core to the rest of the CloudSocket platform.

o WSAG Generator. It generates WSAG-compliant templates and agreements according to the

requirements of allocation and marketplace, respectively.

o Colosseum Adapter. It is in charge of: i) subscribing into Colosseum for appropriate metric

events; ii) receiving events and translate them into the internal SLA Core representation.

• SLA Dashboard. This component is a frontend application where BPaaS Customers and brokers can

check the status of agreements and the penalties that have been applied.

The related components with the SLA Engine in CloudSocket are:

• Monitoring Engine. It reports the metric data and violations of metric conditions to the SLA Core.

• Allocation Environment. The Allocation Environment contacts the SLA Generator to obtain a template

that describes the service level of a BPaaS Bundle.

• Marketplace. The Marketplace contacts the SLA Generator to obtain the agreement (the document that

acts as a contract between the customer and the broker) when a customer purchases a BPaaS Bundle.

• Repository Manager. Provides service information to be bound to concrete workflows making them

executable.

• Cloud Provider Engine. Provides the SLA to be stored and managed by the SLA Engine

Functionalities

Functionality Description
Completed
for release

Integrated (which level)

Generation of WS-
Agreement template

Generates the customer-broker SLA
template that describes the service levels to
be satisfied by a BPaaS bundle.

Yes

(1st release)

Ongoing

Generation of WS-
Agreement models

Generates the SLA agreement according to
the predefined template. An agreement is
generated for each purchased BPaaS
bundle.

No

(2nd release)

Integration with
Monitoring Engine

Subscribes to Monitoring Engine in order to
receive data about a BPaaS bundle
execution.

Yes

(1st release)

Ongoing

Cost model Incorporates the CloudSocket cost model
into the SLA documents. Penalties
associated to violations map to this cost
model.

No

(2nd release)

SLA composition Generates and assess hierarchical SLAs
where the parent SLA reflects the
customer-broker relationship and the
children SLAs reflect the “broker-cloud
provider” or “user-cloud provider”
relationships.

No

(2nd release)

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 68 of 99

Dashboard adaptation Integrates the SLA Dashboard with the
structure of the SLA agreements in
CloudSocket.

Yes

(1st release)

Finished

Integration of
dashboard with IdM

Integrates the SLA Dashboard with the
Identity Management service used in
CloudSocket.

No

(2nd release)

Table 19 - Functionalities of the SLA Engine

Table 19 highlights these functionalities while details about the workitems and the respective functionality

realisation status can be found at the follow-up Excel file, which has been referenced in Section 2.1. Details about

the interactions required to realise them can be found at D4.1 [1] and especially the EE-UC-1-Deployment of

BPaaS, EE-UC-2 – Execution of the BPaaS and EE-UC-3 – Monitoring of Agreement Status along with

respective UML diagrams [2].

Manuals

The installation manual, API description, unit test and handbooks are detailed in the alive wiki documentation:

https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/SLA+Engine+Component

Download

The source code can be downloaded at https://omi-gitlab.e-technik.uni-ulm.de/cloudsocket/sla-framework

Instances

The SLA Core and SLA Dashboard components are deployed in a VM at the Openstack cloud of UULM, and are
available at http://134.60.64.232:8080 and http://134.60.64.232:8000, respectively.

Figure 30 - SLA Dashboard

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 69 of 99

4 PERSPECTIVE: CLOUDSOCKET BROKER

4.1 Introduction

This demonstration showcases [30] how the Broker interacts with the CloudSocket BPaaS Design and Allocation

Environments. The Broker aims to design (based on evaluation results) a new business process, defines a

corresponding workflow, allocates resources accordingly and publishes a new bundle to the Marketplace. The

outcome of these steps is a new BPaaS bundle available for the user to buy and use.

The starting point of this demonstration is a review of key performance indicators (KPIs) by the Broker, deciding

on necessary adaptations for existing BPaaS bundles or the development of new ones. The BPaaS designer

picks up on these results and creates a new design package and releases it for further processing.

The allocation expert takes over the new design package and performs allocation activities (defining deployment

plans and rules, adaptation rules, SLAs as well as marketplace information such as annotations and descriptions)

by finally publishing the BPaaS bundle.

To conclude the demonstration, the end-user accesses the marketplace and can now also use the newly

designed BPaaS bundle.

Figure 31 - Broker perspective

4.2 Demonstration

4.2.1 Involved Roles

• BPaaS Customer. Already analysed in Section 3.2.1. This role is mainly involved for demonstration

purposes (e.g., to show that a BPaaS bundle has been published and is available for purchase in the

Marketplace by involving a Business Engineer sub-role). The actual focus is on the next main role, i.e.,

the CloudSocket Broker.

• CloudSocket Broker: It is responsible for publishing the BPaaS in the Marketplace. Moreover, it is

responsible for managing the discovery, orchestration, deployment and execution of BPaaS services on

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 70 of 99

the cloud, allowing the customer to use and exploit them. The broker is someone who acts as an

intermediary between two or more parties during the negotiation i.e., between the BPaaS customer, the

providers of cloud services and the BPaaS broker who offers the respective BPaaS bundle purchased

that exploits these cloud services. The CloudSocket Broker is a physical person or an organization

whose business is creating BPaaS Bundles and selling them to BPaaS Customers via the Marketplace.

Different kinds of roles are defined for the broker mapping to different responsibilities that have to be

taken care of in each environment and the respective skills that are needed to fulfil them. These roles

are now shortly analysed below:

o Consultant: This is a role mapping to an internal or external entity in the CloudSocket Broker

organisation. Three different types of consultants are foreseen mapping to respective sub-roles

that are analysed below.

� Business Consultant: This role is associated to respective capabilities or

responsibilities to be taken care of at the business level which map to the following

actual sub-roles:

• Business Process Designer: is responsible to define a domain-specific

business process model. It could also be able to provide semantic

annotations for the business process modelled in order to assist in its

alignment. Otherwise, such annotations are to be provided by the Ontology

Expert.

• Evaluation Expert: is responsible for defining KPIs and for monitoring their

status. It is also responsible for initiating respective analysis capabilities that

are offered by the BPaaS Evaluation Environment whose results can then be

used to optimise the BPaaS offered.

• Sales Consultant: is responsible to define the overall price and all the

marketplace relevant information that will be shown in the Marketplace by the

end-user once the bundle will be published;

� Technical Consultant: This role is associated to respective capabilities or

responsibilities to be taken care of at the technical level which map to the following

actual sub-roles:

• Workflow Designer: is responsible for the definition of executable workflows

that realise the functionality and automate the domain-specific business

processes that have been defined by the Business Process Designer. This

role, depending on its respective skills and expertise, may also be able to

undertake the semantic annotation of the executable workflow in order to

assist in its allocation via the BPaaS Allocation Environment. Otherwise, such

annotations are to be provided by the Ontology Expert.

• Allocation Expert: is responsible to create bundles and take all the decisions

about the allocation of the software components and atomic services, the

service level agreement.

� Ontology Expert: It is a different kind of consultant with expertise in the management

of ontologies and the semantic lifting of models (business process and workflows).

This role can be exploited in case the Business Process and Workflow Designers do

not have the skills to semantically annotate the models that they generate.

The respective actors mapping to the above roles that are involved in the demonstration mainly from the side of

the CloudSocket broker are the following:

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 71 of 99

• Wilfrid/Kyriakos as the Evaluation Experts of the CloudSocket Broker

• Wilfrid as a Business Process Designer of the CloudSocket Broker

• Joaquin as a Workflow Designer and Ontology Expert of the CloudSocket Broker

• Simone as a Sales Consultant and Allocation Expert for the CloudSocket Broker

• Joaquin acting as a BPaaS customer user undertaking the role of a business engineer to search for a

new process on his mobile device

4.2.2 Assessment of indicators for running BPaaS bundles

The Broker hires evaluation experts to review currently running BPaaS bundles and assess the needs and

demands based on their usage. Using the Evaluation Environment (Figure 32), the data retrieved from the

monitoring interface is visually aggregated as KPIs, goals and perspectives (Figure 33).

Figure 32 – Monitor & Assess

Figure 33 – Hierarchal view for BPaaS bundle

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 72 of 99

Based on this assessment, which outlines a quite successful BPaaS bundle, Kyriakos and Wilfrid propose to

develop yet another package for not only sending Christmas greetings but modify the broker offering for the

upcoming Easter break in order to cover another holiday period major event. They decide to re-use the base

structure from Christmas and apply a different context on this design.

The following video shows the assessment of indicators and the decision to create a new context

https://youtu.be/NvyL2H31bEQ

Figure 34 - Analytic dashboard

4.2.3 Creation of new design package

Based on the evaluation results, the creation of a new design package is performed. The design is done using

graphical models as an interaction means between business processes and workflow/technical designers Figure

35. In the demonstration, we pick-up the package made available for Christmas and modify it accordingly. This

modification is done on one hand by the business process designer, modifying and changing the business

process model (Figure 36), and the workflow designer on the other hand who builds an executable process out of

the business process model (Figure 37).

Figure 35 – Design & Document

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 73 of 99

Figure 36 – New Easter Greetings card (business model)

Figure 37 – New Easter Greetings card (executable workflow)

The package is designed (Figure 39) as a combination of: (a) a Business Process (+ Service Requirements

Specification as a result from WP3) as the business view, (b) a Workflow as the technical view, (c) Rules for

deployment (DMN) and sensor definitions and (d) KPIs and goals to measure the success of the package.

In the demonstration, we focus on the design at the business level; the Christmas package is refined and

annotated with necessary details to be considered at the technical level. Highlights are added to be considered at

workflow and execution level.

As a final step, the package is made available by releasing it in the Modeling Layer of the Evaluation

Environment. This makes the package also available via the BPaaS Design Environment API for further use in

the Allocation Environment Figure 38).

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 74 of 99

Figure 38 – BPaaS Design Environment API

The following video shows the design process and interaction to create the new BPaaS Design package

https://youtu.be/IrbgIZ4a-go

Figure 39 – BpaaS Design Package Repository

4.2.4 Allocation and deployment of the new bundle

Once the CloudSocket Broker completes a new Design Package using the Design Environment, he should be

able to create one or more BPaaS bundles using the Design Package as input. The bundle contains both

commercial and technical details; for this reason, the Broker can involve a sales consultant and an allocation

expert in order to delegate to them the main responsibilities of the bundle creation.

In order to create a new bundle, the allocation expert accesses the Allocation Tool (Figure 40).

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 75 of 99

Figure 40 – Allocation tool

By accessing the "My bundles" menu, he can create a new empty bundle. The first step is to choose a design

package for the bundle by browsing all the design packages published and exposed by the Design Environment

(Figure 41). The Broker can filter the design packages and then view all the content of a specific package, which

includes the description as well as the images of business process and workflow involved. After he identifies the

desired package, he can confirm the selection and the Allocation Environment retrieves the whole content of the

package using the API provided by the BPaaS Design Environment. This content is stored inside the new bundle

and processed in order to retrieve all the information from the workflow like the software components and the

concreate atomic services invoked by it.

Figure 41 – Available BPaaS Packages

Once the empty bundle is filled with the information of the selected design package, the sales consultant can start

to define the commercial offer for that bundle. From the commercial point of view, the key information required

are the bundle name, a commercial (textual) description, a brand associated to the bundle, a commercial image,

a pricing offer, as well as a list of categories and tags. All those information are shown in the Marketplace once

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 76 of 99

the bundle is published on it and the BPaaS Customer can access and view it in order to have a good

understanding of what the bundle offers and at which price (Figure 42).

Figure 42 – Definition of the BPaaS bundle

The allocation expert needs to configure the technical details of the bundle. He should allocate all the Software

Components, i.e., select for each of them the proper Virtual Machine Offering which will host it. The Allocation

Tool will help in such a selection by filtering the Virtual Machine Offerings space for each software component by

considering the component's minimum hardware requirements and its compatible Operating System(s). As such,

the Infrastructure as a Service selection/allocation scenario is covered. In order to complete the allocation phase,

the allocation expert needs to allocate also all atomic services (currently these maps to the selection of one

endpoint from those available). The allocation decisions are translated by the Allocation Tool into a deployment

plan defined using the CAMEL language (Figure 43).

Figure 43 – Definition of the technical details

The Allocation Tool helps the broker to understand what information is needed for the given bundle in order to be

consistent and therefore constitutes a candidate to be published in the marketplace. For this purpose, the tool

provides a missing content section which lively contains the list of all the missing information needed by the

bundle to be consistent. Indeed, when a new bundle is created, it is in draft status so all possible missing

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 77 of 99

contents are reported; once all contents are provided, then the bundle changes its status from draft to consistent.

Only consistent bundles can be published in the marketplace. Once the bundle is published, its status changes

from “consistent” to “published” (Figure 44).

Figure 44 – BPaaS bundle ready to be published

The following video shows the allocation process https://youtu.be/S3vhg8mTPB0

Figure 45 - Allocation environment

4.2.5 Publication of the new bundle

Once the broker finishes the allocation phase for the new bundle, he/she is able to proceed with the publication.

This phase comprises the creation of the whole content of the bundle in JSON format and the publication into the

Marketplace using the REST API.

Afterwards, the new BPaaS bundle is available for the BPaaS Customer and he can browse (Figure 46) and buy

it as it is described in the perspective of the BPaaS Customer Section 3.

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 78 of 99

Figure 46 - Marketplace for mobile device

The following video shows the publication of the new BPaaS bundle in the Marketplace and how the BPaaS

Customer can review it at a mobile device https://youtu.be/yiSKcg4Esso

4.3 Environments

Figure 47 - CloudSocket architecture with the environments involved in the Broker perspective outlined with a red rectangle

4.3.1 BPaaS Evaluation Environment

The CloudSocket Evaluation Environment enables conducting different types of analysis over a semantic

repository as well as appropriately visualising the analysis results in a sophisticated dashboard. The following

types of analysis will be supported: (a) KPI assessment; (b) KPI drill-down; (c) best deployment discovery for

BPaaS; (d) detection of event patterns leading to SLO/KPI violations; (e) process mining to discover various types

of discrepancies for a BPaaS workflow. This environment covers mainly the BPaaS Broker perspective as it was

shown in Section 4.2.2.

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 79 of 99

In order to support the aforementioned visualisation and analysis functionality, the CloudSocket Environment

comprises several components. These components are the following:

• Hybrid Business Dashboard: Enables the visualisation of the analysis information via the use of suitable

metaphors. Guides the user in properly performing the different types of analysis

• Hybrid Business Process Management Tool: Integrates the findings of the different types of analysis and

enables the orchestration of the communication between the user interface and the respective main

analysis components.

• Conceptual Analytics Engine: Provides an API through which the (a)-(d) types of analysis can be

performed. It implements the underlying functionality needed.

• Process Mining Engine: Will provide an API via which process mining analysis tasks can be performed

over the semantic repository.

• Semantic Repository: It is an underlying semantic repository realised via a Triple Store which enables

the posing of sophisticated semantic queries in order to assist in the realisation of the different types of

analysis supported.

• Meta-Model Platform: provides access to various information that is required for performing the different

types of analysis like KPIs, BPMN (for both BPaaS business processes and workflows) models and

DMN specifications. It is the bridge between the Design and Evaluation Environments with respect to the

static data already specified for a BPaaS at the design phase.

Figure 48 - The component diagram of the BPaaS Evaluation Environment

The respective component diagram of the envisioned BPaaS Evaluation Environment is shown in Figure 48. As it

can be seen, there are actually three levels covering the visualisation, the analysis and the underlying storage

and management of the (semantic) data. In the context of conducting a specific analysis, components in each

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 80 of 99

level interact with each other in order to properly deliver and visualise the respective analysis functionality. More

information about how these interactions are performed and what are the respective scenarios covered can be

found at the following URL: https://www.cloudsocket.eu/uml/4-

EvaluationEnvironment/remotedocu/modeldocu/27012016104756/modelContentHTML in which the

corresponding UML diagrams [2] can be viewed. This information was also covered in the D4.1 deliverable [1].

In the following, we describe only those components that are part of this first release of the CloudSocket

prototype. These components are the Hybrid Business Dashboard, the Meta Model Platform, the Conceptual

Analytics Engine and the Semantic Repository. In this respect, it becomes apparent that the Process Mining

Engine has not been implemented yet and it will be incorporated in the next and final release of the CloudSocket

prototype. This means that the process mining functionality is not yet supported by the BPaaS Evaluation

Environment.

4.3.1.1 Hybrid Business Dashboard

The implementation of the Hybrid Business Dashboard is available as the KPI Monitor described in Section

4.3.2.1. By visualising performance indicators, this component enables the integration between the requirements

level in the BPaaS Design Environment and the analysis information/knowledge provided via the analytics

engine. This component is composed by the blue rectangles in the component diagram of the BPaaS Evaluation

Environment (See Figure 48).

4.3.1.2 Conceptual Analytics Engine

The Conceptual Analytics Engine, for the time being, supports only the evaluation of KPIs by exploiting the

semantic information already provided by the Semantic Repository. The rest of the envisioned analysis

functionality will be available in the next and final release of the CloudSocket prototype. This component mainly

maps to the functionality of a REST service which provides a respective API providing the following three main

methods:

(a) one enabling conducting KPI analysis;

(b) one enabling the retrieval of those tenants (BPaaS clients) for which we do have measurements for a

respective BPaaS and KPI;

(c) one enabling the posing of arbitrary SPARQL queries which could be used by the broker in order.

The API also provides some additional utility methods that enable the broker to manage the underlying data

stored in the Semantic Repository spanning functionality to upload/import, update/modify, export and query the

data. Such methods could also be exploited by other components which need to interact with the Semantic

Repository in a high rather than a low and detailed level (which would demand the knowledge of how to interact

with the underlying Triple Store and would lead to increased implementation effort for realising such interaction).

The communication between the Conceptual Analytics Engine and the Semantic Repository mainly relies on the

posing of semantic SPARQL queries over the respective semantic data stored which result in the direct retrieval

of the KPI assessment value. In this respect, as the repository is realised via the Virtuoso Triple Store Server, the

sesame interface was exploited in order to enable the posing of queries. This interface provides also capabilities

mapping to the complete management of the semantic data stored in the Triple Store. These capabilities were

adopted in order to realise the aforementioned utility functionality of the Conceptual Analytics Engine API.

Details of the component.

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 81 of 99

Type of ownership Creation

Original tool
New component - developed in the context of this

project

Planned OS License Mozilla Public Licence (MPL) 2.0. [28]

Reference community ADOxx community

Lead Partner FORTH

Table 20 - Details of the Conceptual Analytics Engine

Depends

• Meta-Model platform (KPI, BPMN, DMN definitions)

• IdM Marketplace (User access control)

• Repository Manager (KPI/SLO metric definition)

Architecture design

This component maps to the yellow rectangle in the component diagram of the BPaaS Evaluation Environment
(See Figure 48). It does not involve any sub-components so no internal architecture applies for it. In the next
release, as this component maps to multiple functionality, it will be considered to split it into sub-components such
that a detailed internal architecture will apply for it.

The component has been partially integrated in the CloudSocket prototype. This is due to the fact that some

components are still missing required for the retrieval of KPI information. In this sense, this information is

currently hardcoded in this component. However, the component is already well-integrated inside the BPaaS

Evaluation Environment as it is exploited by the Hybrid Business Dashboard and can be used to perform KPI

assessments by exploiting the content of the Semantic Repository.

As has already been stated, only the KPI evaluation functionality has been fully implemented. The rest of the

functionalities intended to be supported by this component have not yet been realised. The following table

highlights this while details about the workitems and the respective functionality realisation status can be found at

shared excel file, which has been referenced in Section 2.1. Details about the interactions required to realise this

functionality can be found in D4.1 [1] and especially the EvE-UC-1-KPI Analysis and Visualisation Use Case

along with respective UML diagrams [2].

This component could be easily replaced by another developed by an organisation outside the consortium. Its

integration will be easy as it is loosely coupled with the rest of the components it connects to. In particular, it

retrieves standardised specifications from the Meta-Model platform and exploits them in order to produce

respective analysis functionality. For instance, in the case of KPIs, it exploits the KPI specification information in

order to produce semantic SPARQL queries to be posed over the Semantic Repository. Furthermore, the

replacement of the Conceptual Analytics component would only have to be able to connect correspondingly to the

Semantic Repository. As such, the Virtuoso Triple Store Server provides different interfaces to achieve this.

Functionalities

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 82 of 99

Functionality Description Completed for release Integrated (which level)

KPI evaluation (current &

historical values)

The component enables the

evaluation of the KPI either

with respect to the current

moment or with respect to a

particular time range (thus

covering historical KPI

assessment information)

Yes (1st Release) Still missing integration with

Meta-Model Platform.

KPI drill-down The component enables a

drill-down on KPI analysis in

order to discover which low-

level KPIs are to blame for

the violation of high-level

ones

No (2nd release) To be integrated once

developed

Best BPaaS deployment

discovery

The component will enable

the discovery of best

deployments for a BPaaS,

based on the execution

history of the BPaaS and

other similar BPaaSs, in

order to optimise its

allocation.

No (2nd release) To be integrated once

developed

Discovery of event patterns

leading to SLO/KPI

violations

The component will be able

to discover those event

patterns that lead to the

violation of SLOs/KPIs. Such

event patterns could be

exploited to develop

respective adaptation rules

in an semi-automatic or

manual manner.

No (2nd release) To be integrated once

developed

Table 21 - Functionalities of the Conceptual Analytics Engine

Manuals

The installation manual, API description, unit test and handbooks for this component are detailed in the alive wiki

documentation in the project web site at the following URL: https://www.cloudsocket.eu/group/guest/wiki/-

/wiki/Main/Conceptual+Analytics+Engine.

Download

The official version can be downloaded from: https://www.cloudsocket.eu/download. Continuous updates on code

are committed at the git repository of UULM: https://omi-gitlab.e-technik.uni-

ulm.de/cloudsocket/evaluation_skb/repository/archive.zip?ref=master.

Instance

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 83 of 99

The component has been currently deployed in a VM at the Omistack cloud of UULM and is available at the

following URL: http://134.60.64.222:8080/rest-test-swagger-0.0.1-SNAPSHOT/. Internally, as being a REST

service, a servlet container (tomcat) has also been deployed in the same VM in order to host this REST service.

4.3.1.3 Semantic Repository

The semantic repository is a host of semantic data which enables their proper management and retrieval. It has

been realised as a Semantic Triple Store Server mapping to the Virtuoso1 open-source component. The latter

component provides different interfaces through which semantic data can be managed mapping to a Sesame,

Jena and native SQL-based interface. Such interfaces constitute the interaction points with other components at

the higher levels of the BPaaS CloudSocket Evaluation Environment. In any case, the Virtuoso Triple Store

Server offers the following functionality, irrespectively of the interface to be exploited:

• semantic queries issuing via the SPARQL language

• update of semantic data via SPARUL statements

• various functions to import or export semantic data

• abilities to integrate with relational databases via R2RML mapping specifications

Details of the component:

Type of ownership Usage

Original tool Virtuoso Triple Store

Planned OS License GPL v2 [27]

Reference community Semantic web community

Lead Partner FORTH

Table 22 - Details of the Semantic Repository

Depends

• IdM Marketplace (User access control)

• Monitoring Engine (execution history)

• Repository Manager (KPI/SLO metric definition)

• Meta-Model platform (KPI, BPMN definitions)

Architecture

This component maps to the red rectangle in Figure 48 (BPaaS Evaluation Environment component diagram). It
does not involve any sub-components so no internal architecture applies for it. In the next release, a specific
component will be realised on top of it responsible for the retrieval of execution history information from the
Execution Environment / Monitoring Engine which will transform and semantic lift this information into the
respective semantic content of the Triple Store.

1 http://virtuoso.openlinksw.com/

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 84 of 99

The component has been partially integrated in the CloudSocket prototype due to the missing component

responsible for the live population of its underlying semantic database/triple store from the monitoring history

information. This information is currently manually inserted into the Triple Store. However, the component is

already well-integrated inside the BPaaS Evaluation Environment as it is exploited by the Conceptual Analytics

Engine in order to pose those SPARQL queries that directly lead to the assessment of KPIs.

This component could be easily replaced by another developed by an organisation outside the consortium. In

fact, there are many semantic triple stores, either open-source or proprietary those are currently offered. The sole

issue with its integration relies on the respective interface exploited. For instance, the Conceptual Analytics

Engine exploits the sesame interface but another Triple Store might not offer this interface. This will require

changing slightly the implementation of the Conceptual Analytics Engine in order to exploit the current interfaces

offered by the replacement triple store.

Functionalities

Highlights the whole functionality to be offered by this component while details about the workitems and the

respective functionality realisation status can be found at the follow-up file, which has been introduced at the

Section 2.1. Details about the interactions required to exploit this functionality can be found at D4.1 and actually

concern all the use cases specified. The interested reader can also inspect the respective UML diagrams [2]

covering these use cases.

Functionality Description
Completed
for release

Integrated (which level)

Management of
semantic data

The component enables the management
of semantic data stored into its underlying
Triple Store by offering different interfaces
mapping to the realisation of this
management functionality.

Yes

(1st release)

Semantic Repository
Population

The component will be coupled with
functionality enabling the population of its
underlying Triple Store from information
produced by the Monitoring Engine which is
semantically lifted and stored in this Triple
Store.

No

(2nd release)

To be integrated once
developed

Table 23 - Functionalities of the Semantic Repository

Manuals

Full documentation about this component can be currently found at the Virtuoso's official web page at the

following URL: http://docs.openlinksw.com/virtuoso/.

Download

Proprietary versions of this component can be downloaded from the Virtuoso's official web page at the following

URL: http://virtuoso.openlinksw.com/download/. The open-source version is available at github:

https://github.com/openlink/virtuoso-opensource.

Instance

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 85 of 99

The component has been currently deployed in the same VM at the Omistack cloud of UULM where the

Conceptual Analytics Engine has also been deployed.

4.3.2 BPaaS Design Environment

The Design Environment allows the CloudSocket Broker to construct the BPaaS Design Packages for the Cloud

Service to provide. The BPaaS Design Environment provides appropriate conceptual modelling tools for (a)

designing domain specific business processes, (b) abstract workflows, (c) additional description and rules for

deployment as well as (d) Key Performance Indicators (KPIs).

In order to support aforementioned functionalities, the BPaaS Design Environment is composed by two

components called BPaaS Design Tool and Executable Workflow Modeler.

Figure 49 - The component diagram of the BPaaS Design Environment

4.3.2.1 BPaaS Design Tool

The BPaaS design Tool has been created on the base of the CloudSocket meta-model specified in D3.1 [24]. The

meta-model define all the aspects required in order to provide the service, that in this specific context are:

• Domain-specific Business Process applying the BPMN 2.0 standard

• Execution Workflow applying the BPMN 2.0 standard but allowing also custom extensions

• Decision Models as DMN 1.1 standard

• The company structure as defined in D3.1 (no standards exist for that)

• Documents involved in the Business Process or Workflow as defined in D3.1 [24] (no standards exist for

that)

• Key Performance Indicators KPIs as defined in D3.1 [24] (no standards exist for that)

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 86 of 99

• Semantic annotations on the domain-specific business processes (and executable workflows) via the

RDF standard.

In order to provide those different modelling tools within one environment, a meta modelling platform is used that

enables the plug-in of different modelling aspects. For BPaaS, the aforementioned different modelling

approaches & tools correspond to the first two BPaaS layers – the i) domain specific business process as well as

the ii) executable workflows – as well as their alignment from the business to the technical layer.

Hence the meta modelling platform enables to manage all models in one repository and the interaction between

the different layers via so-called model weaving and semantic lifting techniques. Please see more details in

Deliverable D3.1 [24].

Details of the component:

Type of ownership Extension

Original tool ADOxx

Planned OS License
Closed source. Component available in standalone

manner and as service

Reference community ADOxx

Lead Partner BOC

Table 24 - Details of the Design Environment

Comprises

• User inteface for the modeling of the bundle: the tool is provided in an experimental space for open

development and research using a rich-client UI as well as a productive setting allowing web-based

interaction

• Hybrid Business Dashboard: as a result of the CloudSocket Evaluation Environment

• REST API in oder to allow other environments to interact with the BPaaS Design Environment

• Simulation engine to evaluate and analyze the modelled BPaaS services

Architecture design

The general architecture of this component can be viewed by cheking the components coloured in blue, in the

Figure 49 above as the Design Environment is composed of the BPaaS Design Tool.

The BPaaS Design Tool is built using the following components:

• A meta modelling platform that provides a BPaaS model repository for all its models, the corresponding

management and security infrastructure and a development environment that enables the

implementation of modelling components.

• BPaaS modelling components are distinguished by their modelling languages – which are

implementations of standards like BPMN, DMN, or RDF – as well as modelling features such as user

interaction and model processing. Hence the domain specific business process modeller and the

executable workflow modeller are both such a meta modelling component.

• The corresponding (Web-)GUI realizes the user interaction features, to manipulate a model.

• API Interfaces enable the access to the BPaaS Design Environment in particular to the BPaaS model

repository, which consists of domain specific business process models, executable workflow models,

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 87 of 99

additional business requirement models and KPI models. This interaction relies on standard features

such as BPMN export / import or on implemented proprietary exchange formats.

• The BPaaS Design Tool API is the component that provides the possibility to programmatically interact with

the tool in order to import and export models. Model can be listed and exported in different formats in relation

to the specific model type. In particular the API exposes the following features:

• Get models: Obtain the list of all models in JSON format. This list can be filtered by model type in order

to obtain only BPMN or DMN models or other kind of.

• Image export: give the possibility to obtain an image in JPEG format for the model. The quality and the

scale of the image can be specified by parameters

• BPMN export: give the possibility to export a Business process model or a workflow in standard BPMN

2.0 format

• BPMN import: give the possibility to import a BPMN 2.0 standard model into the Design Environment

• XML export: give the possibility to export any kind of model in a generic xml format specifically relevant

for the BPaaS Design Environment

• XML import: give the possibility to import into the Design Environment a model described in its specific

XML format

• DMN export: give the possibility to export a decision tables model in standard DMN format

• RDF import: give the possibility to import a model defined in standard RFD format into the Design

Environment

• BPaaS Design Package export: enables access to retrieve BPaaS design packages individually.

These REST API are available at the following URL:

https://www.cloudsocket.eu/ADONISNP36/rest/cloudsocket/API/

The following WADL file describe the structure of this API:

https://www.cloudsocket.eu/ADONISNP36/rest/application.wadl

• The Meta Model Platform ADOxx is used to create the tool. As a result of using this platform it has been

possible to create the CloudSocket meta-model in all its aspects and automatically generate a specific

modelling environment based on them. Once a meta-model is defined in the platform, it becomes

automatically available in the BPaaS Design Environment that providing the possibility to create models for

the defined meta-models. This component is also responsible to efficiently store and retrieve of models (of a

BPaaS Design Package) defined in the BPaaS Design Environment.

• The Simulation Service enables the statistical evaluation of Business Process or a Workflow in terms of

costs, time and unexpected behaviours. Currently the simulation is available only for such type of models but

its internal structure give the possibility to easily extend it in order to support other kind of models. The

simulation service is integrated into the tool but can be executed also as a separate service through the

REST API available at: https://www.adoxx.org/simulation/rest/application.wadl or through the User Interface

at: https://www.adoxx.org/simulation/

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 88 of 99

• The Business Process Modelling User Interface is the entry point for the Business Process Designer in order

to model a BPaaS Package. Two versions of this component are provided: an experimentation version and a

production version:

• The experimentation version is a standalone modeller based on the ADOxx toolkit that need to be

installed on the designer’s pc. This version supports all the meta-models and features defined in the

project and it is the only one available for the whole community.

• The product version is a web app that can be accessed with any browser. In this version all the features

of the experimentation version has been replied and some new ones (like the new simulation engine)

are introduced.

• The Workflow Modelling User Interface provides similar features with respect to those offered by the

business process modelling component (Business Process Modelling User Interface). The actual design and

configuration of a workflow is performed in a separate so-called “Executable Workflow Designer” described in

Section 3.3.2.1. This enables a higher flexibility and reduces the vendor dependencies, as any workflow

designer that is compatible with the Workflow Engine operating in the cloud, can be used. The alignment and

CloudSocket relevant parameters can be modelled in the Workflow Modelling Component, and the workflow

engine can be designed in the separate tool. The executable workflow is then imported back to enable

semantic annotation and discovery but not for the sake of modifying the executable workflow. Hence this

component provides user management, model management and model design features for workflows.

• The Semantic Alignment Kernel is a light-weight model editor without own user interface that enables the

semantic lifting of business processes and workflows (templates). Hence modelling features for annotations

are provided. In addition, full fletched discovery and analysis capabilities are established to enable the

discovery of workflow (templates) for business processes and from respective business process

requirements.

• The KPI Monitor is a web portal that give the possibility to monitor the current status of all the defined KPIs

defined for a BPaaS Design Package. A user friendly interface has been provided in order to explore the

KPIs and check if there are inline with the allowed value ranges or not. In the background, the Conceptual

Analytics Engine in the BPaaS Evaluation Environment (see Section 4.3.1.2) is exploited in order to derive

the actual KPI metric values to be examined.

Functionalities

The Table 25 indicates the covered functionalities and their status:

Create/Edit BpaaS
package

This functionality allows a broker to create
new BPaaS packages or edit one of his own
packages creating/changes models for

− Business Processes

− Workflows

− Decisions

− Key Performance Indicators and
cause/effect relations

− Bundle/Design package
overviews

Yes

(1st release)

Complete lifecycle

Monitor KPI This functionality allows a designer to
monitor the status of the KPIs defined on
every BPaaS Package.

Yes

(1st release)

Complete lifecycle

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 89 of 99

REST API This functionality gives the possibility to
interact with the BPaaS Design
Environment programmatically. It is possible
to import/export the models in different
formats like BPMN, DMN or RDF (according
to their respective formats) and to generate
images.

Yes

(1st release)

Complete lifecycle.

Simulation This functionality give the possibility to
statistically evaluate a Business Process or
a Executable Workflow in terms of costs,
time and unexpected behaviours

Yes

(1st release)

Complete lifecycle.

Table 25 - Details Functionalities of the Design Environment

Manuals

The installation manual, the API description, unit test and handbooks are detailed in the alive wiki documentation

at https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/Design+Environment+Components

More information can also be found in the ADOxx.org portal: https://www.adoxx.org/live/adoxx-documentation

Instances

The product version of the BPaaS Design Environment is a cloud application that can be accessed using the

following credentials:

URL: https://www.cloudsocket.eu/ADONISNP36/

User: ON DEMAND

Password: ON DEMAND

The experimentation version of the BPaaS Design Environment is instead a standalone app based on the ADOxx

Toolkit and can be downloaded from here:

URL: https://www.adoxx.org/live/web/cloudsocket-developer-space/downloads

The source code of the BPaaS Design Environment is not available.

4.3.2.2 Executable Workflow Modeler

This component is responsible for the modeling of the executable workflow. Please have a look at the Section

3.3.2.1 for a detailed description. This component maps to the subcomponent of the Workflow Engine called

Editor Workflow, which is responsible for the editing of the executable workflows at the design phase, and it is

identified in the BPaaS Design Environment at the Figure 49, checking the component coloured in yellow.

4.3.3 BPaaS Allocation Environment

The BPaaS Allocation Environment allows a CloudSocket Broker to select a BPaaS Design Package (previously

created via the Design Environment) and create a BPaaS Bundle ready to be published in the Marketplace and

deployed in the Execution Environment.

The BPaaS Allocation Environment provides the following high-level features: i) creation of new BPaaS Bundle; ii)

search and editing of existing BPaaS bundles; iii) selection of BPaaS Design Package; iv) configuration of

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 90 of 99

marketing metadata; v) workflow services allocation (both atomic services and software components); vi)

publication into the marketplace.

In order to support aforementioned functionalities, the BPaaS Allocation Environment is composed by one main

component called Allocation Tool.

The following Figure 50 shows the detailed internal architecture of the Allocation Environment architecture.

Figure 50 - Internal architecture of Allocation Environment

More information about this component and the covered scenarios can be found at the following URL:

https://www.cloudsocket.eu/uml/2-

AllocationEnvironment/remotedocu/modeldocu/27012016103400/modelContentHTML/ in which corresponding

UML diagrams [2] can be viewed. This information was also covered in the D4.1 deliverable [1].

4.3.3.1 Allocation Tool

The Allocation Tool uses the selected BPaaS Design Package as the basic key part of the BPaaS Bundle to be

created containing the Business Process Model, the Executable Workflow Model and additional meta-data (such

as domain-specific (business-level) KPIs, ontological mappings, etc.). In fact, the Allocation Tool provides a user

interface to complete the definition of the BPaaS Bundle by incorporating all additional information required to

deploy and execute it.

A BPaaS Bundle binds an Executable Workflow Model with the concrete Atomic Services and Cloud

Infrastructures that will be invoked by the workflow, respectively, when executed.

When creating a BPaaS Bundle, the CloudSocket Broker is responsible for defining the overall pricing and SLA

for the whole bundle, taking into account the pricing and the SLA of all the resources – e.g. Workflow engine,

atomic services and cloud infrastructures - configured in the bundle.

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 91 of 99

The BPaaS Bundle is a data structure containing all the information required by the Execution Environment (to

deploy, execute, monitor and assess a BPaaS) and by the Marketplace (to allow the BPaaS Customer to

effectively search the bundles of interest). Such information includes:

• Business process Model

• Workflow Model

• Atomic Service allocation

• Software Component allocation

• KPI model

• Service Level Agreement (SLA)

• Marketing Metadata

• Adaptation Rules

Type of ownership Creation

Original tool New component - developed in the context of this project

Planned OS License
No source released. Component available only as

service

Reference community FHOSTER R&D staff

Lead Partner FHOSTER

Table 26 - Details of the Allocation Tool

Comprises

• Web UI for the allocation of the workflow (Graphical User interface)

• Bundle Manager to manage the creation of the bundles

• Bundle Repository to store the bundles

• Bundle Publisher to publish the bundles into the Marketplace

Depends on

• BPaaS Design Environment

• Marketplace

• Repository Manager

The general architecture of this component can be viewed in the Figure 50 above as the Allocation Environment

is composed only by the Allocation Tool.

The Allocation Tool provides a web application follows a multi-tier architecture and the respective components

are distributed across three main layers:

• A user-interface layer, responsible for the interaction with the users;

• A functional layer, implementing the logic of the services invoked;

• A data layer, responsible for saving, loading and managing data in the involved databases.

• The Bundle Instantiator is the UI component allowing a CloudSocket Broker to create a new BPaaS Bundle.

Since a BPaaS Bundle is conceptually a commercial and technical “packaging” of an Executable Workflow

Model, the creation of a draft BPaaS Bundle necessarily starts with the selection of a workflow model from a

Design Package of the BPaaS Design Environment. The tasks performed by the Bundle Instantiator are:

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 92 of 99

• Browse the workflow models mapping to Design packages already created in the Design

Environment;

• Instantiate a new BPaaS Bundle selecting one workflow model.

•••• The Bundle Designer is the main UI component of the Allocation Tool. It provides all the functionality needed

by a CloudSocket Broker in order to configure (fill or edit) the sections of a BPaaS Bundle and move it from

the initial Draft (incomplete) state to the Consistent (ready to be published) state. The Bundle Designer

includes three main sub-components that allow to define allocation for Atomic Services and Software

components and to define the bundle metadata

• The Bundle Browser is the UI component allowing a Broker to explore and manage the Bundle Repository.

The component shows to the Broker a list of all the Bundles he/she has created along with their status (Draft,

Consistent or Published). The tasks performed by the Bundle Browser are the following:

• Browse all the BPaaS Bundles developed by the authenticated Broker that have been stored into the

Bundle Repository

• Enable the editing of a BPaaS Bundle not already marked as published

• Duplicate the content of an existing into a new BPaaS bundle

• The Bundle Repository Manager acts as a management interface to the Bundle Repository for all the other

components of the Allocation Tool. It provides all the functionality to list and search the content of the Bundle

Repository, to load a bundle in memory, to save a bundle in the Repository and to delete a bundle from the

Repository.

The Bundle Repository Manager supports multi-tenancy functionality, where the tenant is the CloudSocket

Broker. Indeed, it is his responsibility to let each Broker access only its own bundles as well as to allow only

legitimate state transitions and actions to be executed over the bundles of a certain Broker. Tasks performed

by the Bundle Repository Manager:

• Provide a list of descriptors of the BPaaS Bundles in the Bundle Repository;

• Search for a BPaaS Bundle in the Bundle Repository;

• Load a BPaaS Bundle from the Bundle Repository into the memory;

• Save a BPaaS Bundle from the memory into the Bundle Repository;

• Delete a BPaaS Bundle from the Bundle Repository;

• Change the state of a bundle.

• The Bundle Manager implements all the business logic required by the Bundle Designer UI and its sub-

components. It manages the BPaaS Bundle in memory, making sure that all the sections of the bundle’s data

structure are properly aligned at any time (i.e., no invalid cross-references and overall data structure

consistency) and contain only allowed values.

The Bundle Manager also detects when a Bundle has been sufficiently configured (i.e., configured with at

least the minimal information required to be published) and performs the transition from the Draft to the

Consistent state or vice-versa, in case some required information has been removed.

Tasks performed by the Bundle Manager: this server-side component just manages in memory the BPaaS

Bundle currently edited by the CloudSocket Broker. The Bundle Manager interacts with the following

components:

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 93 of 99

• The registries (Software Component Registry, Cloud Provider Registry). Note: the registries are not

accessed directly by the Bundle Designer because the raw lists provided by each registry must be

pre-filtered in order to isolate only the registry items which are compatible with the bundle in

memory;

• The Bundle Repository Manager as it is responsible for loading/saving the bundles from/to the

Bundle Repository;

• The Bundle Publisher as it is responsible to interact with the Marketplace management API in order

to publish a bundle.

•••• The Bundle Publisher is responsible for publishing the BPaaS Bundle in the Marketplace. The Bundle

Manager forwards to the Bundle Publisher the Bundle currently in memory and delegates it to perform all the

interactions with the Marketplace management API required to get the Bundle published. If the publishing

operation succeeds, the Bundle Manager changes the state of the Bundle from Consistent to Published and

sends it to the Bundle Repository Manager in order to make the state transition persistent. The Bundle

Publisher allows also the update of a Bundle already published in the Marketplace with the same flow

followed in case of the first publication.

Tasks performed by the Bundle Publisher: this server-side component is responsible to publish and update a

Bundle into the Marketplace.

Functionalities

The Table 27 indicates the covered functionalities and their status

Functionality Description
Completed
for release

Integrated (which level)

Explore existing BpaaS
Bundles

This functionality allows a broker to explore
and open details of his/her own bundles

 Yes

(1st release)

Complete lifecycle.

Create/Edit BpaaS
Bundle

This functionality allows a broker to create
new bundles or edit existing own bundles

Yes

(1st release)

Complete lifecycle

Multi-Tenant The same instance of the allocation
environment manages the bundles of
various brokers. Each broker can manage
only his own bundles

Yes

(1st release)

Complete lifecycle

Browse BPaaS Design
Packages

This functionality allows the browsing of the
BPaaS Design packages offered by the
Design environment

Yes

(1st release)

Complete lifecycle.

Edit Marketplace
metadata

This functionality allows the editing of all the
marketplace relevant information for a
BPaaS bundle, like title, description, price,
categories and tags

Yes

(1st release)

Complete lifecycle.

Allocate Software
components

This functionality allows the browsing and
selection of virtual machines and assign it to
each software component (internal service)
mapping to a service task in the BPaaS

Yes

(1st release)

Complete lifecycle

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 94 of 99

workflow

Allocate Atomic services This functionality allows the browsing and
selection of concrete service endpoints and
assign it to each atomic service mapping to
the BPaaS workflow service tasks

Yes

(1st release)

Complete lifecycle

Automatic creation of
deployment plan

Based on allocation configuration, this
functionality creates automatically the camel
file which specifies, along with other
information, the technical deployment plan
of the BPaaS bundle

Partially

(1st release)

Complete lifecycle.

To be integrated with the
other features not yet
developed, i.e., adaptation
rules, service level
objectives (SLOs)

Integration with
Repository Manager

The environment is currently integrated
with software component, cloud
provider and atomic service registries of
the Repository Manager

Partially

(1st release)

Complete lifecycle.

To be integrated with raw
metrics registry

Adaptation rules for
Software components

This functionality will allow the definition of
adaptation rules for a software component,
in terms of horizontal scaling and/or
migration of virtual machine

No

(2nd release)

Adaptation rules for
Atomic services

This functionality will allow the definition of
adaptation rules for an atomic service in
terms of switching the services

No

(2nd release)

Creation of Metric
Conditions

This functionality will allow defining KPIs
based on raw metrics and/or other KPIs.
The KPIs will be used to define SLO
conditions and adaptation rules

No

(2nd release)

Definition of SLA This functionality will allow defining SLOs
based on metric conditions (see previous
row), which will compose the overall SLA. It
would also enable specifying additional
information about the SLA, such as the
penalties involved in the violation of a
specific SLO.

No

(2nd release)

Publish/update BpaaS
bundle in Marketplace

This functionality allows the publication or
updating of bundles on the Marketplace

Yes

(1st release)

Complete lifecycle.

Table 27 - Functionalities of the Allocation Tool

Table 27 highlights these functionalities while details about the workitems and the respective functionality

realisation status can be found at the follow-up excel file, which has been referenced in Section 2.1. Details about

the interactions required to realise these functionalities can be found at D4.1 [1] and especially the AE-UC-1

Creation of BPaaS Bundle, AE-UC-2 Workflow Allocation, AE-UC-4 Software Component Allocation, AE-UC-6

SLA Model Editing, AE-UC-8 Business Process Metadata Editing and AE-UC-9-BPaaS Bundle Publishing in the

Marketplace along with the respective UML diagrams [2].

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 95 of 99

Manuals

The Allocation Tool is created with Livebase [17], a platform as a service developed by Fhoster. Livebase allows

to create web applications starting from a conceptual model, defined with a proprietary model language that

extends the UML class diagram. Livebase generates web applications composed by a GWT client,= and a Java

business layer on top of a SQL database hosted on Maria DB DBMS [18].

In the context of this project, the Livebase platform has been integrated with an OSGI framework in order to

create pluggable web applications. In this way, the applications generated by the platform can be extended with

custom logic developed in Java. For instance, the integration of the Allocation Tool with other environments has

been achieved by implementing specific plugins.

The installation manual and handbooks are detailed in the alive wiki documentation:

https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/Allocation+Environment+Components - User_Manual

Instances

There is available an instance of the Allocation Environment deployed on the Fhoster infrastructure to integrate

the first prototype https://hs21.fhoster.com/cloudsocket/Allocation_prototype/Engine.jsp?locale=en#!homePage

with other dependent environments: BPaaS Design Environment and Marketplace.

4.3.4 BPaaS Marketplace

For CloudSocket Brokers the Marketplace’s role is the main place where BPaaS bundles are offered to the

BPaaS Customers. Through the marketplace BPaaS bundles can be bought and automatic provision process is

started. The general description of the BPaaS Marketplace is detailed in the Section 3.3.1, and only the

Marketplace component will be describe from the point of view of the Broker functionalities.

4.3.4.1 Marketplace

Through Product service API, brokers can manage and publish their bundles. By using Broker dashboard

component brokers can monitor the purchases of their bundles by the BPaaS Customers.

For the brokers, The Marketplace will expose the following interfaces:

• A REST API for product management.

• A graphical user interface for registered brokers which provides Dashboard information through the

Portal

The main functionalities are:

• Manage bundles through REST API. Check manual for full details

https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/Marketplace+Environment+Components .

• Manage various broker related information through User portal component.

Comprise

• Shop – main module that manage shopping experience

• Portal – module that manage non-shop related interactions of the users (purchase history, account

details, access provisioned items)

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 96 of 99

• Service API – provides data for Web UI and core workflow functionality (Executions Environment –

provision endpoint)

• Identity provider – ensures M2M and U2M authentication and authorization flows

Depends on

• Allocation Environment – to provide BPaaSs to be listed in marketplace

• Execution Environment – to provision in cloud BPaaSs purchased by the user

Check Section 3.3.1.1-Marketplace for Architectural information and component responsible.

Functionalities

The Table 28 indicates the covered functionalities and their status:

Functionality Description
Completed
for release

Integrated (which level)

Shop The module ensure BPaaS listings into
shop environment and allows registered
users to checkout items

Yes

(1st release)

Complete lifecycle.

Service APIs The module ensure API connectivity of the
Marketplace in the CloudSocket value
stream (Product API – used by Allocation
Environment; Provisioning API and Order
Management – used by Execution
Environment)

Yes

(1st release)

Complete lifecycle

Portal The module provides broker dashboard No

(2nd release)

Identity provider This module provides authentication and
authorization services for the Marketplace
as well as for entire CloudSocket value
chain

Yes

(1st release)

Complete M2M with
Allocation Environment

Complete M2M with
Execution Environment

In progress U2M with
Execution Environment

Table 28 - Functionalities of the Marketplace

The manuals and instances are described in the Section 3.3.1.1.

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 97 of 99

5 CONCLUSIONS

The first CloudSocket prototype has been developed based on the first architecture D4.1 [1] as well as on the

necessities of the WP5 CloudSocket Demonstration Brokers while it is aligned with WP8 Exploitation.

The delivery integrates the complete lifecycle of the BPaaS bundle through a simple business process. This has

allowed understanding, analysing, developing and integrating the different environments and their components in

a collaborative and fluid work environment. Additionally, based on this knowledge and approach, new business

processes have also been defined in the scope of WP5 using part of this first prototype, such as the BPaaS

Design and Allocation Environments.

This deliverable has covered the analysis of the whole environments and their components by also highlighting

updates and going deeper onto the architectural level. The analysis has been structured around the BPaaS

demonstration according to the two main perspectives (BPaaS Customer and CloudSocket Broker) through the

use of the simple business process; so, first the perspective-based demonstration is explained and then the

respective relevant environments are detailed. Besides, the documentation has been produced for each

environment in the wiki [19] that is aligned with the content of this deliverable, allowing to the readers to decide

the level of detail (small - current deliverable, high - wiki) that they want to obtain depending on their needs.

Moreover, the prototype includes some mature results from the research results in WP3 such as the introduction

of cloud orchestration based on the CAMEL standard and the BPaaS monitoring & adaptation approaches.

Therefore, the next release will continue to work on this direction, analysing and evaluating the most suitable

results of the research prototype(s) to be included at the final release in the form of, e.g., add-ons to existing

components. D3.3 explicates the respective research results adoption process and assesses the current maturity

of the research prototypes/assets.

This prototype is alive, hence, this first prototype is like a snapshot of the integrated platform, which covers the

basic functionalities spanning the complete lifecycle: i) the design of the BPaaS Design Package, ii) the allocation

of the resources to create the BPaaS bundle, iii) the publication of the BPaaS bundle into the Marketplace, (iv)

the purchase of the bundle and its deployment into the cloud, v) the use, execution, monitoring and adaptation of

the BPaaS bundle, and vi) the evaluation of the BPaaS bundle to provide feedback to the broker. The next

deliverable will include the current integration activities (such as the transversal authentication and service level

agreement support), the new functionalities realised (e.g., thedefinition of DMN decision models and their

mapping to CAMEL), the improvement over existing functionalities (e.g., moving current single-layer (i.e., IaaS-

based) BPaaS adaptation to cross-layer adaptation) and the incorporation of the research results, following and

conforming to the final architecture version D4.5 Final CloudSocket Architecture (M21) of the CloudSocket

prototype.

Finally, following this first release, respective dissemination actions will be performed to promote it as indicated in

the dissemination roadmap in D7.3.2 [25].

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 98 of 99

6 REFERENCES

[1] D4.1 - CloudSocket_D4.1_First-CloudSocket-Architecture: https://www.cloudsocket.eu/deliverables

[2] UML diagrams: https://www.cloudsocket.eu/uml/

[3] GNU AGPL v3.0 - http://www.gnu.org/licenses/agpl-3.0.html

[4] MongoDB : https://www.mongodb.com/

[5] REstheart : http://restheart.org/

[6] Docker: https://www.docker.com/

[7] Apache License Version 2.0: http://www.apache.org/licenses/LICENSE-2.0

[8] Vaadin: https://vaadin.com/home

[9] Spring: https://spring.io

[10] SQLAlchemy: http://www.sqlalchemy.org/

[11] Python: https://www.python.org/

[12] Camunda: https://camunda.org/

[13] BonitaSoft: http://www.bonitasoft.com/

[14] Activiti : http://www.activiti.org/

[15] Mybatis : [http://www.mybatis.org/mybatis-3/]

[16] mySql: [https://www.mysql.com/].

[17] Livebase: https://www.fhoster.com/static/index.jsp

[18] MariaDB: https://mariadb.org/

[19] Wiki components: https://www.cloudsocket.eu/group/guest/wiki/-/wiki/Main/Components

[20] GitLab: https://omi-gitlab.e-technik.uni-ulm.de/]

[21] D5.1 Initial CloudSocket Setup Report

[22] CloudSocket roles in the common understanding wiki: https://www.cloudsocket.eu/common-understanding-

wiki/-/wiki/Main/CloudSocket+Roles

[23] CloudSocket portal: [https://www.cloudsocket.eu/download]

[24] D3.1 - Modelling Framework for BPaaS: https://www.cloudsocket.eu/deliverables

[25] D7.3.2 - First Year Dissemination Collection: https://www.cloudsocket.eu/deliverables

[26] Maven - https://maven.apache.org/

[27] GPL v2 : https://www.gnu.org/licenses/old-licenses/gpl-2.0.html

[28] Mozilla Public License (MPL) : https://www.mozilla.org/en-US/MPL/2.0/

[29] CloudSocket Channel : https://www.youtube.com/channel/UC8qbCYS49FfG7S8j5AABpaA

[30] BPaaS prototype web presentation : https://www.cloudsocket.eu/web/guest/demonstration-end-user-

perspective

Copyright © 2016 ATOS and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 99 of 99

ANNEX A: LIST OF ABBREVIATIONS

List of abbreviation used into the document.

• API: Application Programming Interface

• ARI: Atos Research & Innovation

• CRUD: Create, Read, Update and Delete

• BPaaS: Business Process as a Service

• BPMN: Business Process Model and Notation

• GUI: Graphical User Interface

• GPL: General Public License

• GRADY : Grails Rapid Application Development for Ymens

• HTTP: Hypertext Transfer Protocol

• HAL: Hypertext Application Language (HAL)

• IaaS: Infrastructure as a Service

• IT: Information Technology

• JPA: Java Persistence API

• JSON: JavaScript Object Notation

• KPI: Key Performance Indicators

• OSGI: Open Service Gateway Initiative

• QoE: Quality of Experience

• PaaS: Platform as a Service.

• R2RML:

• REST: Representational State Transfer

• SaaS: Software as a Service

• SLA: Service Level Agreement

• SLO: Service Level Objective

• SPARUL

• SPARQL

• TSDB : Time-Series Database (TSDB).

• UI: User interface

• VM: Virtual Machine

• WSAG: WS-Agreement

