

www.cloudsocket.eu

FIRST CLOUDSOCKET
ARCHITECTURE

D4.1

Editor Name Robert Woitsch (BOC)

Submission Date August 31, 2015

Version 1.0

State FINAL

Confidentially Level PU

Co-funded by the Horizon 2020
Framework Programme of the European Union

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 2 of 149

EXECUTIVE SUMMARY

This document introduces the CloudSocket architecture that consists of loosely coupled, and hence exchangeable

and partly optional environments. The BPaaS Environments that supports the BPaaS lifecyle are (a) BPaaS Design

Environment, (b) BPaaS Allocation Environment, (c) BPaaS Execution Environment, and (d) BPaaS Evaluation

Environment. Additionally (e) the BPaaS Marketplace is required to enable the customer to buy the BPaaS.

Each environment is defined by a set of functional capabilities and a data exchange format to enable the exchange of

environments with similar solutions and hence introduce flexibility into the architecture that enables to resize

CloudSocket to fit the CloudSocket Brokers’ needs as well as to avoid any vendor lock.

The BPaaS Design Environment introduces the user interface to design domain specific business processes, the

semantic lifting of those processes as well as specification of an executable workflow. Adaptive or self-healing

mechanisms may be designed in the way the workflow is constructed. High level deployment rules may be expressed

as decisions in DMN or by expressing cases. Semantic annotations are partly expressed in extensions of business

process models and partly as ontologies. All this information is packaged in BPMN, DMN and RDF format and

handed over to the BPaaS Allocation Environment.

The BPaaS Allocation Environment adds cloud deployment information to the so-called BPaaS bundle and hence

introduces several possible workflow deployments in a cloud environment. The workflow related BPMN part is

extended with bundle information enabling both (a) the access of already deployed services as well as (b) the

provision of deployable packages for services that are deployed on request. The construction of workflows in the

cloud is a manual task using the interfaces of the BPaaS Allocation Environment by manually reading the provided

business process models, decision models and semantic descriptions and by selecting appropriate offerings, to hand

over a complete BPaaS bundle in a format based on an extension of CAMEL.

The BPaaS Execution Environment consists of two major parts and is the most complex environment. First, the

BPaaS Marketplace registers the BPaaS bundles. This Marketplace is based on a SaaS marketplace but instead of a

single step selection of a SaaS offering, it provides selection assistance, where a two-step approach is supported.

First, the domain specific artefacts from the business process and second the technical details are selected.

Authentication, Identification and service registry is handled as in a SaaS marketplace.

Behind the Marketplace there is the BPaaS Execution Environment with the Workflow Engine and a Deployment

Engine, whereas the Deployment Engine and its related components checks if all required services are already

deployed or if a deployment on request is necessary. Deployment Adaptations in the multi-cloud environment is also

performed by those components. When the Deployment Engine is finished it hands the workflow deployed in the

production cloud over to the Workflow Engine, which creates and executes the user instance of the concrete

workflow. A Monitoring Engine observes the workflow log as well as the data exchange and creates a semantically

enriched log file, which can be received by the BPaaS Evaluation Environment.

The BPaaS Evaluation Environment, receives a semantically enriched log file in OWL notation, and hence can

perform a pre-defined set of queries that can be linked to key performance indicators, business processes, or

produce an analysis report over the business process behaviour involving deployment and adaptation rule

suggestions and process mining results. The results of those queries are merged with business process and key

performance indicator models – a so-called model “assimilation” of log data. This enables the abstraction back onto

the domain specific business process level of the customer.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 3 of 149

PROJECT CONTEXT

Workpackage WP4: BPaaS Implementation

Task T4.1: Architecture and Design of CloudSocket

Dependencies Development of first Architecture

Contributors and Reviewers

Contributors Reviewers

Robert Woitsch (BOC), Mehmet Albayrak (BOC),
Harald Kühn (BOC), Wilfrid Utz (BOC), Ana Juan Ferrer
(ATOS), Joaquin Iranzo (ATOS), Antonio Leonforte
(FHOSTER), Antonio Gallo (FHOSTER), Vlad Mihnea
(YMENS), Remus Pacurar (YMENS), Calin Avasilcai
(YMENS), Gheorghe Arama (YMENS), Roxana Boca
(YMENS), Frank Griesinger (UULM), Daniel Seybold
(UULM), Jörg Domaschka (UULM), Kyriakos Kritikos
(FORTH), Dimitris Plexousakis (FORTH)

Panel Review 24.08.2015: Robert Woitsch (BOC),
Antonio Leonforte (FHOSTER), Frank Griesinger
(UULM), Kyriakos Kritikos (FORTH)

Panel Review 26.08.2015: Robert Woitsch (BOC),
Vlad Mihnea (YMENS), Frank Griesinger (UULM),
Kyriakos Kritikos (FORTH)

Panel Review 28.08.2015: Robert Woitsch (BOC),
Antonio Leonforte (FHOSTER), Remus Pacurar
(YMENS), Frank Griesinger (UULM), Kyriakos
Kritikos (FORTH)

Approved by: Joaquin Iranzo Yuste [ATOS], as WP 4 Leader

Version History

Version Date Authors Sections Affected

0.1 May 19, 2015 Robert Woitsch (BOC) Initial structure of all sections

0.3 June 22, 2015 Robert Woitsch (BOC), all
contributors

First consolidated version based on the
Wiki and conferences content.

0.4 August 03, 2015 Joaquin Iranzo (ATOS), all
contributors

The version included all individual
environments description.

0.7 August 19, 2015 All contributors The version is drafted by all chapters.

0.8 August 24, 2015 Robert Woitsch (BOC), all
reviewers

The version is cross-read and reviewed
in panel telephone conferences.

0.9 August 28, 2015 Robert Woitsch (BOC), all
contributors

All diagrams and references are
checked.

1.0 August 31, 2015 Robert Woitsch (BOC), Joaquin
Iranzo (ATOS)

Final Approval.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 4 of 149

Copyright Statement – Restricted Content

This document does not represent the opinion of the European Community, and the European Community is not

responsible for any use that might be made of its content.

This is a restricted deliverable that is provided to the community under the license Attribution-No Derivative Works

3.0 Unported defined by creative commons http://creativecommons.org

You are free:

to share within the restricted community — to copy, distribute and transmit the work within the
restricted community

Under the following conditions:

Attribution — You must attribute the work in the manner specified by the author or licensor (but not
in any way that suggests that they endorse you or your use of the work).

No Derivative Works — You may not alter, transform, or build upon this work.

With the understanding that:

Waiver — Any of the above conditions can be waived if you get permission from the copyright holder.

Other Rights — In no way are any of the following rights affected by the license:

o Your fair dealing or fair use rights;

o The author's moral rights;

o Rights other persons may have either in the work itself or in how the work is used, such as publicity or
privacy rights.

Notice — For any reuse or distribution, you must make clear to others the license terms of this work.
This is a human-readable summary of the Legal Code available online at:

http://creativecommons.org/licenses/by-nd/3.0/

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 5 of 149

TABLE OF CONTENT

1 Introduction and Problem Statement ... 13

2 Architectural Paradigm .. 15

2.1 Loose coupling of Building Blocks .. 15

2.2 Model Driven and Layered Alignment Approach .. 16

2.3 Data Exchange ... 17

2.4 Interfaces .. 17

3 User Scenarios and High Level Architecture ... 18

3.1 Use Case and Stakeholder Requirements ... 18

3.1.1 Business Incubator Scenarios: A Recap .. 18

3.1.1.1 Ecological Agriculture .. 18

3.1.1.2 Green Energy .. 18

3.1.2 Cluster Process Broker Scenario: A Recap ... 19

3.1.2.1 Internet Research and Procurement Process .. 19

3.1.2.2 Kiosk Distribution Process ... 19

3.1.3 The CloudSocket Customer ... 20

3.1.4 The CloudSocket Broker .. 21

3.2 Initial High Level CloudSocket Architecture .. 22

3.2.1 Key Functional Capability of BPaaS Environments .. 23

3.2.2 Data Interaction between BPaaS Environments .. 24

3.2.2.1 BPaaS Design Package .. 24

3.2.2.2 BPaaS Meta Data .. 24

3.2.2.3 BPaaS Bundle ... 24

3.2.2.4 BPaaS Monitoring.. 25

3.2.2.5 BPaaS Finding... 25

3.2.3 BPaaS Security Layer .. 26

3.3 CloudSocket Usage Scenario ... 27

4 BPaaS Design Environment .. 29

4.1 Introduction ... 29

4.2 Functional Capabilities ... 30

4.2.1 Business Process Design ... 31

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 6 of 149

4.2.2 Semantic Lifting .. 33

4.2.3 Executable Workflow Design .. 35

4.2.4 KPI Definitions and Meta Model Completion .. 38

4.3 Components ... 40

4.3.1 User Interface Layer ... 40

4.3.2 Modelling Layer .. 41

4.3.3 Meta Model Platform Layer .. 42

4.3.4 Executable Workflow Designer .. 43

4.4 Roles .. 46

4.5 Data Interface ... 47

4.5.1 BPMN Interchange ... 47

4.5.2 KPI, Meta Data and Decision Model Interchange... 47

5 BPaaS Allocation Environment ... 48

5.1 Introduction ... 48

5.1.1 Description and structure of a BPaaS Bundle .. 48

5.1.2 Creation of a BPaaS Bundle .. 51

5.1.3 Architectural overview .. 51

5.2 Functional Capabilities ... 51

5.2.1 Creation of a BPaaS Bundle .. 53

5.2.2 Workflow Allocation .. 55

5.2.3 Atomic Service Allocation ... 57

5.2.4 Software Component Allocation ... 60

5.2.5 KPI Model Editing ... 63

5.2.6 SLA Model Editing .. 66

5.2.7 Pricing Model Editing.. 68

5.2.8 Business Process Metadata Editing ... 71

5.2.9 BPaaS Bundle Publishing in the Marketplace .. 73

5.3 Components ... 75

5.3.1 User-interface layer .. 75

5.3.1.1 Bundle Instantiator... 75

5.3.1.2 Bundle Designer .. 76

5.3.1.3 Bundle Browser ... 77

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 7 of 149

5.3.2 Business-logic layer ... 78

5.3.2.1 Bundle Repository Manager .. 78

5.3.2.2 Bundle Manager .. 78

5.3.2.3 Bundle Publisher ... 80

5.3.3 Persistency-management layer .. 80

5.3.4 Component Diagram .. 81

5.4 Roles .. 81

5.5 Data Interface ... 81

6 BPaaS Execution Environment ... 83

6.1 Introduction ... 83

6.2 Functional Capabilities ... 84

6.2.1 Deployment of BPaaS .. 84

6.2.2 Execution of the BPaaS ... 88

6.2.3 Monitoring of Agreement Status ... 93

6.2.4 Workflow Environment Management ... 96

6.3 Components ... 100

6.3.1 User Interface workspace ... 100

6.3.1.1 Web UI / Workflow-Engine .. 100

6.3.1.2 SLA Dashboard ... 100

6.3.1.3 Monitoring Dashboard ... 101

6.3.2 BPaaS Middleware ... 101

6.3.2.1 Workflow-engine .. 102

6.3.2.2 SLA Engine ... 102

6.3.2.3 Monitoring Engine.. 103

6.3.2.4 Adaptation Engine ... 104

6.3.2.5 Cloud Provider Engine ... 105

6.3.2.6 Process Data Mediator .. 106

6.3.2.7 Component Diagram ... 107

6.3.2.8 Roles ... 108

6.3.3 Data Interface ... 109

6.3.3.1 Interface to Deploy the BPaaS Bundles. ... 109

6.3.3.2 Interface to Manage Service Level Agreements .. 112

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 8 of 149

6.3.3.3 Interface to publish the monitored information. .. 113

7 BPaaS Marketplace ... 114

7.1 Introduction ... 114

7.2 Functional Capabilities ... 114

7.2.1 Publish BPaaS Bundle to Product Catalogue .. 115

7.2.2 Purchase BPaaS Bundle .. 117

7.2.3 Register New Customer User ... 120

7.2.4 Onboard Cloud Service Provider .. 123

7.3 Components ... 125

7.3.1 Customer UI Layer ... 125

7.3.1.1 Marketplace ... 125

7.3.1.2 Customer Portal... 125

7.3.2 Cloud Broker Engine .. 126

7.3.3 Identity Management System ... 126

7.3.4 Cloud Provider Hub .. 128

7.3.5 Repository Manager ... 128

7.3.5.1 Atomic Service Registry .. 129

7.3.5.2 Software Component Registry ... 129

7.3.5.3 Cloud Provider Registry ... 129

7.3.5.4 Component Diagram ... 129

7.4 Roles .. 131

7.5 Data Interface ... 131

8 Evaluation Environment .. 132

8.1 Introduction ... 132

8.2 Functional Capabilities ... 132

8.2.1 KPI Analysis & Visualisation ... 134

8.2.2 Derivation & Visualisation of Best Deployments and Adaptation Patterns/Rules 137

8.2.3 Process Mining Analysis & Graphical Representation ... 141

8.3 Components ... 143

8.3.1 User Interface Layer ... 143

8.3.1.1 Hybrid Business Dashboard .. 143

8.3.2 Business Logic Layer ... 144

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 9 of 149

8.3.2.1 Conceptual Analytics Engine ... 144

8.3.2.2 Process Mining Engine .. 145

8.3.3 Data Layer .. 145

8.3.4 Component Diagram .. 146

8.4 Roles .. 146

8.5 Data Interface ... 146

9 Summary and Conclusions ... 147

10 References .. 148

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 10 of 149

LIST OF FIGURES

Figure 1 Initial High Level Architecture .. 22

Figure 2 BPaaS Marketplace Mock-Up .. 28

Figure 3 Use Case Diagram – DE-UC-1-Business Process Design .. 32

Figure 4 Sequence Diagram – DE-UC-1-Business Process Design .. 32

Figure 5 Use Case Diagram – DE-UC-2-Semantic Lifting ... 34

Figure 6 Sequence Diagram – DE-UC-2-Semantic Lifting ... 34

Figure 7 Use Case Diagram – DE-UC-3-Executable Workflow Design ... 36

Figure 8 Sequence Diagram – DE-UC-3-Executable Workflow Design ... 37

Figure 9 Use Case Diagram – DE-UC-4-KPI Definitions and Meta Model Completion .. 39

Figure 10 Sequence Diagram – DE-UC-4-KPI Definitions and Meta Model Completion ... 39

Figure 11 BPaaS Design Environment – User Interface Mockup .. 40

Figure 12 BPaaS Design Environment - Component Diagram .. 45

Figure 13 BPaaS Design Environment - Actors ... 46

Figure 14 BPaaS Bundle Elements .. 50

Figure 15 BPaaS Bundle States .. 51

Figure 16 Use Case Diagram – AE-UC-1 Creation of BPaaS Bundle.. 54

Figure 17 Sequence Diagram – AE-UC-1 Creation of BPaaS Bundle ... 54

Figure 18 Use Case Diagram – AE-UC-2 Workflow Allocation .. 56

Figure 19 Sequence Diagram – AC-UC-2 Workflow Allocation ... 56

Figure 20 Use Case Diagram – AE-UC-3-Atomic Service Allocation ... 59

Figure 21 Sequence Diagram – AE-UC-3-Atomic Service Allocation .. 59

Figure 22 Use Case Diagram – AE-UC-4-Software Component Allocation ... 62

Figure 23 Sequence Diagram – AE-UC-4-Software Component Allocation ... 62

Figure 24 Use Case Diagram – AE-UC-5-KPI Model Editing ... 64

Figure 25 Sequence Diagram – AE-UC-5-KPI Model Editing .. 65

Figure 26 Use Case Diagram – AE-UC-6-SLA Model Editing .. 67

Figure 27 Sequence Diagram – AE-UC-6-SLA Model Editing ... 67

Figure 28 Use Case Diagram – AE-UC-7-Pricing Model Editing ... 69

Figure 29 Sequence Diagram – AE-UC-7-Pricing Model Editing ... 70

Figure 30 Use Case Diagram – AE-UC-8 Business Process Metadata Editing ... 72

Figure 31 Sequence Diagram – AE-UC-8 Business Process Metadata Editing ... 72

Figure 32 Use Case Diagram – AE-UC-9-BPaaS Bundle Publishing in the Marketplace .. 73

Figure 33 Sequence Diagram – AE-UC-9-BPaaS Bundle Publishing in the Marketplace .. 74

Figure 34 BPaaS Allocation Environment – User Interface Mockup .. 75

Figure 35 BPaaS Allocation Environment – Component Diagram ... 81

Figure 36 Use Case Diagram – EE-UC-1-Deployment of BPaaS .. 86

Figure 37 Sequence Diagram – EE-UC-1-Deployment of BPaaS ... 87

Figure 38 Use Case Diagram – EE-UC-2 – Execution of the BPaaS... 90

Figure 39 Sequence Diagram – EE-UC-2 – Launch/Execute BPaaS instance .. 91

Figure 40 Sequence Diagram – EE-UC-2 – Reconfiguration environment .. 92

Figure 41 Use Case Diagram – EE-UC-3 – Monitoring of Agreement Status .. 94

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 11 of 149

Figure 42 Sequence Diagram - EE-UC-3 – Monitoring of Agreement Status .. 95

Figure 43 Use Case Diagram - EE-UC-4 – Workflow Environment Management ... 98

Figure 44 Sequence Diagram – EE-UC-4 – Workflow Environment Management .. 99

Figure 45 BPaaS Execution Environment – Workflow Engine User Interface Mockup .. 100

Figure 46 BPaaS Execution Environment – SLA Monitoring Dashboard User Interface Mockup 101

Figure 47 BPaaS Execution Environment – Monitoring Dashboard User Interface Mockup 101

Figure 48 BPaaS Execution Environment – Components .. 107

Figure 49 BPaaS Execution Environment – Actors .. 108

Figure 50 BPaaS Execution Environment – Interfaces .. 109

Figure 51 SLA Interface ... 112

Figure 52 Use Case Diagram – MP UC2 - Publish BPaaS Bundle to Product Catalogue ... 115

Figure 53 Sequence Diagram – MP UC2 – Publish BPaaS Bundle to Product Catalogue .. 116

Figure 54 Use Case Diagram – MP-UC2-Purchase BPaaS Bundle .. 118

Figure 55 Sequence Diagram – MP-UC2-Purchase BPaaS Bundle .. 119

Figure 56 Use Case Diagram – MP-UC3-Register New Customer User ... 121

Figure 57 Sequence Diagram – MP-UC3-Register New Customer User ... 122

Figure 58 Use Case Diagram – MP-UC-4-Onboard Cloud Service Provider ... 124

Figure 59 Sequence Diagram – MP-UC-4-Onboard Cloud Service Provider ... 124

Figure 60 Marketplace – Customer Portal – User Interface Mockup.. 125

Figure 61 BPaaS Marketplace Components .. 129

Figure 62 BPaaS Marketplace Component Interaction .. 130

Figure 63 Use Case Diagram – EvE-UC-1-KPI Analysis and Visualisation ... 135

Figure 64 Sequence Diagram – EvE-UC-1-KPI Analysis and Visualisation ... 136

Figure 65 Use Case Diagram – EvE-UC-2-Derivation & Visualisation of Best Deployments and Adaptation

Patterns/Rules ... 139

Figure 66 Sequence Diagram – EvE-UC-2-Derivation & Visualisation of Best Deployments and Adaptation

Patterns/Rules ... 140

Figure 67 Use Case Diagram - EvE-Uc-3-Process Mining Analysis & Graphical Representation 142

Figure 68 Sequence Diagram - EvE-Uc-3-Process Mining Analysis & Graphical Representation 142

Figure 69 BPaaS Evaluation Environment - Business Dashboard User Interface Mockup .. 144

Figure 70 BPaaS Evaluation Environment – Components ... 146

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 12 of 149

LIST OF TABLES

Table 1 BPaaS Design Environment - Use Case 1 –Business Process Design .. 32

Table 2 BPaaS Design Environment – Use Case 2 – Semantic Lifting ... 34

Table 3 BPaaS Design Environment – Use Case 3 – Executable Workflow Design ... 37

Table 4 BPaaS Design Environment – Use Case 4 – KPI Definitions and Meta Model Completion 39

Table 5 BPaaS Allocation Environment – Use Case 1 – Creation of BPaaS Bundle ... 54

Table 6 BPaaS Allocation Environment – Use Case 2 – Workflow Allocation ... 56

Table 7 BPaaS Allocation Environment – Use Case 3 – Atomic Service Allocation .. 59

Table 8 BPaaS Allocation Environment – Use Case 4 – Software Component Allocation .. 62

Table 9 BPaaS Allocation Environment – Use Case 5 – KPI Model Editing .. 65

Table 10 BPaaS Allocation Environment – Use Case 6 – SLA Model Editing ... 67

Table 11 BPaaS Allocation Environment – Use Case 7 – Pricing Model Editing ... 70

Table 12 BPaaS Allocation Environment – Use Case 8 – Business Process Metadata Editing 72

Table 13 BPaaS Allocation Environment – Use Case 9 – BPaaS Bundle Publishing in the Marketplace 74

Table 14 BPaaS Execution Environment – Use Case 1- Deployment of BPaaS ... 87

Table 15 BPaaS Execution Environment – Use Case 2 – Execution of the BPaaS ... 92

Table 16 BPaaS Execution Environment – Use Csae 3 – Monitoring of Agreement Status .. 95

Table 17 BPaaS Execution Environment – Use Case 4 - Workflow Environment Management.................................. 99

Table 18 BPaaS Marketplace – Use Case 1- Publish BPaaS Bundle to Product Catalogue 116

Table 19 BPaaS Marketplace – Use Case 2 - Purchase BPaaS Bundle ... 119

Table 20 BPaaS Marketplace – Use Case 3 - Register New Customer User .. 122

Table 21 BPaaS Marketplace – Use Case 4 – Onboard Cloud Service Provider .. 124

Table 22 Identify Management Use Cases .. 127

Table 23 BPaaS Evaluation Environment – Use Case 1 - KPI Analysis and Visualisation .. 136

Table 24 BPaaS Evaluation Environment – Use Case 2 – Derivation & Visualisation of Best Deployments and

Adaptation Patterns/Rules ... 140

Table 25 BPaaS Evaluation Environment – Use Case 3 - Process Mining Analysis & Graphical Representation 142

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 13 of 149

1 INTRODUCTION AND PROBLEM STATEMENT

This document explains the CloudSocket architecture in order to.

• Create a technical and detailed common understanding and hence enable a coordinated initial

implementation of the BPaaS environments that compose the co-called CloudSocket.

• Specify the functional capabilities, competencies and data interchange format of the five BPaaS

environments in order to enable the combination or exchange of those environments to create personalized

adaptations with the BPaaS environments developed in this project or by exchanging environments with

alternative implementations.

Hence the functional capabilities, the required competencies and roles are explained per BPaaS environment to

describe their intensions and to enable the implementation and / or adaptation of the CloudSocket.

A top down and bottom up approach has been applied by analyzing the end users’ needs. For a better clarification

the term “BPaaS customer” is used to stress that use case requirements of potential future clients have been

considered, which are distinguished from “CloudSocket Broker”.

The collection of BPaaS customer requirements as well as CloudSocket Broker requirements, this document relies

on the results of the “Use Case Analysis and Evaluation Criteria Specification” (Del2.1 2015), where BPaaS customer

scenarios have been worked. For completeness reasons, some BPaaS customer and CloudSocket Broker scenarios

are recapped in this document, which intends to provide a complete context of this architecture but does not aim to

repeat those findings. To strengthen the understanding of the BPaaS customer context, the “Cloud Transformation

Framework”, both in form of a written report (Del2.3 2015), as well as a demonstrator providing a set of business

processes (Del2.3a 2015) have been considered to achieve a common understanding.

The basic idea behind this architecture is to use business process models in different forms to bridge the gap from

domain specific business processes to IT-cloud specific executable and deployable workflow. This bridge is realized

by a set of intermediate business process layers. Most challenging part is the separation of those layers in (i) domain

specific business processes, (ii) executable workflows, (iii) cloud deployable workflow bundles and (iv) workflows that

are deployed and hence in production. Based on the CloudSocket terminology (Del2.2 2015), the used standards

and the described functional capabilities this document contributes to clarify the layered approach that is applied for

business and IT-cloud alignment.

In parallel to top-down analysis of BPaaS customer and CloudSocke Broker scenarios and requirements a bottom-up

approach has been performed by providing already existing software solutions for each of the BPaaS environments

and a collaborative discussion to adapt this software to interact with the other parts. Several workshops in different

formats – moderated workshops, four corner workshop, wikis, shared document repositories including UML diagrams

and a series of Internet workshops – have been performed to agree on the first architecture for all five BPaaS

environments composing the so-called CloudSocket.

Second iteration of the architecture will then include research results to not only improve each BPaaS environment

individually, but also enable cross BPaaS environmental improvements.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 14 of 149

The aim of the following section is:

• First, to introduce the underlying architectural paradigms and principles that have been agreed and are set

as axioms for this architecture.

• Second, a short recap of the use case scenarios and the expectations of BPaaS customers and

CloudSocket Brokers.

• Third, to describe the different BPaaS environments by their functional capabilities, roles and data

interaction in order to enable a high level blue print for alternative implementations of the CloudSocket. This

ensures an adaptation of the five BPaaS environments to the needs and competences of a particular

CloudSocket Broker and enables to reduce complexity by focusing on one BPaaS environment at a time

and a iteratively build a complete CloudSocket.

• Forth, to describe each BPaaS environment in such detail that other partners can not only rely on the

functional capability, the data format and the required competencies but also enable to develop alternative

solutions or to introduce research findings within a BPaaS Environment.

The outlook indicates how this architecture is used for the implementation of the five BPaaS environments, as well as

the expected adaptation for the second iteration. The first iteration implements a prototype that combines existing

tools to create an interactive CloudSocket. Research prototypes will be implemented in parallel, so an enrichment of

the first iteration with research prototypes is expected in the second iteration of the CloudSocket implementation.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 15 of 149

2 ARCHITECTURAL PARADIGM

This architectural paradigm is based on the fact that each of the five environments is provided by software vendors,

who already provide at least parts of the required functional capabilities in the cloud. Hence CloudSocket improves

first the way those individual software applications are interacting as a CloudSocket and second by introducing

innovative extensions.

The paradigms to keep those software solutions independent ensures not only a joint solution in form of the

CloudSocket, but enables the flexible exchange and adaption of one or several environments to the needs of a

particular CloudSocket Broker and ensure individual improved solutions as a side effect.

In the following those paradigms are briefly introduced.

2.1 Loose coupling of Building Blocks

The architecture of CloudSocket comprises five environments which focus on the traditional lifecycle of business
processes involving the phases of design, allocation, execution and evaluation as well as its usage. These
environments are the following:

• BPaaS Design Environment: focuses on the design of BPaaSs
• BPaaS Allocation Environment: focuses on allocation of BPaaSs in terms of services realizing BPaaS tasks

and VMs hosting the BPaaS components
• BPaaS Execution Environment: focuses on the execution, monitoring and adaptation of BPaaS
• BPaaS Evaluation Environment: focuses on the evaluation of a BPaaS with the special goal to provide

helpful insights about how it can be optimized
• BPaaS Marketplace: focuses on the brokerage of BPaaS offering to the customer

Each environment is autonomous and loosely coupled with respect to the other environments. This enables the

integration of different implementations of the environments in order to provide an integrated CloudSocket for

Brokers. It is also more suitable in cases that brokers desire to use just one environment as they might only need to

focus on that particular phase or they already have tools in place which deal with the rest of the phases.

Main functional capability of each environment is described to that extent that is necessary for the other

environments to interface with it. This means that this document describes first a high level overview of the BPaaS

environments and second a more detailed view on the technology that acts for both (a) a high level description of the

BPaaS environments to be possibly exchanged with other implementations as well as (b) a more detailed level of

technical description that acts as a common understanding between technical partners and specifications of

interactions.

Data exchange format and APIs are described to set accordingly the way environments can interact and cooperate

with each other in a loosely coupled manner. Such a manner dictates that the least and sufficient information

pertaining to such an interaction is the specification of the API exposed by each environment and the data exchange

formats mapping to the input and output of the API methods.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 16 of 149

Environments are intended to be realized by different applications, hence a vendor lock is avoided as any solution

can be exchanged by another one that follows the same data exchange format and provides the same APIs. This is

actually the philosophy behind service-orientation as a particular system can be built or even be adapted through the

appropriate selection of services that expose the same functionality.

2.2 Model Driven and Layered Alignment Approach

At this stage the term “business process” is introduced as a sequence of manual, semi-automatic and automatic

actions with the aim to achieve an organizational goal.

Hence the business process aligns all tasks with the business goals, independent if they are performed by machines,

humans or a group consisting of several machines and / or several humans. There is a set of different application

fields for business processes such as but not limited to quality management, risk management, re-engineering,

continues improvement, documentation, training but also model driven architecture and requirement analysis.

The first set of application fields see the business process model as "Information Value Provider", hence graphical

models are not seen as some necessary step to move on to concrete software code, but are seen as an independent

document that is needed for day to day work within the organization.

The second set of application fields is concerned with, the model driven architecture, software requirement analysis,

configuration of software components or software design. In those application scenarios the business process model

is seen as a “Specification and Requirement Collection”, which is further detailed and transformed to either specify

deployable workflows or executable software code.

Business and IT alignment in CloudSocket is concerned with both, on the one side to smartly transform and detail

business processes to become deployable workflows and on the other side keep the information value aspect for the

business users.

In the following only the relevant layers are highlighted.

• Layer I – Domain Specific Business Processes: Domain specific business processes that describe the

business activities of a worker, which are – in the way they are presented – not executable, neither by a

workflow engine within or outside the cloud.

• Layer II – Executable Workflows: Executable workflows are represented by workflows that orchestrate the

interaction between software services. It is expected that one domain specific business process maps

typically to many executable workflows depending on the level of automation, the selected services and

failure/ recovery/ variant handling.

• Layer III - Cloud deployable Workflow Bundles: Deployable and executable workflows that are packaged for

cloud deployment consisting of all relevant configurations, so that it can be deployed in the cloud on

demand. It is expected that one executable workflow maps typically to many cloud deployable workflow

bundles depending on different cloud providers, the selected SLAs and deployment management strategies

and multi cloud deployment.

• Layer IV – Deployed Workflow Bundle in Production: This reflects a bundle that has already been deployed

in the cloud such that it can be exploited by the customer that has purchased it. The corresponding workflow

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 17 of 149

of the bundle is ready to be instantiated and executed. One cloud deployable workflow bundle can map to

many deployed workflow bundles in production.

In order to align aforementioned four layers, each layer has to be described in appropriate form. Hence, there are two

challenges to be met: First, to find appropriate representation formats for each individual layer, second to find

appropriate mechanisms to link the different layers.

The representation format is described in the used standard data interchange of the different BPaaS environments

the appropriate mechanisms to link different layers – as well as link different BPaaS environments will be researched

as a form of hybrid semantic and conceptual meta model integration.

2.3 Data Exchange

The use of standards enables the setting of the format of the data to be exchanged as well as maps to a better

integration of systems and components and the exploitation of a vast variety of alternative software that supports

these standards. CloudSocket use standards to describe business processes, their annotations and respective rules

and extends them where appropriate. For business processes representation the widely used BPMN (BPMN 2014) is

used, which is able to support both domain specific business processes and executable workflow models.

Concerning the annotation of business processes, as we aim at providing automatic support for various tasks

operating on such processes, we opt for using ontologies. A de facto standard for the description of ontologies is

OWL (OWL 2012), so annotations will be described by this standard, or if RDF is sufficient by using RDF (RDF

2014). We have the case of business rules and adaptation rules. Business rules may be specified through the DMN

(DMN 2015). Potential extension may be necessary to be used as for adaptation event patterns (produced by the

Evaluation Environment). In addition SRL (Scalability Rule Language) language (SRL 2015) and extensions are

foreseen to achieve the appropriate expressiveness level to support the specification of not only scalability but any

kind of adaptation rule.

Deployment plans are also part of a bundle, which are foreseen to be described by the CAMEL DSL (CAMEL 2015)

(CloudML 2015) and in particular its part dedicated to the deployment of applications.

2.4 Interfaces

In order to keep the flexibility enabling different realizations of different BPaaS environments, the interfaces are

described on several levels. Basis interface is the file exchange realising aforementioned data structures. Of course,

a tighter interaction via service-orientation can be achieved through two different ways: (a) REST services and (b)

SOAP services. However, it is not the focus of this deliverable to explicitly indicate which way to realize a particular

interface. However, as a rule of thumb, in case that stateful operations need to be in place, then SOAP services

should be used. In case those stateless operations are needed and there is a need for better performance, then

REST services should be used.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 18 of 149

3 USER SCENARIOS AND HIGH LEVEL ARCHITECTURE

This section presents how use case and stakeholder requirements have been considered together with the initial high

level architecture in order to derive usage scenarios and use cases, which are further detailed in the succeeding

sections.

3.1 Use Case and Stakeholder Requirements

The requirement analysis is described in more detail in the CloudSocket Use Case and Evaluation Criteria Analysis

(Del 2.1 2015). For completeness reasons, some major parts that are useful to raise the understanding are

introduced in the next sub-sections as summary of aforementioned user case analysis. These parts focus on

indicating the requirements involved for the different use cases which can of course have an effect on the design of

the CloudSocket architecture.

3.1.1 Business Incubator Scenarios: A Recap

The Business Incubator focuses on supporting the “Coaching and Finance” efforts of start-ups facilitating designing,
analyzing and simulating individual business plans, and processes. These aspects also demand a high degree of
adaptability of Cloud Services for Start-ups, e.g., Customer Relationship Management, Order Management, Human
Resources Management. To this end, the following use cases have been developed for this CloudSocket broker
according to requirements coming from the real-world mapping to ideas for creating innovative start-up companies
and how they could be supported through the CloudSocket platform.

3.1.1.1 Ecological Agriculture

A 28 year old, biologist, has an idea to take biological waste from a restaurant and stimulates a biological

decomposition process. Usually such a process takes several years but the idea of the startup is to use worm to

speed up this process.

Initial situation: The startup presented the ideas to the business incubators. After this the consultants have discussed

with her about how to transform this business idea into a solid business model.

CloudSocket technology intervention: The startup may require a range of different customer relationship and worm

production management solutions.

Potential BPaaS solution: Business processes are a common instrument to explain, how the 28 year old biologist

prefers to perform the customer relationship and worm production management. Based on those requirements, a

mapping to (a) already existing SaaS solutions that cover the whole business process, (b) a combination of different

SaaS and / or local installed applications or (c) no Cloud support is recommended can be performed.

3.1.1.2 Green Energy

This startup is a small-scale virtual power plant which connects to a grid infrastructure with power generation from

wind, photovoltaic, and biogas. The company serves its customers with environmentally friendly energy for

household and provides smart home functions through its remote access capability for turning appliances on or off.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 19 of 149

Initial situation: The company is intending to expand its services to include mobile energy sources for recharging

electric cars and offer them for rental as range-extension for drivers e.g. for a long weekend trip. The startup

contacted the business incubator consultants.

CloudSocket technology intervention: The startup may require a range of different solutions for customer relationship,

partner management and internal management processes.

Potential BPaaS solution: Based on business process models it is possible to define the expansion strategy and the

required IT (Cloud) support. Depending on those requirements the different alternatives of Cloud support can be

worked out.

3.1.2 Cluster Process Broker Scenario: A Recap

The Business Process Broker use case identifies typical business episodes of potential SMEs in different application

domains such as eHealth, Manufacturing, Photonics, Government, Security, e-Commerce, Retails, etc., which,

however, share a common set of business processes.

3.1.2.1 Internet Research and Procurement Process

An SME sells software and integrated appliances/electronic components that make devices “Internet ready” in a few

seconds and employs 10 people.

Initial situation: The SME continuously verifies prices of the electronic and mechanic components in the market and

buys only products that match specific requirements in terms of customer needs and pricing. Monitoring the prices

and the quality is a costly activity, which requires an ongoing analysis and trade-off between quality and price.

CloudSocket technology intervention: The Company needs a solution that reduces the costs for procurement

activities by improving the effectiveness of the procurement process. Generic self-management infrastructure or

special designed research processes including crawler and result databases have the potential to run in the cloud

and to raise the productivity of this SME.

Potential BPaaS solution: This is a representative sample where business processes can be used to optimize the

business of an SME, by providing consulting via business processes. Internet Recherché can be realized in many

different business processes, ranging from pure manual to full automatic, from structured to non- structured or from

ad-hoc to regularly triggered processes. Different business processes require different cloud support, ranging from no

support, to SaaS support till personalized configuration of workflows.

3.1.2.2 Kiosk Distribution Process

A company with 180 employees aims at distributing newspapers and magazines to kiosk and, in general, points of

sales in an Italian town. Every day, about 250 different Italian and foreign newspaper are delivered to 600 points of

sales.

Initial situation: Current customers are small kiosks with very limited IT infrastructure. Often the order is realised via

Facebook comments. In order to improve the maturity of the ordering and interaction process with those kiosks new

but still light-weighted Web-application will be provided.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 20 of 149

CloudSocket technology intervention: A new order process can be handled in the cloud, without IT installation on

both – the supplier and consumer – sides. The scaling of the application with the expected peeks in ordering at the

end of the working day or triggered by a special event indicates the use of cloud solutions.

Potential BPaaS solution: The process of ordering can reflect a better understanding of the distribution process due

to the transparent business process model and raise awareness on IT difficulties – e.g. peek handling – and hence

improve the distribution process. Business processes can also be used for a collaborative improvement.

3.1.3 The CloudSocket Customer

In addition to the two aforementioned use cases – that describe the targeted end users market – we describe the

entry point of any interested user.

We propose three steps for a typical SME as an end user:

• Check Cloud Readiness,

• Transform Business Processes to be executable in the Cloud,

• Enter the marketplace to access BPaaS.

The project provides a checklist for SMEs and start-ups in order to check, if they are capable in entering the cloud

with their business processes. This framework is available in form of a demo accessible at (Del 2.3 2015) and is

described in (Del 2.3a 2015).

The transformation of business processes to be executable in the Cloud is divided in two transformations, whereas

the first transformation is a horizontal one that transforms from one business process to another one and the second

transformation is a vertical on transforming from business process to workflows. Although both business processes

are not executable, the latter one has clear anchor points, where cloud offerings can be added. Hence the horizontal

transformation extracts those parts of the process where a cloud offering can actually be applied.

The next transformation is a vertical one that maps to an executable workflow in the cloud - this actually provides the

cloud offerings and enables the execution in the cloud. This next step is performed by entering the market place and

selecting the most appropriate workflow that runs in the cloud. This selection can be supported by smart

mechanisms.

Readers are encouraged to visit those tools and provide feedback to enable a collaborative improvement in order to

reduce the barriers for SMEs that have no cloud competence.

It is expected that in addition to the two aforementioned CloudSocket Brokers new brokers may be interested, hence

in the following section, the entry point for new CloudSocket brokers are provided.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 21 of 149

3.1.4 The CloudSocket Broker

The CloudSocket is a brokerage platform with additional capabilities, where BPaaS are offered in a similar way as

SaaS are offered today. Hence, from a technical or economic point of view, it is a common market place that is well

known in cloud computing. There are the same mechanisms for BPaaS – in form of “executable business process” –

as there are for SaaS. The differences between a SaaS and BPaaS marketplaces are the selection criteria. A SaaS

offering is typically selected based on technical properties, whereas the BPaaS has a two step selection, considering

first the domain properties and second the technical properties. This means that for one business processes there may

be many different workflow realizations, and for one workflow realization there may be many different cloud offerings.

For organizations aiming to become a CloudSocket broker we propose the following steps:

• Identify the potential market for BPaaS,

• Plan Business Processes, by using a business process management tool that attracts potential clients,

• Build Business Processes, by implementing and executable workflows for the first selection step and

deployable bundles for the second selection step.

• Run Business Processes, by offering workflows on an operative cloud market place infrastructure.

• Check Business Processes, by abstracting cloud monitoring logs up to domain-specific business indicators.

These initial recommended phases for the supporting CloudSocket Brokers are initially supported with tools (CSBT

2015).

“Plan Business Processes” denotes the use of business process management tools to acquire, design, analyse and

simulate and finally release domain-specific business processes. Here we understand business processes as a know-

how platform of an organisation; hence those processes have the potential for domain-specific consultancy and

improvement. Traditional business process management tools such as ADONIS® (ADONIS 2015) are used.

“Build Business Processes” denotes that each of the aforementioned business processes are made executable by a

set of deployable and executable workflows. We agreed to use the term workflow for processes that are orchestrated

and executable on an IT platform to strengthen the difference to human orchestrated or executed business processes.

Traditional workflow design tools like yourBPM (yourBPM 2015a), (yourBPM 2015b) may be used.

“Run Business Process” indicates the provision and operation of processes as a service within a cloud market place

that are executed and run across services offered in the cloud. Although this is technically the most challenging part,

the focus of this paper and the focus of the introduced CloudSocket project is on the alignment, hence the mapping

between domain specific business processes and cloud deployable and executable workflows.

“Checking Business Processes” indicates the abstraction, using conceptual models and semantic, to introduce a

semantic meaning into the technical data and process logs from the execution environment in the cloud. The meta

model platform ADOxx (ADOxx 2015) will be used to develop conceptual and semantic models that can be analysed

and mapped to business processes.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 22 of 149

3.2 Initial High Level CloudSocket Architecture

The initial high level CloudSocket architecture introduces the vision of BPaaS Environments that together compose a

CloudSocket. Each of the BPaaS Environments corresponds to a particular phase of the Business Process

Management System methodology (Kar 96) and hence support the business and IT alignment in a different phase.

This mapping from BPMS phases to BPaaS Environments derives an initial list of functional capabilities.

Those functional capabilities and the respective data exchanges involved are introduced in Figure 1. The BPaaS

offerings are provided to the customer via the Marketplace, whereas the BPaaS Execution Environment enables their

operation in the cloud. The conceptual challenge of bridging domain specific business processes to executable

workflows that are in production in the cloud, is performed by the others BPaaS Environments.

Figure 1 Initial High Level Architecture

In the following an overview on the functional capabilities and the data exchange between the different BPaaS
Environments is introduced.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 23 of 149

3.2.1 Key Functional Capability of BPaaS Environments

The functionality of each BPaaS Environment focuses on a particular phase of the lifecycle of BPaaS.

The BPaaS Design Environment has the overall goal to design a BPaaS. To this end, such a design should include

the capabilities to edit domain specific business process models, edit executable workflow models, store business

process models and workflows, map in a semi-automatic or automatic manner a domain specific business process

model to an executable workflow model as well as semantically annotate a business process and a workflow model.

Thus, as it can be seen, the above functionality maps to going from a domain specific need of the business process

is to a formal specification of an executable workflow and supporting all types of modelling that can be involved in

such a transition. In addition, it also maps to the capability to semantically annotate the involved models in order to

provide automatic support to various tasks that might have to be performed, such as the transformation of domain

specific business process model to executable workflow models. What would someone exploit from such an

environment is the retrieval of the models that have been produced in the context of the design of a BPaaS.

The goal of the BPaaS Allocation Environment is to configure allocation directives and rules for an executable

workflow model to be deployed and executed in the cloud. An executable workflow model, as produced by the

BPaaS Design Environment, does not contain information about which concrete services can be exploited in order to

realize the functionality of the business process tasks. To this end and driven by the business and technical

requirements, the BPaaS Allocation Environment supports the CloudSocket Broker making informed selection of

which services from the candidate ones to select for each business process task. The same set of requirements

should also drive the decision about which IaaS offerings to select in order to deploy software components of the

BPaaS. Through both types of selection, the ending result would be not only a fully executable workflow model but

also a deployment plan which will enable the deployment of the BPaaS, thus enabling its execution by the BPaaS

Execution Environment. Another connecting piece related to a BPaaS and its deployment refers to the specification

of adaptation rules that can drive the adaptation of a BPaaS when such a need arises. Such rules are important if a

more or less constant service level is exhibited by the BPaaS to its customers. The three main products of the BPaaS

Allocation Environment are encapsulated in a so called BPaaS bundle which can then be published in the

Marketplace in order to be available to the CloudSocket Customers. Thus, similarly to the case of the previous

environment, what can actually be externally exploited by any other environment is those models that are being

produced mapping to the BPaaS bundle.

The BPaaS Execution Environment aims at deploying and executing a BPaaS bundle, once this has been purchased

by a customer at the BPaaS Marketplace. Thus, this environment actually takes care of deploying the BPaaS

according to the deployment plan included in the bundle as well as importing the respective executable workflow

model into a workflow engine in order to enable its execution by the customer that has purchased it. As such, the

execution of the workflow encapsulated in the BPaaS bundle is supported. Another goal of this environment is to

support the monitoring and evaluation of the BPaaS according to the KPIs and SLOs that have been defined for it. In

case of a violation of a KPI or SLO, particular adaptation plans are executed which are triggered via the adaptation

rules that have been already defined in the BPaaS bundle. Concerning again the external functionality, as can be

seen by CloudSocket Customer and the other environments, the BPaaS Execution Environment exposes a

functionality which enables the deployment of a BPaaS, the creation, execution and management of instances of the

workflow encapsulated by the BPaaS and the production and support for retrieval of BPaaS monitoring and

assessment results (for evaluation purposes in the BPaaS Evaluation Environment).

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 24 of 149

The BPaaS Evaluation Environment has the main goal to evaluate a BPaaS in order to provide optimisation

suggestions to its designer. This evaluation comes in various forms: (a) the assessment of KPIs, (b) the derivation of

best deployments for the BPaaS, (c) the production of adaptation event patterns and rules and (d) the discovery of

bottlenecks and problematic business model parts. Thus, the externally seen functionality of the BPaaS Evaluation

Environment maps to initiating the performance of evaluations and the retrieval of the various evaluation results

produced.

3.2.2 Data Interaction between BPaaS Environments

The next sections introduce the data exchanges that are indicated in the aforementioned High Level Architecture.

3.2.2.1 BPaaS Design Package

This is a package consisting of:

• The domain specific business process and the executable workflow model

• Business process and workflow extensions such as semantic annotations, key performance indicators or

additional deployment relevant description in RDF and proprietary format

The BPaaS Design part consist of the workflow, support information for the allocation and additional information on the

original domain specific business process.

3.2.2.2 BPaaS Meta Data

This package provides:

• Additional domain specific business process information such as an image.
• Domain specific business process and workflow linkage
• Semantic annotation of BPaaS ontology

The BPaaS Meta Data package mainly provides optional information to any other environment.

3.2.2.3 BPaaS Bundle

This is a package consisting of:

• Domain Specific business process - as received from the BPaaS Design Package.

• Executable workflow models – as received from the BPaaS Design Package - with corresponding

deployment information.

• Mapping of abstract atomic services invoked by the workflow with actual concrete atomic services available in

the cloud and registered in the Service Registry.

• Mapping of software components invoked by the workflow with IaaS offerings registered in the Cloud Provider

Registry.

• KPIs, SLAs and pricing

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 25 of 149

The BPaaS bundle consist of the deployment information, which makes the workflow complete for production in the

BPaaS Execution Environment.

When creating a so-called BPaaS bundle, it contains information from the BPaaS Design and Allocation

Environments. In order to enable flexible exchange of BPaaS environments, also the BPaaS bundle can have some

information not completed – e.g. no KPIs, no business process description - can be executed, although there are

mandatory limits that are necessary for production.

3.2.2.4 BPaaS Monitoring

This package provides different kinds of – semantically enriched - monitoring information, from the BPaaS Execution

environment to the BPaaS Evaluation environment.

It consists of:

• process logs for a BPaaS,

• monitoring information for a BPaaS and

• contextual information for a BPaaS.

3.2.2.5 BPaaS Finding

This is a package providing optimisation suggestions from the BPaaS Evaluation to the BPaaS Design Environment.
It comprises three main packages devoted to the transferring of the following information:

• best deployment suggestions,

• adaptation rules suggestions and

• business process model suggestions.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 26 of 149

3.2.3 BPaaS Security Layer

In the definition of the architecture, we have introduced and defined different environments that are independent,
decoupled and modular; hence the considered security solution will promote the maximum possible scenarios to
maintain the same philosophy. The platform will provide and foster a cross-environment security solution that allows
to have a transversal solution for all the environments, allowing to the each Environment implementation owner to
adopt it or use its own solution.

The marketplace is responsible to publish and purchase the BPaaS bundle and interact with the customers, the
organizations, the cloud providers (IaaS, PaaS and SaaS) and the system. Then, it will manage the authentication,
authorization, the complete lifecycle between the consumers, services and the providers, maintaining all together and
coherently. Due these natural capabilities, the cross-environment should be part of the marketplace, allowing the rest
of the environment to decide the level of integration that they want to implement.

Nevertheless, the BPaaS Execution Environment has to be integrated with this cross-environment security, since it
must perform the relations with customers, organization and Cloud providers in an easy way, besides the system has
to guarantee the simplicity for the authentication and authorization mainly with the interaction of the customers and
their quality of experience. The solution is based on standards such as Cross-domain Identity Management (SCIM
2015), SAML 2.0 (SAML 2015), OpenId Connect 1.0 (OIDC 2015), OAuth 2.0 (OAuth 2.0 2015).

Based on this solution, it could have two different security modes: i) the cross-environment indicate the common
security solution and each environment should adapt the same. ii) a federated security solution can be applied, what
allows to take into account the trust between the different owning organization of the environments such that users of
one environment can be recognized as users also for other environments.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 27 of 149

3.3 CloudSocket Usage Scenario

Through the inputs of the use case analysis, we can derive a CloudSocket use case scenario that provides high-level
coverage for the functionalities / capabilities exposed to the main stakeholders/actors.

The identified functional capabilities are covered by the different BPaaS environments:

• The CloudSocket Broker has an idea about a particular business process he / she wants to offer to its
customers. Based on the experience on the market potential and based on feedback from potential clients
the CloudSocket Broker decides to offer a business process as a service (BPaaS) on the CloudSocket
platform he/she exploits.

• The CloudSocket Broker designs the domain specific business process using the BPaaS Design
Environment. He/she may involve Business Process Modelers and Ontology or Domain experts to raise
the quality of the business process. Business related artefacts are added to the domain specific business
process in order to communicate the business needs to the technical experts.

• The CloudSocket Broker may then involve a Workflow Modeler, who creates one or several workflow
models for each domain specific business process. Hence, by involving business process modelers, domain
experts and workflow modelers, the CloudSocket Broker bridges the gap from the business process to
workflow and produces suitable design artefacts: domain business process model, executable workflow
models, annotations and business rules.

• The CloudSocket Broker takes allocation decisions with the assistance of the BPaaS Allocation
Environment in order to create BPaaS bundles. Technical assistance may be acquired from experts, such
as technical consultants or operators that are providing the necessary production system.

• The allocation decisions rely on Service Providers offering services that could realize part of the BPaaS
workflow of the broker. Such services are published in the Service Registry in order to be exploited.

• The CloudSocket Broker selects SaaS services as well as IaaS services for hosting internal software
components from the Service & Cloud Provider Registry to realize the functionality of executable workflow
tasks. He/she also defines adaptation rules that can drive the adaptation of the BPaaS. The allocation
decisions at the IaaS level are described in the form of a deployment plan with failure semantics. The final
allocation product, the BPaaS bundle, is published in the marketplace.

• A CloudSocket Customer browses the marketplace and selects a particular BPaaS bundle through the
support of the marketplace assistance system. The CloudSocket Customer purchases this bundle and
creates accounts for some cloud (SaaS or IaaS) services included in it. Once the above actions finish, the
bundle is deployable and thus sent to the Execution Environment for adaptive provisioning and operation.

• The CloudSocket Customer can use the interface of the Execution Environment in order to create
instances of the BPaaS as well as to monitor the SLOs that are part of the SLA conducted with the
CloudSocket Broker. The BPaaS instances can be executed or managed (e.g., suspend workflow
execution, resume, skip one task).

• The CloudSocket Broker uses the monitoring interface of the BPaaS Execution Environment to check
which SLAs are met and which are not and in the latter case discover the main root cause of the problem.

• The CloudSocket Broker also exploits the Evaluation Environment to check whether KPIs are met or not,
why they are not met as well as retrieve optimization suggestions that can lead to redesigning and re-
allocating the BPaaS.

• The CloudSocket Broker can analyze current costs through the marketplace and can decide whether to:
(a) change the pricing model of the BPaaS, (b) alter the allocation decisions on the executable
workflow/bundle, (c) change the contract with the marketplace or (d) even move to another marketplace
owner.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 28 of 149

• The CloudSocker Broker can also inspect the monitoring and evaluation information provided by the
Execution and Evaluation Environments in order to improve the BPaaS offered by e.g. modifying the
underlying business process, workflow, or bundle (SLA, pricing model, deployment plan, service allocation,
adaptation rules) .

• The BPaaS Customer can also inspect current charge and SLA status information so as to inspect whether
he/she can: (a) continue using the BPaaS, (b) stop/cancel the BPaaS SLA when the respective conditions
apply allowing him/her to end or cancel the contract, (c) change SLA or service level (if desires to e.g.
choose a better SLA to accommodate for the increased load from its customers).

As it can be seen from the above analysis, we have actions which are performed by the CloudSocket Broker to
manage a BPaaS (design, allocate, configure, monitor and improve it) as well as actions performed by the
CloudSocket Customer related to the purchasing and actual usage of a BPaaS.

Figure 2 BPaaS Marketplace Mock-Up

Figure 2 depicts a mockup of a potential BPaaS marketplace, where on the left side the CloudSocket Customer can
select from the CloudSocket Broker business process library. The CloudSocket Customer selects one process and
can then select in two steps, first the realization workflow and second the technical properties, whereas both
selections are supported by the assistance system of the marketplace.

The above scenario can be modified to include cases where the BPaaS is co-designed between the CloudSocket
Broker and the CloudSocket Customer. In this case, it is the roles involved for some environments which are
updated (e.g., customer roles in the Design Environment or even possibly at the Allocation Environment depending
on the technical capabilities of the customer).

The steps of the CloudSocket Broker can be regarded as part of the CloudSocket lifecycle, whereas the steps of
the CloudSocket Customer can be regarded as CloudSocket user interaction.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 29 of 149

4 BPAAS DESIGN ENVIRONMENT

4.1 Introduction

The BPaaS Design Environment provides appropriate conceptual modelling tools for (a) designing domain specific
business processes, (b) executable workflows, (c) additional description and rules for deployment as well as (d) Key
Performance Indicators. In order to provide those different modelling tools within one environment, a meta modelling
platform is used that enables the plug-in of different modelling aspects. For BPaaS the aforementioned different
modelling approaches correspond to the first two business process layers – the (I) domain specific business process
as well as the (II) executable workflows – and the alignment from the business to the technical layer.

Hence the meta modelling platform enables to keep all models in one repository and the interaction between the
different layers via so-called model weaving and semantic lifting.

Independent modelling tools have the benefit of proprietary strengths in one particular aspect, hence the use of an
independent workflow modelling tool is foreseen, which can be added on to the meta modelling platform. This
enables the use of a proprietary workflow modeller corresponding to the workflow engine in the cloud production
environment as an external tool, but on the same time enables the interaction between the different modelling layers
in the meta model platform.

A meta modelling platform enables the plug-in of different modelling aspects – they are called “modelling methods”.

The BPaaS Design Environment consists of:

• A meta modelling platform that provides a BPaaS model repository for all its models, the corresponding
management and security infrastructure and a development environment that enables the implementation of
modelling components.

• BPaaS modelling components are distinguished by their modelling languages – which are implementations
of standards like BPMN, DMN, or RDF – as well as modelling features such as user interaction and model
processing. Hence the domain specific business process modeller and the executable workflow modeller
are both such a meta modelling component.

• The corresponding Web-GUI realizes the user interaction features, to manipulate a model.
• Interfaces enable the access to the BPaaS Design Environment in particular to the BPaaS model repository,

which consists of domain specific business process models, executable workflow models, additional
business requirement models and KPI models. This interaction can rely on standard features such as BPMN
export / import or on implemented proprietary exchange formats.

In addition to this meta model based business process framework, the BPaaS Design Environment has the possibility
to annotate the models with an ontology. The so-called semantic lifting enables the semantic annotation of BPaaS
models with global ontology concepts. Hence we introduce another element:

• The Semantic Annotation Kernel.

The functional capabilities, apart from designing business processes and workflows, include visualizing, querying,
and simulating the business process and workflow models. Another functional capability involves the rule-based

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 30 of 149

transformation from any kind of model format to another format. In addition, the environment offers capabilities to
compose meta-data and to define KPIs in a top-down manner.

Each layer enables the representation to define Key Performance Indicators (KPI), hence KPIs can be defined on (i)
domain specific business process level, (ii) workflow level and (iii) lower technical level. The combination of the
semantic lifting with KPI models results in the semantic annotation of business process models and workflow models
with ontology concepts from business, IT & QoS/QoB ontologies.

Four roles are involved at the CloudeSocket Broker side, when using the BPaaS Design Environment. The Business
Process Designer is responsible for modelling domain specific business processes, while the Workflow Designer
is responsible for modelling the executable technical workflows. The result of a business process design is a set of
models that are made available to the next step in the life-cycle of a BPaaS which maps to its allocation supported by
the BPaaS Allocation Environment.

The models produced are the following:

• a domain specific business process model in BPMN format and additional information such as figures, cloud
specific requirements or KPIs along with information pertaining to the description of the organization, its
non-functional requirements and its main business objectives,

• a semantic lifting of the business process model typical form of a BPMN model along with RDF-based
semantic annotations to business & IT ontology concepts,

• the executable workflow model in BPMN again along with RDF-based semantic annotations and
• the definition of KPIs based on OWL-Q.

When deploying the BPaaS Design Environment, we can distinguish between the following components to deploy
and have operating: (a) a web-based modeller offered in the form of a SaaS or web application which enables
domain specific business processes design, (b) a BPaaS model repository which is responsible for the management
& retrieval of (b1) domain specific business process models, (b2) executable workflow models, and (b3) the KPI
models; assisting in the task of the designer to compose models out of fragments constituting previous design
knowledge.

4.2 Functional Capabilities

• Business Process Design including visualization, query, simulation, transformation of domain specific

business processes in different formats

• Executable Workflow Design including visualization, validation and transformation of executable workflows

in different formats.

• Top Down KPI definitions for all layers such as business process, executable workflow, deployment and

operative process instance.

• Meta Data Composition to describe business processes and executable workflows.

• Semantic Lifting of domain specific business processes and executable workflows.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 31 of 149

4.2.1 Business Process Design

Use Case id DE-UC-1-Business Process Design

Title and

Description

A CloudSocket Broker wants to offer a new BPaaS to its clients; hence the broker models a

business processes specifying the functional and non-functional behaviour of the required domain

process.

This includes to login into the business process repository, to browse and search within existing

business process models. A new business process can be designed either by creating a new

model and start modelling a new business process from scratch, or by copying another model and

reconfiguring it via changing the model.

Business process and KPI design has two major elements: (a) first the software tool that provides

the appropriate modelling features and enables a user interface to the business process

repository, and (b) second the modelling method that provides the modelling language. The

modelling language consists of the business process modelling notation (BPMN), the decision

model notation (DMN), the Resource Description Language (RDF) and a semantic description of

the KPIs (OWL-Q).

Actors CloudSocket Broker – Business Process Designer

Use Case

Objective

Business Processes are designed from the business perspective

Pre-

Condition

The user is registered in the BPaaS Design Environment and has competence in business process

modelling. For business process browsing and searching, previous business processes need to be

stored or imported into the repository.

Process

Dialog

User interaction for browsing and searching:

• Selecting directories of models or creating / editing / deleting a directory

• Create a new model, or select an existing model and save as a new model.

• Model management by renaming, deleting or editing models.

User interaction is required for the process modelling, consisting of:

• Drag and Drop of modelling objects

• Parameterisation of each modelling object

• Graphical notation optimisation indicating selected parameters

• Navigational support such as hyperlinks between models

• Modelling support such as zoom, snap grid, connector bending, selection, undo or model

navigation.

Variations Model management may be used to massively reorganise the repository or import business

processes in form of BPMN files.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 32 of 149

Post

Condition

Business Processes are modelled and can be further used.

Diagram

Figure 3 Use Case Diagram – DE-UC-1-Business Process Design

Figure 4 Sequence Diagram – DE-UC-1-Business Process Design

Table 1 BPaaS Design Environment - Use Case 1 –Business Process Design

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 33 of 149

4.2.2 Semantic Lifting

Use Case id DE-UC-2-Semantic Lifting

Title and

Description

Business Processes describe the business view and hence need to be annotated to cloud specific

selection criteria such as QoS, technical parameters or CloudSocket specific business indicators.

Semantic Lifting enables to align business process descriptions so as to be linked to semantic

concepts of an ontology. Hence, each element of a business process can be enriched with a globally

defined – cloud specific - ontology.

Actors CloudSocket Broker - Business Process Designer.

It is expected that the Business Process Designer knows sufficiently about ontology handling, if not it

is his/her responsibility to involve an ontology expert. However, for simple usage of the ontology, no

ontology expert is expected.

Use Case

Objective

Business process is described with parameters that enable the business oriented selection in the

marketplace as well as the business oriented identification of QoS indicators.

Pre-

Condition

Business processes models are available.

The ontology concepts that are used for lifting must be provided.

Process

Dialog

Within the user interface of the design environment there is a dialog enabling the selection of

ontological concepts. This selection dialog can vary depending on the complexity:

• Simple selection of a concept from the ontology

• Pre-selection of ontology parts from the model and fine grading by selection from the

ontology

Variations In case the concepts are not available in the ontology, the ontology must be updated. This is

performed by an ontology expert.

Post

Condition

Business Processes are semantically enriched and hence semantically searchable.

Diagram

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 34 of 149

Figure 5 Use Case Diagram – DE-UC-2-Semantic Lifting

Figure 6 Sequence Diagram – DE-UC-2-Semantic Lifting

Table 2 BPaaS Design Environment – Use Case 2 – Semantic Lifting

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 35 of 149

4.2.3 Executable Workflow Design

Use Case id DE-UC-3-Executable Workflow Design

Title and

Description

The business process describes the domain view and hence does not include technical details to

enable the execution of it. Hence, the executable workflow design is a technology oriented

description of the previously described domain specific business process.

This design transforms domain specific actions into technical specifications by:

• Resolving all manual activities in actions that are understood by a workflow engine

• Resolving all semi-automatic activities in actions that are understood by a workflow

engine

• Detailing all automatic activities with parameters that are necessary for a workflow engine

• Detailing the data exchange from business level documents to technical data formats

Hence, a business process can be realised in one or many executable workflows.

Actors CloudSocket Broker – Workflow Designer

It is expected that the Workflow Designer knows sufficiently about ontology handling, if not it is the

responsibility of the Workflow Designer to involve an ontology expert. However, for simple usage of

the ontology, no ontology expert is expected.

Use Case

Objective

Definition of executable workflows that are linked to domain specific business processes.

Pre-

Condition

The domain specific business process must be available and semantically enriched with cloud-

specific details to provide input for creating an executable workflow.

Process

Dialog

The Workflow Designer needs first to select the business process by:

• Browsing or searching for business processes

• Copying the business process in a workflow template and establishing a link between the

original business process and the workflow

• Exporting the workflow template from the BPaaS model repository into a workflow

designer tool that is compatible with the workflow engine in the cloud production

environment.

After the selected workflow template model is exported in the corresponding workflow design

environment, the workflow is modelled by:

• Using drag and drop feature of modelling objects

• Creating, editing and deleting modelling objects

• Modelling support such as zoom, snap grid, connector bending, selection, undo or model

navigation.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 36 of 149

• Parameterising each executable action with technical parameters.

After designing the executable workflow, it has to be imported back into the BPaaS model

repository, so that the corresponding executable package can be searched and found in

combination with the business process:

• User interface for importing “executable” workflows into the BPaaS model repository.

After the workflow is imported into the BPaaS model repository, it is semantically lifted by:

• Simple selection of a concept from the ontology

• Pre-selection of ontology parts from the model and fine grading by selection from the

ontology.

Variations In case executable workflows are created without the original business process, they can still be

imported as executable workflows, but need to be linked to the domain specific business process

afterwards. So, the business process is then selected or created and linked to the executable

workflow.

Post

Condition

The executable workflow is linked to the original business process and is semantically lifted to both

the business process and its semantic annotation as well to additional own semantic annotation.

Diagram

Figure 7 Use Case Diagram – DE-UC-3-Executable Workflow Design

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 37 of 149

Figure 8 Sequence Diagram – DE-UC-3-Executable Workflow Design

Table 3 BPaaS Design Environment – Use Case 3 – Executable Workflow Design

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 38 of 149

4.2.4 KPI Definitions and Meta Model Completion

Use Case id DE-UC-4-KPI Definitions and Meta Model Completion

Title and

Description

In addition to business processes and their semantic lifting, additional meta data can be defined.

Current identified meta data are:

• Key Performance Indicators (KPI) from a business oriented viewpoint. Those KPIs are

typically not cloud specific but business domain specific while giving an indication on

cloud specific QoS.

• Decision Models to indicate business rules for deployment and execution

• “Business process based Service Requirements” map service descriptions to business

process tasks as an extension of BPMN. Service requirements in form of business,

technical, legal or data related statements provide additional domain specific description

and when semantically annotated also semantics.

For completeness reasons those additional aspects are mentioned here, as they are not specified

in the BPMN standards but provide valuable information, which can be extracted during the later

stage of the BPaaS lifecycle.

Actors CloudSocket Broker – Business Process Designer

CloudSocket Broker – Workflow Designer

Use Case

Objective

The BPaaS design package is completed with these additional aspects.

Pre-

Condition

Business process and / or workflows must be defined

Process

Dialog

KPI definitions are extensions of the BPMN modelling language with the required OWL-Q

concepts; hence the modelling interaction is the same as above either for KPIs with respect to

business process, or KPIs with respect to workflows.

Variations n.a.

Post

Condition

The complete meta data package for a business process is defined.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 39 of 149

Diagram

Figure 9 Use Case Diagram – DE-UC-4-KPI Definitions and Meta Model Completion

Figure 10 Sequence Diagram – DE-UC-4-KPI Definitions and Meta Model Completion

Table 4 BPaaS Design Environment – Use Case 4 – KPI Definitions and Meta Model Completion

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 40 of 149

4.3 Components

Three layers: (a) one for the user interface, (b) one for model-specific functionality and (c) the third one for model

management have been identified.

4.3.1 User Interface Layer

This layer contains all the graphical interface components to interact with the end-users from the design environment:

• Business Process Modelling User Interface:
This user interface provides Web-interfaces to the corresponding features of the BP model component. An

Authentication service provides access management, the Web-Modeller provides interfaces for model

management and model design, the transformation interface provides import / export features to different

formats, a Dashboard enables the representation of KPIs in correspondence with the business process.

Semantic lifting of business processes is provided inside the model editor.

• Workflow Modelling User Interface:
This user interface enables the creation of Workflow templates and the semantic annotation. It will be added

to the aforementioned Business Process User Interface.

Both user interfaces interact with the components on the modelling layer, which have been configured for BPaaS

usage and are built on top of BOC ADOxx Web-Application. Hence, the user interface is provided by the underlying

meta modelling platform ADOxx, whereas the modelling-language that can be used is different.

Figure 11 BPaaS Design Environment – Domain Specific Business Process Designer User Interface Mockup

Figure 11 indicates the user interface demonstrating a business process with domain specific key performance

indicators as additional graphical representations.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 41 of 149

4.3.2 Modelling Layer

This layer provides modelling functionalities for different modelling languages. In general there are four major

functionalities for modelling (a) Graphical Design, (b) Conceptual Query, (c) Simulation and (d) Transformation of

Models.

Such major functionality is broken down to concrete features and mapped to the modelling language. Such model

functionality can be distinguished in: (i) Generic implementation, hence in a modelling language independent way, (ii)

Domain specific implementation, hence a one to one implementation for a specific modelling language, as well as (iii)

Hybrid implementation, which is a generic implementation that requires special configuration to be used for a

particular modelling language.

Those architectural baselines require identifying three different modelling components for:

1. Business Process Modelling
2. Workflow Modelling
3. Semantic Alignment Modelling.

Not all aforementioned major functionality needs to be applied to all three components, hence we define the following

functional capabilities for each component:

• Business Process Modelling Component
User management, model management and model design are some of the main functionalities supported by

this component and required for Business Process Modelling.

Business process analysis is offered in the form of support features, such as indicating which processes are

available, or listing processes with a certain textual annotation.

The Transformation capabilities enable exporting the graphical representation in form of an image, as well

as exporting the business process in form of a BPMN.

The features for semantic annotation of business processes are essential for Cloud Socket. Semantic lifting

of business processes according to domain specific requirements is essential to enable an alignment.

This component is based on the meta modelling platform ADOxx, and hence uses configuration of its

components, the scripting of add-ons as well as the implementation of additional features.

• Workflow Modelling Component:
The Workflow modelling component provides similar features with respect to those offered by the business

process modelling component. The actual design and configuration of a workflow is performed in a separate

so-called “Executable Workflow Designer”.

This enables a higher flexibility and reduces the vendor dependencies, as any workflow designer that is

compatible with the Workflow Engine operating in the cloud, can be used. The alignment and CloudSocket

relevant parameters can be modelled in the Workflow Modelling Component, and the workflow engine can

be designed in the separate tool. The executable workflow is then imported back to enable semantic

annotation and discovery but not for the sake of modifying the executable workflow.

Hence this component provides user management, model management and model design features for

workflows.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 42 of 149

The transformation capabilities – that are provided through the model environment API are essential to

export workflow templates and import executable workflows from any other tool in order to store all

workflows in one BPaaS model repository.

Semantic lifting of the workflow templates enables the discovery of workflows according to alignment

parameters.

• Semantic Alignment Kernel:
The semantic alignment kernel is a light-weight model editor without own user interface that enables the

semantic lifting of business processes and workflows (templates). Hence modelling features for annotations

are provided. In addition, full fletched discovery and analysis capabilities are established to enable the

discovery of workflow (templates) for business processes and from respective business process

requirements.

4.3.3 Meta Model Platform Layer

The Meta Model Platform Layer provides the BPaaS model repository, where all business processes, workflow

templates, executable workflows and the corresponding semantic annotations are managed.

Two components are identified:

• Meta Modelling Platform
The meta modelling platform consists mainly of a generic – meta model based – database with the

corresponding meta model interpreter. This meta model interpreter is then configured by a modelling

language. Hence the following modelling languages are configured: (a) business process modelling, (b)

workflow templates and workflow modelling, (c) semantic alignment, (d) KPI modelling, (e) Decision

modelling, (f) Business requirement modelling. The meta model platform provides a repository of all

business processes, workflow templates, executable workflows and semantic annotations.

User and security management is provided by the platform.

The ADOxx meta model platform is the basis of the BPaaS Design Environment as it introduces conceptual

flexibility and hides the meta model complexity from the other components.

• Meta Model API
The model repository API is a configuration of interfaces that correspond with the meta modelling platform to

provide interfaces for:

o BPMN Import / Export:
The BPMN import is used to import business process models and executable workflow models.

The BPMN export is used to export business processes, workflow templates or executable

workflows and interacts with the BPaaS Allocation Environment

o DMN Import / Export:
Decisions and rules will be used to specify the behaviour of the multi cloud environment and hence

will be used as guidelines for cloud deployments and interacts with the BPaaS Allocation

Environment.

o RDF Import / Export:
RDF Export provides semantic meta data about the business processes and workflows and hence

enables the introduction of relevant SLA, deployment or allocation guideline information.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 43 of 149

o BP and Wf Discovery:
This interface provides a mapping file that can be used by a marketplace or any other environment

to identify corresponding business processes to workflows and vice versa. This interface interacts

with the Marketplace.

o KPI Import / Export:
This interface requests and introduces KPIs for business processes and workflows and interacts

with the BPaaS Evaluation Environment.

4.3.4 Executable Workflow Designer

The executable Workflow Designer is a third party tool that is compatible with the Workflow Engine in the BPaaS

Execution Environment. This tight linkage between Workflow Designer and Workflow Engine is created, as there are

tool specific dependencies, and in order to enable practical and reliable workflow solutions, the Workflow Designer

should be part of the Workflow Engine.

In order to enable the business and IT Cloud alignment, the created executable workflow models are imported into

the aforementioned Workflow Modelling Component. This is possible, as the BPMN standards allows the storage of

vendor specific attributes, hence storing the BPMN workflow file for a particular Workflow Engine in the

aforementioned Workflow Modelling Component will not harm any specific workflow configurations.

This approach enables both:

(a) reliable workflow configurations as the CloudSocket Broker selects the Workflow-Engine and

Workflow Design that best fits its needs,

(b) business and IT-cloud alignment via the meta model platform, as workflows from the third party

system are imported and semantically annotated, but not changed.

As this tool is a third party Workflow Designer, it is not further described, except that it is expected to provide typical

design features for executable Workflows, as well as an import / export of BPMN files to interact with the Workflow

Modelling Component. The below figure 12 indicates the user interface demonstrating an executable workflow model,

including the technical description.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 44 of 149

Figure 12 BPaaS Design Environment – Executable Workflow Designer User Interface Mockup

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 45 of 149

Component diagram

Figure 13 BPaaS Design Environment - Component Diagram

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 46 of 149

4.4 Roles

Figure 14 BPaaS Design Environment - Actors

The following actors are proposed for the BPaaS Design Environment:

The CloudSocket Broker is an organisation that provides a marketplace for business processes towards the

CloudSocket Customers. Hence the competence in selecting, defining and providing business processes and of

course in taking the business risks in creating business processes that are not sufficiently bought from

CloudSocket Customers is taken by this organization. Depending of the competency, this organization will

compensate business and / or technical skills with consultants.

A CloudSocket Brokers with business background, will not have problems in formulating business processes on

domain level, but will need support to design those processes on execution level.

A CloudSocket Brokers with technological background, will not have problems in formulating technical workflows,

but will need support to market the technical solutions via business processes.

The last role is the Ontology Expert, as the maintenance of the alignment ontology is only a minor aspect in the

whole scenario, it is expected that the ontology is either bought, or the expertise is introduced by a consultant.

This alignment ontology is expected to be a research result of the project. Therefore the role is only briefly

mentioned for completeness reasons.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 47 of 149

4.5 Data Interface

The meta model platform stores meta data for each model, which can be either extracted in raw format, or by

post-processing transformation scripts to create one of the requested formats. Manual export into files and Web-

Service or REST invocation is possible.

4.5.1 BPMN Interchange

The BPMN DI format is used for business process and workflow exchange. The BPMN 2.0 specification defines

formats that contain:

• Meta information,

• Process models that define the sequence and semantics and

• Process diagrams that have the information of the visual representation (e.g. coordinates of the

instances) of the process models.

Process automation can be done with BPMN DI.

The RDF format is used for the semantically alignment of the business processes.

4.5.2 KPI, Meta Data and Decision Model Interchange

KPIs have to be exchanged from the BPaaS Design Environment to any other Environment for the following

layers: (i) domain specific business process, (ii) executable workflows, (iii) deployment and operative process

monitoring.

The BPaaS Design Environment allows interchanging KPI models using the OWL-Q language.

Additional meta data interchanges, such as workflow and business process relations, additional business

requirements or additional sematic information are provided in proprietary formats and in RDF.

For the exchange of deployment rules the decision models format DMN is provided.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 48 of 149

5 BPAAS ALLOCATION ENVIRONMENT

5.1 Introduction

The Allocation Environment allows a CloudSocket Broker to retrieve executable workflows from the BPaaS

Design Environment and create a Cloud deployable Workflow Bundle – BPaaS Bundle - and publish it in the

Marketplace, by means of a web-based user interface.

A BPaaS Bundle binds a Workflow Model - taken from the BPaaS Design Environment - with the concrete Atomic

Services and Cloud Infrastructures that will be invoked and selected by the workflow, respectively, when

executed. A BPaaS Bundle also contains rules to guide the BPaaS Execution Environment in choosing the

Workflow Engine instance that will execute the workflow model.

In the creation of a BPaaS Bundle, the CloudSocket Broker is responsible for defining the overall pricing and SLA

for the bundle as a whole, taking into account the price and the SLA of all the resources – e.g. workflow engine,

atomic services and cloud infrastructures - included in the bundle. The CloudSocket Broker will get paid from the

CloudSocket Customer using the BPaaS, will pay for the resources consumed by the deployed BPaaS Bundles

and will be held responsible for the fulfilment of their SLA. Creating and selling a BPaaS Bundle will therefore

require critical and complex business decisions and will imply a degree of risk that will definitely require human

intelligence and understanding to be properly evaluated and accepted. The Allocation Environment will however

provide smart tools to support the Broker in defining the overall pricing and SLA of each Bundle.

5.1.1 Description and structure of a BPaaS Bundle

A BPaaS Bundle is a data structure containing all the information required by the Execution Environment to

deploy, execute, account, monitor and assess a BPaaS. Such information includes

• Workflow Model. Such model is an executable BPMN2.0 file already configured with all the technical details

required to be executed by a BPM Engine. It might contain invocation to atomic service selected from a

Service Registry, and invocations to software components taken from a Software Component Registry. An

atomic service can be either a concrete service available in the cloud, or an abstract service not yet mapped

to a concrete one. In order to execute a workflow model, each of the abstract services invoked by the

Workflow Engine must be mapped to a concrete one, and each software component must be mapped on a

compatible cloud infrastructure, that is an infrastructure where the component can be technically deployed.

The Service Registry provides, all the information required to deploy, start, stop and undeploy the component

on any supported cloud Infrastructure.

NOTE: the Allocation Environment does not allow to create or edit a workflow model: it just allows to select

an existing workflow model from the BPaaS Design Environment and creates a new BPaaS Bundle “out of it”.

NOTE: the workflow model references the original business process model it has been derived from. This

creation of a workflow model out of a business process model is performed in the BPaaS Design

Environment.

• Workflow allocation. This section contains the rules that will later guide the BPaaS Execution Environment

in selecting on which Workflow Engine the workflow specified in the workflow model will be executed. Such

rules will not explicitly identify a specific Workflow Engine instance, but will rather define properties that a

Workflow Engine instance will need to have in order to be selected.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 49 of 149

• Atomic Service allocation. This is the mapping of each abstract atomic service invoked by the workflow

model to one or more concrete atomic services available in the cloud, compatible (i.e. same interface

definition) and registered in the Service Registry. One from the set of concrete services mapped on an

abstract one will be chosen at run-time by the BPaaS Execution Environment according to adaptation rules

previously included in the mapping and invoked by the BPaaS Execution Environment.

• Software Component allocation. We foresee that either a manual or automatic approach is used for

assigning particular VM offerings to each software component. In the manual approach, the user provides

particular VM requirements and then he/she is shown a list of VM offerings satisfying drawn from the Cloud

Provider Registry these requirements from which a specific offering can be selected by the user. In the

automatic approach, the BPaaS Allocation Environment will choose the most suitable VM offering per

software component that better satisfies the requirements for this component. In the bundle specification,

apart from identifying the VM offering selected, also the other VM offering candidates are included for

adaptation reasons (e.g., to migrate from one VM to another one when the former VM becomes problematic).

The respective adaptation cases are covered by the corresponding adaptation rules which are also included

in the BPaaS bundle.

• KPI model. This section defines which Key Performance Indicators can be evaluated for the BPaaS Bundle

once deployed. The model of each KPI will basically consist of an identifier, a description, a composite metric

whose formula includes standard math operators operating over other metrics previously defined and stored

in the Metric Registry. We foresee the possibilities for the definition and exploitation of domain-specific

metrics and domain-independent metrics available for any BPaaS Bundle (e.g., number of concurrent users,

concurrent process instances, storage space consumed, up-time percentage in the last 30 days, etc.).

The formula of raw_availability KPI, for instance, could be uptime / considered_time_period where uptime is

another metric mapping to the total time that the BPaaS was available and considered_time_period is a KPI

configuration constant indicating the time period of measurement. The BPaaS Allocation Environment will

support the Broker in defining or composing KPIs and their respective metrics - to be used as parameters in

the metric formulas - as well as checking for circular dependencies among the KPIs defined in a BPaaS

Bundle. Some of the KPI metrics will be re-used in the context of an SLA, in SLO conditions in particular,

while other metrics can solely be used for the specification of KPIs. KPI/SLO metrics can be also used in

defining adaptation rules in the allocation of atomic services, software components and workflows by

mapping to the conditions of events comprising these rules. Depending on the nature and the possible re-use

of metrics, the introduction of a high level metrics repository in the Registry may be introduced on a later

stage.

Service Level Agreement (SLA). This information defines in a quantitative and technically verifiable way the

level of service that will be guaranteed by the entire BPaaS once the BPaaS Bundle will be deployed into the

BPaaS Execution Environment. The SLA will be formally defined as a collection of SLOs (Service Level

Objectives) where each SLO is defined as a predicate (i.e. a boolean function) based on the metrics already

defined (e.g. uptime_percentage > 99.9) The CloudSocket Broker is responsible for providing a

comprehensive and coherent Service Level Agreement for the BPaaS Bundle, taking into account the SLA of

each real atomic service and of each VM offering allocated.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 50 of 149

• Pricing model. This information defines how much using the BPaaS will cost to the CloudSocket Customer.

The CloudSocket Broker is responsible for providing a comprehensive pricing model for the entire BPaaS

Bundle taking into account the pricing of each real atomic service and of each cloud infrastructure allocated.

• Business Process Metadata. This is the information required by the Marketplace to assist the CloudSocket

Customer and filter BPaaS Bundles (e.g., by category according to the APQC taxonomy) and the business

process-related information, e.g. pictures and textual description of the process. The Business Process

Metadata will allow for instance a CloudSocket Customer browsing the marketplace to filter only the Bundles

implementing an Invoicing process whose description contains the term “consultancy” and using only Atomic

Services hosted in Germany.

Figure 15 BPaaS Bundle Elements

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 51 of 149

5.1.2 Creation of a BPaaS Bundle

The CloudSocket Broker creates a draft BPaaS Bundle using Bundle Instantiator, by selecting a workflow model

from the BPaaS Design Environment. The draft Bundle contains a copy of the Workflow and Business Process

Model, while the other parts of the aforementioned Bundle data structure are initially empty.

Once created, the draft bundle is immediately opened in the Bundle Designer for the Broker to edit. Whenever the

Bundle is saved, a consistency check is performed server-side by the Bundle Manager. If all the parts of the

Bundle have been properly configured, the Bundle is saved as final.

When a BPaaS Bundle is in final state, the Bundle Designer allows the CloudSocket Broker to publish it in the

marketplace by issuing a dedicated command. The Bundle Designer then delegates the Bundle Publisher

component to interact with the marketplace management API in order to store a copy of the BPaaS Bundle in the

marketplace.

Draft and final Bundles are stored in a Bundle Repository, which is partitioned per CloudSocket Broker; that is,

every Broker is a tenant of the Bundle Repository, so that it can only see and manage its own Bundles. In other

words, the Bundle Repository is a private work area to each Broker, independent from the marketplace in that

deleting a published Bundle from the Bundle Repository will not affect the marketplace and vice versa.

Figure 16 BPaaS Bundle States

5.1.3 Architectural overview

The web application provided by the BPaaS Allocation Environment follows a multi-tier architecture and the

respective components are distributed across three main layers:

• a user-interface layer, responsible for the interaction with the users;

• a business-logic layer, implementing the logic of the services invoked;

• a persistency-management layer, responsible for saving, loading and managing data in the involved

databases.

5.2 Functional Capabilities

The main functional capabilities of the Allocation Environment are:

• Creation of a BPaaS Bundle

• Workflow Allocation

• Atomic Service Allocation

• Software Component Allocation

• KPI Model Definition

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 52 of 149

• Editing of a BPaaS Bundle / SLA Definition

• Editing of a BPaaS Bundle / Pricing Model Definition

• Editing of a BPaaS Bundle / Business Process Meta-Date Determination

• BPaaS Bundle Publishing in the Marketplace

Since the CloudSocket Broker is the only responsible actor involved in the BPaaS Allocation Environment, the

web application is not profiled and all the functionalities can be performed from any broker. All the use cases

involved assume that a CloudSocket Broker is authenticated and authorized to use the web application.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 53 of 149

5.2.1 Creation of a BPaaS Bundle

Use Case id AE-UC-1 Creation of BPaaS Bundle

Title &

Description

A CloudSocket Broker creates a new BPaaS Bundle.

The broker browses the BPaaS Design Environment, selects a Workflow Model and

confirms selection. A new draft bundle is created by the Bundle Instantiator component,

opened in the Bundle Designer and finally saved in the Bundle Repository. The Broker

can optionally edit the Bundle before saving it.

Actors CloudSocket Broker

Use Case

Objective

To create a new BPaaS Bundle in draft mode into the Bundle Repository, and to

immediately start editing that bundle via the Bundle Designer.

Pre-Conditions The Workflow Model needed by the CloudSocket Broker is stored in the BPaaS Design

Environment in order to be selected using the Bundle Instantiator.

Process Dialog 1. The CloudSocket Broker launches the Bundle Instantiator.

2. The Bundle Instantiator invokes the BPaaS Design Environmened API to get a list

of the existing Workflow Models along with meta-data to group and filter them.

3. The CloudSocket Broker uses the Bundle Instantiator browsing functionality to find

and select the desired Workflow Model.

4. The CloudSocket Broker issues the command to create a new Bundle based on

the selected Workflow Model.

5. The Bundle Instantiator creates a new draft Bundle in memory.

6. The Bundle Instantiator launches the Bundle Designer and provides the new

Bundle as input parameter (the Bundle is still not persisted).

7. The Broker optionally edits the Bundle using any of the Bundle Editing use cases.

8. The Broker issues the save command assigning a unique name to the new

Bundle.

9. The Bundle Manager receives the save command and delegates the Bundle

Repository Manager to save the Bundle into the Bundle Repository. If the Bundle

is complete then it is marked as Final and therefore eligible for publishing into the

Marketplace.

Variations 8.a) The Broker aborts the edit and closes the Bundle Designer without saving.

8.b) A Bundle with the same name from the same Broker already exists in the Bundle

Repository. The save command is rejected.

Post-Conditions An empty bundle is stored into the Bundle Repository.

The new BPaaS Bundle is passed as input to the Bundle Designer.

The CloudSocket Broker is ready to use the Bundle Designer to edit it.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 54 of 149

Diagrams

Figure 17 Use Case Diagram – AE-UC-1 Creation of BPaaS Bundle

Figure 18 Sequence Diagram – AE-UC-1 Creation of BPaaS Bundle

Table 5 BPaaS Allocation Environment – Use Case 1 – Creation of BPaaS Bundle

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 55 of 149

5.2.2 Workflow Allocation

Use Case id AE-UC-2 Workflow Allocation

Title &

Description

A CloudSocket Broker defines the requirements for allocating the workflow of a BPaaS

Bundle over one of the Workflow Engine available to the CloudSocket platform instance.

The Broker opens a Bundle in the Bundle Designer, enters the workflow allocation

section and manages (Create / Update / Delete) the requirements that a Workflow

Engine must satisfy in order to be selected for executing the Bundle when it is deployed.

Actors CloudSocket Broker.

Use Case

Objective

Configure the requirements that a Workflow Engine must satisfy in order to be selected

for executing the Workflow Model in the Bundle when the Bundle is deployed.

Pre-Conditions The Bundle exists in the Bundle Repository.

Process Dialog 1. The Broker selects and opens a BPaaS Bundle into the Bundle Designer.

2. The Broker enters the Workflow Allocator UI component (part of the Bundle

Designer).

3. The Workflow Allocator UI invokes the Bundle Manager to get the list of the

requirement types that can be applied on a Workflow Engine (pre-defined for a

given CloudSocket instance), e.g. country where the engines are hosted, number of

dedicated CPUs, etc.

4. The Broker selects and configures the desired requirements (e.g. number of

dedicated CPUs > 2).

5. The Broker confirms the changes and issues the save command.

6. The Bundle Manager receives the save command and delegates the Bundle

Repository Manager to save the changes thus updating the Bundle into the Bundle

Repository. If the Bundle is complete (all sections properly configured) then it is

marked as Complete (therefore eligible for publishing into the Marketplace).

Variations 5.a) The Broker aborts the edit and closes the Bundle Designer without saving.

5.b) The Broker saves the Bundle with a different name (“save as” command).

Post-Conditions The Bundle is updated into the Bundle Repository.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 56 of 149

Diagrams

Figure 19 Use Case Diagram – AE-UC-2 Workflow Allocation

Figure 20 Sequence Diagram – AC-UC-2 Workflow Allocation

Table 6 BPaaS Allocation Environment – Use Case 2 – Workflow Allocation

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 57 of 149

5.2.3 Atomic Service Allocation

Use Case id AE-UC-3-Atomic Service Allocation

Title &

Description

A CloudSocket Broker allocates an abstract Atomic Service involved in the Workflow

Model with one from the compatible concrete Atomic Services matching this service

from the Service Registry.

The CloudSocket Broker opens a Bundle in the Bundle Designer, enters the Atomic

Service Allocation section, selects one of the abstract services involved in the Workflow

Model, and chooses the concrete Atomic Service to be mapped to this abstract service.

The concrete Atomic Services to be selected constitute a subset of services in the

Atomic Service Registry which are compatible with the abstract Atomic Service at hand.

Apart from the mapped/selected concrete atomic service, the rest matching the abstract

service are also listed in the bundle description along with their pricing and SLA for

adaptation purposes. Adaptation rules are then provided to indicate when the selected

concrete atomic service will be substituted with the remaining candidate ones and

according to which criteria.

NOTE: for some abstract Atomic Services only a direct, static mapping to one

compatible concrete Atomic Service (e.g. stateful, hard-to-reallocate services) will be

allowed due to inability to perform a service substitution or any other related adaptation

action for such a service.

NOTE: In some cases, the selection of a concrete atomic service for an abstract one will

be delayed until runtime. In such cases, the adaptation/selection rules will indicate

which real atomic service is to be selected according to the current context.

An example of Atomic Service Allocation record - in case of delayed runtime selection -

could be:

Actors CloudSocket Broker

Use Case

Objective

To select a real atomic service for each virtual atomic one as well as map the virtual

service to a set of alternative real atomic services for adaptation purposes.

Pre-Conditions The Bundle exists in the Bundle Repository.

The Workflow Model in the Bundle contains at least a service task that invokes an

abstract Atomic Service.

The Atomic Service Registry contains at least one concrete Atomic Service compatible

Abstract Atomic Service JIRA mapped on

• MyJIRA by provider X in UK (eligible only if its response time in the last

month is less than 400 ms on average)

• BestJIRA by provider Y in Germany (eligible only if its availability in the

last year has been greater than 99%)

• CheapJIRA by provider Z in Russia (eligible only if no other real Atomic

Service turns out to be eligible)

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 58 of 149

with the selected abstract Atomic Service.

All metric definitions needed to configure the eligibility rules for each concrete Atomic

Service to be mapped already exist.

Process Dialog 1. The Broker selects and opens a BPaaS Bundle into the Bundle Designer.

2. The Broker enters the Atomic Service Allocator UI component (part of the Bundle

Designer).

3. The Atomic Service Allocator UI shows the list of the abstract Atomic Services

mapping to service tasks in the Workflow Model of the Bundle.

4. The Broker selects an abstract Atomic Services from the list.

5. The Broker issues a command to open the mapping details for the abstract Atomic

Service selected.

6. The Atomic Service Allocator UI invokes a service on the Bundle Manager to

retrieve the list of the concrete Atomic Services which are compatible with the

selected abstract Atomic Service. Compatibility actually means functional and

quality-based matching of abstract to concrete Atomic Services.

7. The Bundle Manager invokes the API of the Registry Environment to retrieve the

list of the concrete Atomic Services which are compatible with the selected abstract

Atomic Service.

8. The Atomic Service Allocator UI shows the list of all the concrete Atomic Services

matched with the selected abstract Atomic Service.

9. The Broker can select a matched concrete atomic service as the one to realize the

abstract Atomic Service. He/she can also define eligibility rules indicating when to

substitute the selected atomic service and according to which criteria (e.g., the lest

costlier service with the highest availability encountered so far). At least one from

the two aforementioned actions has to be performed (e.g., the first for fixed

mappings and the second for dynamic ones).

10. The Broker repeats Steps 4-9 as desired, possibly until all abstract atomic services

are covered.

11. The Broker confirms the changes and issues the save command.

12. The Bundle Manager receives the save command and delegates the Bundle

Repository Manager to save the changes thus updating the Bundle into the Bundle

Repository. If the Bundle is complete (all sections properly configured) then it is

marked as Complete (therefore eligible for publishing into the Marketplace).

Variations 8.a) If only one concrete Atomic Service turns out to be compatible with the selected

abstract Atomic Service, then it is selected by default and the Broker cannot neither

modify the mapping nor define an eligibility rule.

8.b) If no concrete atomic service matches the virtual one, this is an indication that the

functionality of the virtual service has to be realised from scratch. In that case, we will

go to the next use case, once the respective software component has been realized

and registered in the respective registry.

12.a) The Broker aborts the edit and closes the Bundle Designer without saving.

12.b) The Broker saves the Bundle with a different name (“save as” command).

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 59 of 149

Post-Conditions The Bundle is updated into the Bundle Repository.

Diagrams

Figure 21 Use Case Diagram – AE-UC-3-Atomic Service Allocation

Figure 22 Sequence Diagram – AE-UC-3-Atomic Service Allocation

Table 7 BPaaS Allocation Environment – Use Case 3 – Atomic Service Allocation

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 60 of 149

5.2.4 Software Component Allocation

Use Case id AE-UC-4-Software Component Allocation

Title &

Description

A CloudSocket Broker allocates a Software Component mapped to a Workflow Model

task to a set of VM Offerings from the Cloud Infrastructures registered in the Cloud

Provider Registry and selects one of these offerings as the one on which the component

deployment will be performed by the BPaaS Execution Environment.

The Broker opens a Bundle in the Bundle Designer, enters the Software Component

Allocation section, selects one of the components mapped to Workflow Model tasks,

and then selects the VM Offerings eligible to host this component. The VM Offerings are

selected from the subset of VM Offerings in the Cloud Infrastructure Registry which are

compatible - with respect to its VM requirements - with the Software Component

selected initially. Each compatible VM Offering is listed along with its pricing and SLA.

The broker selects one of the VM offerings as the one on which the component

deployment will take place. He/she also defines adaptation rules indicating when to

move to another VM when the currently selected one fails for some reason.

NOTE: For some virtual Software Components only a direct, static mapping to one

compatible VM Offering will be allowed in case migration for such a component is not

possible (e.g. stateful components for which no migration procedures have been

defined in the Software Component Registry).

An example of a Software Allocation record without adaptation rules could be:

Actors CloudSocket Broker

Use Case

Objective

To allocate a Software Component invoked by the Workflow Model onto a set of

compatible VM Offerings that will actually host the Software Component at run-time.

Only one from the VM offerings is preselected. The other ones are used for adaptation

purposes.

Pre-Conditions The Bundle exists in the Bundle Repository.

The Workflow Model contains at least one service task mapping to a Software

Component.

The Cloud Infrastructure Registry contains at least one VM Offering compatible

(according to both functional and non-functional aspects) with the selected Software

Component.

All the metric definitions needed to specify the adaptation rules for a software

component already exist.

Software Component SmartOCR mapped on

• VM 4 core 12 GB RAM 25 GB Disk by provider IBM SoftLayer (always

eligible) (preselected)

• VM T2.medium by provider Amazon AWS in Ireland

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 61 of 149

Process Dialog 1. The CloudSocket Broker selects and opens a BPaaS Bundle into the Bundle

Designer.

2. The Broker enters the Software Component Allocator UI component (part of the

Bundle Designer).

3. The Software Component Allocator UI shows the list of the Software Components

mapping to service tasks in the Workflow Model of the Bundle, highlighting the

Software Components already mapped to VM offerings.

4. The Broker selects a Software Components from the list.

5. The Broker issues a command to open and edit the requirements for the Software

Component selected.

6. The Software Component Allocator UI invokes a service on the Bundle Manager to

retrieve the list of the VM Offerings which are compatible (according to functional

and quality aspects) with the selected Software Component.

7. The Bundle Manager invokes the API of the Registry Environment to retrieve the

list of the VM Offerings which are compatible with the selected Software

Component.

8. The Software Component Allocator UI shows the list of all the VM Offerings

matched with the selected Software Component.

9. The Broker can select one from the VM offerings matched as the one on which the

deployment of the software component will take place. The Broker can also define

adaptation rules to indicate which alternative compatible VM offering to select when

the preselected one fails for some reason.

10. The Broker repeats Steps 4-9 as desired possibly until all Software Component are

allocated.

11. The Broker confirms the changes and issues the save command.

12. The Bundle Manager receives the save command and delegates the Bundle

Repository Manager to save the changes thus updating the Bundle into the Bundle

Repository. If the Bundle is complete then it is marked as Final and therefore

eligible for publishing into the Marketplace.

Variations 8.a) If only one VM Offering turns out to be compatible with the selected Service

Component, then it is selected by default and the Broker neither can modify the

mapping nor define any adaptation rule.

8.b) No VM offering is compatible with the software component. This is an indication

that probably the requirements for the software component are over-constrained. These

requirements can be modified to reflect reality / the current existing cloud service space.

12.a) The Broker aborts the edit and closes the Bundle Designer without saving.

12.b) The Broker saves the Bundle with a different name (“save as” command).

Post-Conditions The Bundle is updated into the Bundle Repository.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 62 of 149

Diagrams

Figure 23 Use Case Diagram – AE-UC-4-Software Component Allocation

Figure 24 Sequence Diagram – AE-UC-4-Software Component Allocation

Table 8 BPaaS Allocation Environment – Use Case 4 – Software Component Allocation

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 63 of 149

5.2.5 KPI Model Editing

Use Case id AE-UC-5-KPI Model Editing

Title &

Description

A CloudSocket Broker defines a KPI for a given BPaaS Bundle.

The Broker opens a Bundle in the Bundle Designer, enters the KPI Model section and

manages (creates, edits and deletes) the KPI definitions for the Bundle.

Actors CloudSocket Broker

Use Case

Objective

To define which KPI will have to be calculated and evaluated at run-time for a given

Bundle. The KPI metric could also be used for evaluating the fulfilment of the Bundle’s

SLA (when there is a direct one-to-one mapping between a KPI and a SLO) and to

assess the conditions of eligibility/adaptation rules defined in the Bundle’s Atomic

Service and Software Component allocation sections.

Pre-Conditions The Bundle exists in the Bundle Repository.

The component metrics for the KPI's composite metric have already been defined.

Process Dialog 1. The Broker selects and opens a BPaaS Bundle into the Bundle Designer.

2. The Broker enters the KPI modelling section of the Bundle Metadata Editor UI

component (part of the Bundle Designer).

3. The Bundle Metadata Editor UI shows the list of the KPIs already defined, along

with their respective metrics (including their formulas) and the conditions defined

over them. Optionally, the broker can view all the metrics already defined either for

the same business domain or being independent of any domain:

a. The Bundle Metadata Editor UI invokes a service on the Bundle Manager

to retrieve the list of the domain-independent raw metrics available on the

CloudSocket platform.

b. The Bundle Manager invokes the API of the Registry Environment to

retrieve the list of the domain-independent raw metrics available on the

CloudSocket platform.

c. The Bundle Metadata Editor UI invokes a service on the Bundle Manager

to retrieve the list of the domain-dependent raw metrics declared in the

Workflow Model.

d. The Bundle Manager parses the Workflow model to retrieve the list of the

domain-dependent raw metrics declared in the workflow.

4. Two sub-cases exist for which the actual flow does not change but just the content

is modified (i.e., in the first case, the information to be modified is already filled-in):

a. The broker decides to edit an existing KPI

b. The broker decides to create a new KPI:

5. The Bundle Metadata Editor UI opens the KPI Editing Dialog. This dialog contains a

text area to edit the KPI name, a text area to edit the KPI metric and an textual area

to define the respective condition. Other UI controls are provided to assist the

Broker in the editing of the metric formula.

6. The Broker types the needed KPI information. Support is available for the insertion

in the formula of math operators, functions, and component metrics.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 64 of 149

7. The Broker confirms the changes in the edited KPI

8. The Bundle Manager verifies that the formula of the KPI metric is syntactically

correct and that the KPI metric specification does not introduce a circular

dependency among the whole set of KPI metrics defined in the context of the

current Bundle. The KPI condition is also checked to contain correct bound values

that are inside the value type of the selected/defined KPI metric.

9. The Broker repeats Steps 4-8 as desired to complete the specification of the KPI

Model of the Bundle.

10. The Broker confirms the changes and issues the save command.

11. The Bundle Manager receives the save command and delegates the Bundle

Repository Manager to save the changes thus updating the Bundle into the Bundle

Repository. If the Bundle is complete then it is marked as Final and therefore

eligible for publishing into the Marketplace.

Variations 4.a) The Broker has first to define a new component metric and then the actual metric of

the KPI.

14.a) The Broker aborts the edit and closes the Bundle Designer without saving.

14.b) The Broker saves the Bundle with a different name (“save as” command).

Post-Conditions The Bundle is updated into the Bundle Repository.

Diagrams

Figure 25 Use Case Diagram – AE-UC-5-KPI Model Editing

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 65 of 149

Figure 26 Sequence Diagram – AE-UC-5-KPI Model Editing

Table 9 BPaaS Allocation Environment – Use Case 5 – KPI Model Editing

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 66 of 149

5.2.6 SLA Model Editing

Use Case id AE-UC-6-SLA Model Editing

Title &

Description

A CloudSocket Broker defines the SLA for a given BPaaS Bundle.

The Broker opens a Bundle in the Bundle Designer, enters the SLA Model section and

edits the bundle's SLA by also managing (creating, editing and deleting) its SLO

definitions.

Actors CloudSocket Broker

Use Case

Objective

To formally define the SLA guaranteed by the Broker to the Business Process User who

desires to purchase and use the Bundle.

Pre-Conditions The Bundle exists in the Bundle Repository.

All metrics required to define the SLA Model have been already defined.

Process Dialog 1. The Broker selects and opens a BPaaS Bundle into the Bundle Designer.

2. The Broker enters the SLA modelling section of the Bundle Metadata Editor UI

component (part of the Bundle Designer).

3. The Bundle Metadata Editor UI shows the SLA's generic information as well as a

list of the SLOs already defined, along with their respective boolean formula.

4. The Broker edits the generic information of the SLA as visualized in the SLA

modelling section.

5. The Broker issues a command to create or edit a new SLO.

6. The Bundle Metadata Editor UI opens the SLO Editing Dialog. This dialog contains

a text area to edit the SLO title and a text area to edit the SLO condition. Other UI

controls are provided to assist the Broker in the editing of the formula. SLO

compensation information can also be specified.

7. The Broker types the title as well as the SLO's condition and compensation

information. Support is available for the insertion in the formula of math operators,

functions, and metrics.

8. The Broker confirms the changes in the edited SLO.

9. The Bundle Manager verifies that the SLO condition is syntactically correct and

maps to the value type of the metric involved.

10. The Broker repeats the Steps 4-9 as desired to complete the definition of the SLOs

and thus of the SLA Model of the Bundle.

11. The Broker confirms the changes and issues the save command.

12. The Bundle Manager receives the save command and delegates the Bundle

Repository Manager to save the changes thus updating the Bundle into the Bundle

Repository. If the Bundle is complete all sections properly configured then it is

marked as Final and therefore eligible for publishing into the Marketplace.

Variations 5.a) The Broker selects to create an SLO out of an existing KPI already defined.

15.a) The Broker aborts the edit and closes the Bundle Designer without saving.

15.b) The Broker saves the Bundle with a different name (“save as” command).

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 67 of 149

Post-Conditions The Bundle is updated into the Bundle Repository.

Diagrams

Figure 27 Use Case Diagram – AE-UC-6-SLA Model Editing

Figure 28 Sequence Diagram – AE-UC-6-SLA Model Editing

Table 10 BPaaS Allocation Environment – Use Case 6 – SLA Model Editing

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 68 of 149

5.2.7 Pricing Model Editing

Use Case id AE-UC-7-Pricing Model Editing

Title &

Description

A CloudSocket Broker defines the Pricing Model for a given BPaaS Bundle.

The Broker opens a Bundle in the Bundle Designer, enters the Pricing Model section and

manages (creates, edits and deletes) the Pricing model and respective factors for the

Bundle.

Actors CloudSocket Broker

Use Case

Objective

To formally define the Pricing Model of the bundle dictating the way the respective

BPaaS usage is charged for a broker customer.

Pre-Conditions The Bundle exists in the Bundle Repository.

All metric definitions and variables/attributes (e.g., VM or component characteristics)

required to define the Pricing Model have been already defined.

Process Dialog 1. The Broker selects and opens a BPaaS Bundle into the Bundle Designer.

2. The Broker enters the Pricing modelling section of the Bundle Metadata Editor UI

component (part of the Bundle Designer).

3. The Bundle Metadata Editor UI shows generic pricing information (including overall

min and max price values for the bundle) as well as a list of Pricing components

already defined, along with their respective formula.

4. The Broker edits the generic information of the pricing model.

5. The Broker issues a command to create a new or edit an existing Pricing

component.

6. The Bundle Metadata Editor UI opens the Pricing Component Editing Dialog. This

dialog contains text areas to edit the Pricing Component's title and formula. Other

UI controls are provided to assist the Broker in the editing of the formula.

Optionally, fixed min and max cost bounds can be specified for the pricing

component.

7. The Broker types the necessary information for the Pricing Component. Auto-

completion and contextual menus are available to support the insertion in the

formula of math operators, functions, metrics and variables/attributes.

8. The Broker confirms the changes in the edited Pricing Factor.

9. The Bundle Manager verifies that the formula of the Pricing Factor is syntactically

correct. It could also check the validity of the min and max bounds provided at the

global or component level of the pricing model.

10. The Broker repeats the Steps 5-9 as desired to complete the Pricing Model of the

Bundle.

11. The Broker confirms the changes and issues the save command.

12. The Bundle Manager receives the save command and delegates the Bundle

Repository Manager to save the changes thus updating the Bundle into the Bundle

Repository. If the Bundle is complete (all sections properly configured) then it is

marked as Complete (therefore eligible for publishing into the Marketplace).

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 69 of 149

Variations 4.a) A fixed monthly fee has to be specified. In this case, there is no need to specify

pricing components (could just specify this information at the global level).

15.a) The Broker aborts the edit and closes the Bundle Designer without saving.

15.b) The Broker saves the Bundle with a different name (“save as” command).

Post-Conditions The Bundle is updated into the Bundle Repository.

Diagrams

Figure 29 Use Case Diagram – AE-UC-7-Pricing Model Editing

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 70 of 149

Figure 30 Sequence Diagram – AE-UC-7-Pricing Model Editing

Table 11 BPaaS Allocation Environment – Use Case 7 – Pricing Model Editing

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 71 of 149

5.2.8 Business Process Metadata Editing

Use Case id AE-UC-8 Business Process Metadata Editing

Title &

Description

A CloudSocket Broker defines the Business Process Metadata for a given BPaaS

Bundle.

The Broker opens a Bundle in the Bundle Designer; enters the Marketing metadata

section and edits all the additional information (i.e. information not included in the other

sections of the Bundle) that could be also useful to the Business Process User (while

browsing the Marketplace) in finding the Bundles best fitting his/her needs.

The Marketing Metadata includes:

1. commercial name of the Bundle;

2. business-level functional description of the Bundle;

3. category of the Workflow Model according to the APQC taxonomy;

4. terms of use and end-user agreement for the Bundle;

5. optional notes on the Bundle Pricing.

Those information are intended to be used by the marketplace User Interface to provide

the above mentioned information to the CloudSocket Customer, merged with relevant

information already contained in the other Bundle sections, such as

1. The Business Process Model diagram.

2. Semantic annotation defined in the Business Process Model (this will allow for

instance to filter only the Bundles whose Business Process manages an

“hospitalization” concept).

3. Pricing Model.

4. SLA Model.

5. Location-based allocation constraints.

Actors CloudSocket Broker

Use Case

Objective

To define all the additional marketing-oriented information needed by the Marketplace to

support a Business Process User in finding the BPaaS Bundle best fitting his needs.

Pre-Conditions The Bundle exists in the Bundle Repository.

Process Dialog 1. The Broker selects and opens a BPaaS Bundle into the Bundle Designer.

2. The Broker enters the Business Process Metadata section of the Bundle Metadata

Editor UI component (part of the Bundle Designer).

3. The Bundle Metadata Editor UI opens the Business Process Meta Metadata Editing

Dialog. This dialog contains text areas to edit commercial name, business-level

functional description, terms of use, end-user agreement and notes on the pricing

for the selected Bundle. The editor also contains a control to select the APQC

category best describing the Business Process Model included in the Bundle.

4. The Broker fills the Business Process Metadata Editing Dialog.

5. The Broker confirms the changes and issues the save command.

6. The Bundle Manager receives the save command and delegates the Bundle

Repository Manager to save the changes thus updating the Bundle into the Bundle

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 72 of 149

Repository. If the Bundle is complete (all sections properly configured) then it is

marked as Complete (therefore eligible for publishing into the Marketplace).

Variations 5.a) The Broker aborts the edit and closes the Bundle Designer without saving.

5.b) The Broker saves the Bundle with a different name (“save as” command).

Post-Conditions The Bundle is updated into the Bundle Repository.

Diagrams

Figure 31 Use Case Diagram – AE-UC-8 Business Process Metadata Editing

Figure 32 Sequence Diagram – AE-UC-8 Business Process Metadata Editing

Table 12 BPaaS Allocation Environment – Use Case 8 – Business Process Metadata Editing

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 73 of 149

5.2.9 BPaaS Bundle Publishing in the Marketplace

Use Case id AE-UC-9-BPaaS Bundle Publishing in the Marketplace

Title &

Description

A CloudSocket Broker publishes a BPaaS Bundle in the Marketplace.

The Broker publishes a final BPaaS Bundle in the Marketplace so that Business

Process Users can purchase, deploy and use it.

Actors CloudSocket Broker

Use Case

Objective

To publish a BPaaS Bundle into the Marketplace and enable Business Process Users to

buy it.

Pre-Conditions The Bundle exists in the Bundle Repository, and it is in the Final state.

Process Dialog 1. The Broker selects and opens a BPaaS Bundle into the Bundle Designer.

2. The Broker issues the command to publish the BPaaS Bundle in the

Marketplace.

3. The Bundle Designer invokes the Bundle Manager to publish the bundle.

4. The Bundle Manager delegates the publication of the Bundle to the Bundle

Publisher.

5. The Bundle Publisher invokes the Marketplace management API exposed by

the Marketplace Environment.

6. The Bundle Manager updates the BPaaS Bundle in the Bundle Repository in
order to mark it as published and save the date of publication.

Variations 6.a) In case a Bundle with the same name from the same Broker already exists in the

Marketplace appropriate conflict resolution must be taken.

Post-Conditions The BPaaS Bundle is published in the Marketplace and the CloudSocket Customer can

find and buy it using the Marketplace.

The BPaaS Bundle is marked as published into the Bundle Repository.

Diagrams

Figure 33 Use Case Diagram – AE-UC-9-BPaaS Bundle Publishing in the Marketplace

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 74 of 149

Figure 34 Sequence Diagram – AE-UC-9-BPaaS Bundle Publishing in the Marketplace

Table 13 BPaaS Allocation Environment – Use Case 9 – BPaaS Bundle Publishing in the Marketplace

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 75 of 149

5.3 Components

5.3.1 User-interface layer

The User Interface Layer contains the graphical interface components used by the CloudSocket Broker to create,

edit and manage his/her own bundles.

There are three main UI components:

1. Bundle Instantiator

2. Bundle Designer

3. Bundle Browser

The Bundle Instantiator and Bundle Browser are used to choose the input for the Bundle Designer which can

accept a new bundle or an existing one, previously created and saved into the Bundle Repository.

Figure 35 BPaaS Allocation Environment – User Interface Mockup

Figure 35 indicates two Mockups of the intended user interface of the BPaaS Allocation Environment. The first

one indicates that the BPaaS Allocation Environment starts from the input of the BPaaS Design Environment, by

choosing a workflow and viewing additional business relevant information. The right Mockup indicates an

intended screen in the middle of the allocation process, indicating the allocation of concrete services.

5.3.1.1 Bundle Instantiator

The Bundle Instantiator is the UI component allowing a Broker to create a new draft BPaaS Bundle. Since a

Bundle is conceptually a commercial “packaging” of a Workflow Model, the creation of a draft Bundle necessarily

starts with the selection of a Workflow Model from the BPaaS Design Environment.

The Bundle Instantiator, therefore, interacts with the BPaaS Design Environment in order to retrieve the list of the

Workflow Models along with all the available meta-data that might support the Broker in searching and identifying

(if any) the Workflow models best fitting his/her needs (actually the needs of the CloudSocket Customer the

Broker is working for).

The Workflow Models are retrieved using the API provided by the BPaaS Design Environment. The Bundle

Instantiator provides a user-friendly interface allowing the Broker to apply multiple filters based on the meta-data

associated with each Workflow Model, and finally select the preferred one.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 76 of 149

Once the Broker has selected a Workflow Model, the Bundle Instantiator creates in volatile memory a data

structure representing a new draft BPaaS Bundle based on that Workflow Model, and it passes such data

structure to the Bundle Designer, which allows the Broker to immediately start the configuration of the Bundle.

At any time the Broker can either close the Bundle Designer or discard the changes to abort the Bundle

instantiation, or save the Bundle making it persistent in the Bundle Repository.

Tasks performed by the Bundle Instantiator:

• Browse the workflow models from the BPaaS Design Environment.

• Instantiate a new BPaaS Bundle selecting one workflow model.

Main Interfaces of the Bundle Instantiator:

• Input: None. Workflow Models are retrieved from the BPaaS Design Environment upon user request - in the

end, one workflow model is selected to be instantiated.

• Output: a draft BPaaS Bundle, containing only the selected Workflow Model which can be sent to the Bundle

Designer.

5.3.1.2 Bundle Designer

The Bundle Designer is the main UI component of the BPaaS Allocation Environment. It provides all the

functionality allowing a CloudSocket Broker to configure (fill or edit) the sections of a BPaaS Bundle and move it

from the initial Draft (incomplete) state to the Complete (ready to be published) state.

The Bundle Designer includes four main sub-components:

1. Workflow Allocator UI: it’s the UI component allowing a Broker to configure for a given Bundle the

requirements that a Workflow Engine must satisfy in order to be selected for executing the Workflow Model in

the bundle when the Bundle is deployed.

2. Atomic Service Allocator UI: it’s the UI component allowing a Broker to allocate each abstract Atomic Service

invoked by the Workflow Model in the bundle onto a set of compatible concrete Atomic Services out of which

only one will be invoked at run-time, along with the rules for enabling their eligibility. Concrete Atomic

Services are selected from the Service Registry in the Registry.

3. Software Component Allocator UI: it’s the UI component allowing a Broker to allocate each Software

Component invoked by the Workflow Model in the bundle onto a set of compatible VM Offering out of which

only one is selected to host this component. VM Offerings are selected from the Cloud Provider Registry in

the Registry. The Software Component Allocator UI also allows setting adaptation rules for each software

component in terms of the underlying resources to be exploited (e.g., mapping to migrating to another VM or

scaling-out to a new VM instance in cases of increased load).

4. Bundle Metadata Editor: it’s the UI component allowing a Broker to configure all the information needed to

sell the Bundle: a KPI Model, a SLA (potentially based on KPIs and existing metrics), a Pricing Model

(potentially based on existing metrics and attributes/variables), and Business Process Metadata required to

publish the bundle into the Marketplace and make sure that Business Process Users can actually find it and

understand what it does at a very high-level (business executive) of abstraction.

Tasks performed by the Bundle Designer:

• Configure the allocation rules for the Workflow model of a given Bundle.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 77 of 149

• Allocate all the abstract Atomic Services invoked by the Workflow Model of the Bundle, and define the

eligibility rules of the selected concrete Atomic Services.

• Allocate all the Software Components invoked by the by the Workflow Model of the Bundle, and define the

respective adaptation rules.

• Edit the Bundle Metadata (KPI definitions, SLA, Pricing Model, Marketing metadata)

• Save the Bundle into the Bundle Repository, and contextually change its state from Draft to Complete or vice

versa, if required.

• Save the bundle into the Bundle Repository with a different name (“save as” command), and contextually

change its state from Draft to Final or vice versa, if required.

• Publish the bundle into the Marketplace.

Main Interfaces of the Bundle Designer

• Input: a draft Bundle is received from the Bundle Instantiator when the Broker or selected using the Bundle

Browser.

• Input: a list of concrete Atomic Services is received from the Bundle Manager when the Broker uses the

Atomic Services Allocation UI component.

• Input: a list of VM Offerings is received from the Bundle Manager when the Broker uses the Software

Component Allocation UI component.

• Output: the edited Bundle to be sent to Bundle Manager when the Broker issues the save or the publish

command.

5.3.1.3 Bundle Browser

The Bundle Browser is the UI component allowing a Broker to explore and manage the Bundle Repository. The

component shows to the Broker a list of all the Bundles he/she has created along with their status (Draft, Final or

Published) and the date-time of their last update.

The Bundle Browser also features controls to select a Bundle and to either open it in the Bundle Designer for

viewing/editing or to delete it from the Bundle Repository.

The Bundles published into the Marketplace are not editable and can be viewed only in read-only mode. If the

Broker wants to modify a bundle already published into the Marketplace, he must open the bundle in the Bundle

Designer and save it with another name.

When a published Bundle is removed from the Marketplace, the same Bundle in the Bundle Repository changes

its state from Published to Final, so that it can be edited again.

Tasks performed by the Bundle Browser:

• Browse the BPaaS Bundle related to the authenticated broker, stored into the Bundle Repository.

• Enable the editing of the BPaaS Bundle not already marked as published.

• Duplicate an existing BPaaS Bundle.

• Change the state of a bundle (where only legitimate state transitions are allowed). A transition to published

state causes the bundle to be registered in the Marketplace.

Main Interfaces of the Bundle Browser

• Input: a list of Bundle descriptors is retrieved from the Bundle Repository Manager, in order to allow the

Broker to browse the content of the Bundle Repository.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 78 of 149

• Input: a Bundle is retrieved from the Bundle Repository Manager when the Broker selects the Bundle and

issue the open/edit command.

• Output: a Bundle identifier is sent to the Bundle Repository Manager when the Broker selects the Bundle and

issues the delete command.

• Output: a Bundle is sent to the Bundle Designer to open/edit the Bundle.

5.3.2 Business-logic layer

The Business-logic layer provides functionality to the User-interface layer. It includes the following components:

1. Bundle Repository Manager

2. Bundle Manager

3. Bundle Publisher

5.3.2.1 Bundle Repository Manager

The Bundle Repository Manager acts as a management interface to the Bundle Repository for all the other

components of the BPaaS Allocation Environment. It provides all the functionality to list and search the content of

the Bundle Repository, to load a bundle in memory, to save a bundle in the Repository and to delete a bundle

from the Repository.

It is responsibility of the Bundle Repository Manager to let each Broker access only its own bundles as well as to

allow only legitimate state transitions and actions to be executed over the bundles of a certain broker.

Tasks performed by the Bundle Repository Manager:

• Provide a list of descriptors of the bundles in the Bundles Repository.

• Search for a bundle in the Bundle Repository.

• Load a bundle from the Bundle Repository into the memory.

• Save a bundle from the memory into the Bundle Repository.

• Delete a bundle from the Bundle Repository.

• Change the state of a bundle.

Main Interfaces of the Bundle Repository Manager

• Input: receives from the Bundle Browser the identifier of a bundle to be loaded in memory (loaded from the

Bundle Repository)

• Input: receives from the Bundle Browser the identifier of a bundle to be deleted from the Bundle Repository.

• Input: receives from the Bundle Manager a bundle in memory to be saved into the Bundle Repository.

• Input: receives from the Bundle Browser or Manager a request for changing the state of a bundle

• Input: receives from the Bundle Browser a search condition for searching and identify one or more bundles

stored in the Bundle Repository

• Output: sends (to the Bundle Browser) a list of descriptors of all bundles or those matching the search

conditions/criteria provided in the Bundle Repository.

• Output: sends (to the Bundle Browser) a bundle to be loaded in memory.

5.3.2.2 Bundle Manager

The Bundle Manager implements all the business logic required by the Bundle Designer UI and its sub-

components.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 79 of 149

It manages the BPaaS Bundle in memory, making sure that all the sections of the Bundle’s data structure are

properly aligned at any time (i.e. no invalid cross-references, overall data structure consistency) and contain only

allowed values.

The Bundle Manager also detects when a Bundle has been completely configured (i.e. configured with at least

the minimal information required to be published) and performs the transition from the Draft to the Final state or

vice-versa.

Tasks performed by the Bundle Manager: this server-side component manages in memory the Bundle currently

edited by the Broker. The Bundle Manager interacts with the following components:

• the registries (Software Component Registry, Cloud Provider Registry). Note: the registries are not accessed

directly by the Bundle Editor because the raw lists provided by each registry must be pre-filtered in order to

isolate only the registry items which are compatible with the bundle in memory.

• the Bundle Repository Manager, which is responsible for loading/saving the bundles from/to the Bundle

Repository

• the Bundle Publisher, which is responsible to interact with the Marketplace management API in order to

publish a bundle.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 80 of 149

Main Interfaces of the Bundle Manager

• Input: receives from the Bundle Designer a Bundle in memory when the Broker issues the save command

(the Bundle is forwarded to the Bundle Repository Manager).

• Input: receives from the Atomic Service Registry a list of Atomic Service descriptors.

• Input: receives from the Cloud Provider Registry a list of VM Offering descriptors

• Output: sends (to the Bundle Browser) a list of descriptors of the Bundles in the Bundle Repository.

• Output: sends (to the Bundle Repository Manager) the Bundle in memory to be saved.

5.3.2.3 Bundle Publisher

The Bundle Publisher is responsible for publishing the BPaaS Bundle in the Marketplace. The Bundle Manager

forwards to the Bundle Publisher the Bundle currently in memory and delegates it to perform all the intractions

with the Marketplace management API required to get the Bundle published.

If the publishing operation succeeds, the Bundle Manager changes the state of the Bundle from Complete to

Published and sends it to the Bundle Repository Manager in order to make the state transition persistent.

Tasks performed by the Bundle Publisher: this server-side component is responsible to publish a Bundle into the

Marketplace.

Main Interfaces of the Bundle Publisher

• Input: receives from the Bundle Manger a Bundle in memory

• Output: sends to the Marketplace all the input parameters required by the Marketplace management API.

• Output: state change of bundle to be persisted

5.3.3 Persistency-management layer

The Persistency-management Layer contains the Bundle Repository where the BPaaS Bundles are stored. The

Bundle Repository is multi-tenant so that each CloudSocket Broker can browse and edit only the Bundles owned

by him/her.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 81 of 149

5.3.4 Component Diagram

Figure 36 BPaaS Allocation Environment – Component Diagram

5.4 Roles

The CloudSocket Broker is a physical person or an organization whose business is creating BPaaS Bundles and

selling them to CloudSocket Customer via the Marketplace. The CloudSocket Broker (actually a member in case

it represents an organisation or a technical consultant hired) creates the bundles starting from a Workflow Model

selected from the the BPaaS Design Environment.

If a CloudSocket Broker does not find a convenient Workflow Model to create a BPaaS Bundle, then he could

involve a technical consultant and delegate to him the creation of a new Workflow Model by means of the BPaaS

Design Environment.

The CloudSocket Broker gets paid by the CloudSocket Customer who purchases the Bundles that have been

published in the Marketplace. It is responsibility of the CloudSocket Broker to make sure that each BPaaS Bundle

published in the Marketplace has a Pricing Model covering the costs for executing the bundle, and a SLA to be

met by the bundle, taking into account pricing and respective SLAs of all external resources (concrete Atomic

Services and VM offerings) used by the bundle.

5.5 Data Interface

The input of the Allocation Environment is a Workflow Model. A Workflow Model is composed of

o a BPMN 2.0 file containing a detailed specification of the workflow including all the technical details required

to execute it on a Workflow Engine.

o a BPMN 2.0 file containing a domain specific representation of the Business Process Model from which the

Workflow has been derived

o a RDF file containing the semantic alignment between the Workflow and the original Business Process

Model

o an XML file including the high-level requirements and KPIs specified in semantically-enriched natural

language format during the design of the Business Process.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 82 of 149

The output of the BPaaS Allocation Environment is a BPaaS Bundle, represented as an XML file containing a

section for each of the following information:

o Business Process Model

o Workflow Model

o Workflow Allocation rules

o Atomic Service Allocation

o Software Component Allocation

o KPI Model

o SLA

o Pricing Model

o Marketing Metadata

Allocation-related information is represented according to the CAMEL (CAMEL 2015) specification (possibly

extended to cover missing information). The eligibility/adaptation rules are expressed in SRL (Scalability Rules

Language) (SRL 2015) language. These standards are defined in the PaaSage project (PaaSage 2015) and

there could be a little variation in order to express the required specification in such scenario of the Business

Process as a Service that PaaSage does not cover as it is.

The SLA can conform to a combination of WS-Agreement (WS-Agreement 2015) and OWL-Q (OWL-Q 2015)

where OWL-Q is used for the definition of the metrics referenced in the conditions of SLOs in the WS-Agreement

specifications. Alternatively, OWL-Q can be extended in order to also specify SLAs. In this latter case, if existing

SLA Management components are in place to be used in the Execution Environment which operate over WS-

Agreement, we could have transformation code which is able to transform OWL-Q SLA specifications to WS-

Agreement ones.

KPIs will be coved by an extension of OWL-Q to address the specification of metrics at the business process

level.

The pricing model can rely on an existing effort, such as the pricing ontology in USDL (USDL 2015), or again on

extensions on OWL-Q towards defining pricing models as well as respective pricing components and metrics.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 83 of 149

6 BPAAS EXECUTION ENVIRONMENT

6.1 Introduction

The execution environment consists basically of:

• the deployment/cloud provider engine of BPaaS

• the execution engine of BPaaSs

• the monitoring engine covering the different levels (business, workflow, service, infrastructure)

• the SLA engine to assess the conformance to agreements

• the adaptation engine to adapt the BPaaS to still fulfil the requirements posed to it

• the associated Web-GUI environments to cover the different components

Besides these execution and follow-up mechanisms, the execution environment has:

• The adaptation mechanisms to maintain the different levels of the quality for BPaaSs.

The environment is responsible to manage, monitor and adapt the execution of the BPaaS bundles generated

during the allocation phase, which have been published via the Marketplace. Hence, the main functional

capability is to guarantee the execution and the suitable behaviour of the deployed BPaaSs. To this end, the

environment is responsible to deploy and configure all components required to execute the bundles, which

comprise the workflow, SLA, adaptation rules, and details of the third-party services involved. When a BPaaS

workflow bundle is deployed, the environment will allow to manage an end-user's workflow instances and to

visualize the conformance levels to associated agreements and the respective monitoring data. Besides, based

on the monitoring data, the violations incurred as well as the BPaaS bundle adaptation rules, the environment will

be able to adapt the BPaaS instances to maintain the promised service level through executing particular

adaptation actions, including component scaling, component/workflow migration and service substitution, possibly

across different levels.

The main roles involved in the execution phase and thus to this environment are: i) the CloudSocket Operator

who is providing and maintaining the environment to manage BPaaSs; ii) the CloudSocket Broker who is

responsible for designing and publishing BPaaS bundles in the CloudSocket; This broker will also be able to

check the SLA agreement status as well as find root causes of problematic situations in order to adapt a BPaaS

and of course it is responsible for designing suitable adaptation rules in order to address such problematic

situations; iii) CloudSocket Customer, a user of an end-user organisation which is assigned with the task to find,

purchase and manage the different BPaaS bundles to be used by his/her organisation, iv) Knowledge Worker

which represents a certain employee of an end-user organisation that is mainly involved in the interaction with the

BPaaS workflow instance, when a manual task is assigned to him.

As there is also a need to compute and assess KPIs in the context of checking overall BPaaS goals as well as for

optimizing BPaaS, the monitoring and contextual data produced by the BPaaS Execution Environment should be

transferred on demand to the BPaaS Evaluation Environment which covers the next phase in the BPaaS life-

cycle. Such data, apart from KPI assessment, can be used to discover interesting patterns or optimisation

suggestions in the context of one or more BPaaS.

The following components can be distinguished to fulfil the aforementioned functional capabilities of the BPaaS

Execution Environment: i) graphical interface components which can be exploited in order to view the status and

manage BPaaS workflow bundles as well as inspect the conformance level of service level agreements and

visualize respective monitoring information, ii) a Workflow Engine, to manage the execution of deployed BPaaS

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 84 of 149

workflows, iii) an SLA Engine to check the conformance levels of the agreements between the CloudSocket

Brokers and the CloudSocket Customer and produce respective violation events to be consumed by the

component responsible for BPaaS adaptation, iv) a Monitoring Engine to monitor the BPaaS quality at all levels

as well as sense the respective contextual information, v) an Adaptation Engine to trigger rules based on the

contextual monitoring data and SLO violation events and perform the respective adaptation actions required to

maintain the quality of service of a BPaaS, vi) a Mediator to map and transform the output data of one service to

the input data of the subsequent service for a BPaaS workflow to guarantee the normal continuation of the

BPaaS workflow in case of service substitutions or workflow re-concretisation, vii) the Cloud Provider Engine to

deploy the BPaaS according to the respective bundle's deployment plan possibly in multiple clouds and to

manage the lifecycle of the components deployed.

6.2 Functional Capabilities

The following scenarios identified in the BPaaS Execution Environment detail the high level functionalities that are

needed to cover the complete lifecycle in the execution phase. These scenarios are depicted using the UML

nomenclature.

Based on the different scenarios, we can identify the following list of functionalities:

• Deployment of predefined BPaaS bundles according to their enclosing deployment plan, which have

been published via the Marketplace.

• Management of the deployed BPaaSs, through the graphical user interface.

• Execution of the deployed BPaaSs.

• Monitoring of the BPaaS execution environment across all levels.

• Management and assessment of the service level agreements.

• Evaluation of the adaptation rules based on BPaaS monitoring and contextual data.

• Multi cloud reconfiguration in the context of adaptation rules for IaaS/PaaS/SaaS and BPaaS levels.

6.2.1 Deployment of BPaaS

Use Case id EE-UC-1-Deployment of BPaaS

Title &

Description

Deployment Business process as a Services.

The CloudSocket Customer has identified the BPaaS bundle that fulfils his/her needs. The

user selects and purchases it in the Marketplace, and after some possible user and account

management steps, the BPaaS deployment is started. Then, the environment is configured

to support this BPaaS bundle and all necessary components are deployed. Afterwards, the

organization can access and manage the underlying workflow of the BPaaS bundle.

During the BPaaS deployment according to the respective deployment plan in the bundle,

the CloudSocket Customer can follow up the status of their selected BPaaS deployment in

terms of which deployment task is currently executed and which ones have already been

completed, where such tasks can include the deployment of VMs and software components

and their configuration and the deployment of monitoring sensors. Besides, the

CloudSocket Broker can also monitor the status of all deployments and the environment to

guarantee the correct behaviour.

Actors CloudSocket Customer and CloudSocket Broker

Use Case Deploy the selected BPaaS bundle in the BPaaS Execution Environment.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 85 of 149

Objective

Pre-

Conditions

The CloudSocket Customer and his/her organization have already been registered in the

environment.

All accounts and agreements with third parties whose services are to be exploited in the

context of the current BPaaS have been previously generated and achieved, respectively. It

is the responsibility of the Marketplace to manage or validate the associated prerequisites of

the BPaaS bundle.

The user identification is delegated to the authentication mechanism of the Marketplace in

order to allow the single sign on of these users across the different components with which

the user will interact in the same or different environments.

The CloudSocket Customer has already purchased the bundle and as all pre-requisites are

fulfilled, he/she can initiate the bundle deployment in the BPaaS Execution Environment.

Process

Dialog

• The CloudSocket Customer initiates the BPaaS bundle deployment

• The deployment operation starts configuring the whole BPaaS environment and

deploying all necessary components.

o Deploy the associated software components included in the workflow of the

BPaaS by first creating the respective VM(s) in the selected Cloud Providers

and then deploying and running the necessary component software.

o Configure the monitoring environment, by deploying the different

probes/sensors across the appropriate VMs (e.g., software component VM,

Workflow Engine VM, etc.) in which they should be situated.

o Configure the associated rules and agreements, which are defined in the

BPaaS bundle, and distribute them or their corresponding parts to suitable

components of the BPaaS Execution Environment.

o If all the previous actions are successfully performed, such that all the

internal and external services are reachable and the environment is

configured correctly to monitor and follow up the agreements defined for this

BPaaS at the different levels, then the environment deploys and configures

the BPaaS workflow defined in the bundle.

• The BPaaS bundle is deployed and available for the CloudSocket Customer.

Variations If something happens along the deployment process:

• The failure semantics, included in the deployment plan of the respective BPaaS

bundle, are followed. This can mean rolling back to the initial state or dealing with

local deployment problems through adaptation (e.g., select another VM from a

different provider to instantiate).

• The CloudSocket Broker can analyse the problem in order to resolve it and notify it to

the BPaaS Customer.

During the deployment process, the different actors can see the status of the BPaaS

bundles in order to follow them up. The environment includes different levels of details

depending on the technical skills of the roles:

• A technical role in the CloudSocket Customer Organization can just see what is the

overall status (e.g., pending) of the deployment, especially if he/she does not have

the appropriate knowledge to understand the respective details.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 86 of 149

• The CloudSocket Broker needs to see all details (for example, which step is currently

executed, what were the previous steps, what was the final state of these steps) in

order to check if a problematic situation not previous anticipated has been reached. If

the failure actions cannot handle this situation, then the CloudSocket Broker needs to

go to the allocation phase in order to modify the corresponding deployment plan of

the bundle.

Post-

Conditions

The BPaaS bundle is ready to be used.

Diagrams

Figure 37 Use Case Diagram – EE-UC-1-Deployment of BPaaS

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 87 of 149

Figure 38 Sequence Diagram – EE-UC-1-Deployment of BPaaS

Table 14 BPaaS Execution Environment – Use Case 1- Deployment of BPaaS

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 88 of 149

6.2.2 Execution of the BPaaS

Use Case id EE-UC-2 – Execution of the BPaaS

Title &

Description

Execution of the Business Process as a Service

The CloudSocket Customer, who is responsible for managing the business process of the

BPaaS for his/her organization, desires to launch a new business process. He/she identifies

it on the Marketplace and selects it in order to create an instance and launch it. Then, the

business process instance is executed step by step, following the definition of the

respective workflow in the BPaaS bundle. The BPaaS Execution Environment and the

Workflow Engine in particular, is responsible for managing all the tasks and orchestrate the

workflow.

There are two main types of tasks:

• Automatic tasks are managed by the environment, without any human intervention.

They can be processed internally or through external services (atomic services),

which are provided by third party cloud providers (registered previously in the

registry). The system doesn’t need to interact with Knowledge Workers in order to

fulfil the respective task execution.

• Manual tasks managed by Knowledge Workers, belonging to the CloudSocket

Customer organisation. The environment just have to know when the task has

been executed and what was the output produced. This involves the respective

interaction between the Knowledge Workers and the UI (in alignment with the

Workflow Engine) to indicate the task end and upload the respective output, if

needed. The tasks assignment could correspond to employees of different

departments of the end-user organization which are mapped to the role of

Knowledge Worker. Different types of manual task assignment are planned to be

supported.

During the workflow execution, the environment monitors the workflow at the different

levels, namely IaaS, PaaS, SaaS and BPaaS. If the environment detects any SLO violation,

it informs the Adaptation Engine which analyses such violations along with any other

contextual information and decides if it is needed to act through executing the adaptation

plan of a certain adaptation rule leading to the execution of some adaptation actions,

including the substitution of services or the scaling of software components, in order to

maintain the quality of service level promised.

Actors CloudSocket Broker and CloudSocket Customer each one involving technical roles (e.g.,

System Architects and Knowledge Workers, respectively).

Use Case

Objective

Execute and orchestrate the deployed BPaaS, making use of the authorisation policies,

which depend on the organizations and their security permissions (operational, technical,

human interaction)

Pre-

Conditions

The user identification is delegated to the authentication mechanism of the Marketplace to

enable single sign on for the users desiring to interact with the components of the BPaaS

Execution Environment. The workflow of the BPaaS has been correctly deployed and the

environment has been accurately and properly configured.

Process • The CloudSocket Customer desires to see the deployed business processes in the

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 89 of 149

Dialog Workflow Dashboard

• The Workflow Engine Dashboard identifies the CloudSocket Customer with the

assistance of the Marketplace (by e.g. exploiting authentication tokens or any kind of

user authentication proof) and returns the list of deployed business processes for

only this company.

• The CloudSocket Customer launches a new instance of the deployed workflow.

• The environment starts a new instance for this workflow, which has been previously

deployed.

• The CloudSocket Customer can manage the workflow instances generated (e.g.,

suspend, resume and cancel).

• The workflow is executed in a step by step according to the control flow of its

specification in the BPaaS bundle by differentiating between the running of the two

aforementioned types of tasks as follows

o For service tasks, the following two alternative cases apply:

� Internal execution, where software or scripts have to be executed.

It is managed by the Workflow Engine in order to cover the task’s

behaviour, without calling third party services.

� Running Exposed services (external or internal) to cover the

functionality of the task, which are identified by an endpoint. The

Workflow Engine does some internal activities to finalize the

handling of the task and then moves to the next task in execution

o Manual Tasks: These tasks should be managed by Knowledge Workers as

follows:

� Depending on the type of assignment, the Knowledge Worker

either receives, in the inbox, the pending tasks to be dealt with or

selects a task not yet assigned to him and any other worker.

� The Knowledge Worker manages the manual actions and finalizes

the task.

� The Workflow Engine finalises the task, also processing the user-

generated data (which have been uploaded) and goes to the next

step at the defined workflow.

• Monitoring Engine collects metric measurements so as to monitor the BPaaS

instance across different levels.

• The collected monitoring data can be visualized through the dashboard; depending

on the actor the information shown will be more detailed.

o The CloudSocket Broker can access all the information related with the

executed workflow instances in the environment. This level of detail is

necessary for analysis and improvement reasons, covering cases of

identifying problems and correcting them or optimizing a BPaaS bundle

based on the previous adaptation history.

o The CloudSocket Customer can only access information of the associated

instances of his/her end-user organization. He/she needs to know, at a high

level, the workflow instance status and the origin of the problems (if any).

• The SLA Engine analyses these measurements in order to identify possible SLO

violations which are part of the agreed SLAs when the purchase is done.

• The SLA Engine communicates SLO violations to the Adaptation Engine.

• The Adaptation Engine analyses the conditions of adaptation rules included at this

BPaaS bundle and executes the respective adaptation actions, when these rules are

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 90 of 149

triggered, in order to maintain the quality of the service offered.

o If the Adaptation Engine has to perform any kind of adaptation action, it

might need to:

� Suspend the execution of the workflow instance

� Execute the adaptation actions possibly with the cooperation of the

Cloud Provider Engine (adaptation at the infrastructure level) and

the Mediator (adaptation at the service level with data

incompatibility involved).

� Inform the Workflow & Monitoring Engine about modifications at

the workflow, service and infrastructure level

� Resume the execution of the possibly modified workflow instance.

Variations There are variations depending on the type of adaptation actions to be performed:

• The Cloud Provider Engine might not be called

• The Mediator might not be called

• The workflow specification for the suspended instance does not need to be

modified

• The instance might not even need to be interrupted and then resumed.

Post-

Conditions

n.a.

Diagrams

Figure 39 Use Case Diagram – EE-UC-2 – Execution of the BPaaS

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 91 of 149

Figure 40 Sequence Diagram – EE-UC-2 – Launch/Execute BPaaS instance

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 92 of 149

Figure 41 Sequence Diagram – EE-UC-2 – Reconfiguration environment

Table 15 BPaaS Execution Environment – Use Case 2 – Execution of the BPaaS

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 93 of 149

6.2.3 Monitoring of Agreement Status

Use Case id EE-UC-3 – Monitoring of Agreement Status

Title &

Description

Monitoring Agreement

This scenario enables both the CloudSocket Customer and CloudSocket Broker to check

the status of their agreements. Besides, they can see the incurred violations and the details

of the metrics associated to the SLOs.

Actors CloudSocket Customer (Business Engineer) and CloudSocket Broker (Technical

Consultant, Business Consultant).

Use Case

Objective

The aim of this use case it is to detail mechanisms provided to CloudSocket Customers and

CloudSocket Brokers in order to follow up existing agreements in terms of service levels

obtained and to get information about incurred violations, if any. Different levels of details

will be visualized to these actors. While the CloudSocket Customer will have access solely

to information specific to the agreements/SLAs related to BPaaS bundles purchased in

terms of metrics directly referenced by these SLAs, the CloudSocket Broker will be able to

get detailed information of all available agreements of all BPaaS bundles owned across

different levels spanning KPIs for business roles and SLOs for technical roles, allowing to

identify what are the root causes of violations.

Pre-

Conditions

The SLAs are created by the BPaaS Allocation Environment as part of the BPaaS bundle

which has been purchased by the CloudSocket Customer. Through the purchasing, the

customer agrees with the content of the BPaaS SLAs.

Process

Dialog

• During the execution of the BPaaS bundle, it is possible to see the status of the

agreement and the associated monitoring data.

• The CloudSocket Customer desires to check current status of all its active SLAs

through the SLA Dashboard or the CloudSocket Broker wants to check current status

of all active agreements for all BPaaS bundles owned.

• First a list of all existing and active agreements is presented. Below in this section a

detailed definition of what it is considered “active” agreement is provided. The

CloudSocket Customer only can see the active agreements, over which have

visibility, and the CloudSocket Broker can see all of them for all its clients.

• For each agreement the CloudSocket Customer and the CloudSocket Broker can

check the conformance to established agreement terms, after the purchase has been

performed. In case of violations:

o The CloudSocket Customer can see the violation, the respective penalty

and the associated metric information, in a high level description.

o The CloudSocket Broker can also see the violations but in a more detail

level obtaining monitoring information related to the different term values

and analysing more deeply the information to find the root causes. He/She

might also be able to see summaries and statistics over the penalties that

had to be paid.

The SLA implements the following steps:

• When the BPaaS bundle is purchased, the CloudSocket Customer reviews the

agreement and decides if he/she accepts or rejects it.

o In case of rejection, the purchase is cancelled.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 94 of 149

o In case of acceptance, the respective SLA is considered as agreed and the

process continues.

• When the BPaaS bundle is deployed, the monitoring for the associated SLA is

initiated.

• The SLA can be terminated when the respective completion conditions hold. As a

result, the monitoring is also ended in the context of this SLA.

Variations n.a

Post-

Conditions

n.a

Diagrams

Figure 42 Use Case Diagram – EE-UC-3 – Monitoring of Agreement Status

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 95 of 149

Figure 43 Sequence Diagram - EE-UC-3 – Monitoring of Agreement Status

Table 16 BPaaS Execution Environment – Use Case 3 – Monitoring of Agreement Status

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 96 of 149

6.2.4 Workflow Environment Management

Use Case id EE-UC-4 – Workflow Environment Management

Title &

Description

This scenario details the complete management of the workflow engine, including the

deployed workflows and their instances.

This scenario considers covering: i) the management of the own workflow engine for the

CloudSocket Broker; ii) managing lifecycle of the deployed workflows, which have been

defined at BPaaS Bundles, iii) and their instances. These features are not accessible for all

the involved actors, as the CloudSocket Broker will have full access to them while

CloudSocket Customer will have partial access to them:

• The administration aspects related with the Workflow Engine for both CloudSocket

Broker and CloudSocket Customer. While the CloudSocket Customer will only be

able to administer details about its organization, the CloudSocket Broker will be

able to administer such details for any existing organization. The details

managed/administered include

o Edit Organisation associated information

o Management of users registered to a particular organisation

The broker will also be able to manage the data base and its entities.

• The necessary operations to manage and configure the workflows and their

instances for the execution phase. The CloudSocket Customer can manage the

instances of the workflows purchased, while the CloudSocket Broker has full

control over all workflows and instances.

o Workflows management: It consists of managing the lifecycle of deployed

workflows. This management is the responsibility of the CloudSocket

Broker.

• Manage Workflow Instances (launch / stop / destroy). This includes the definition of

tasks which can be both manual and automatic. Both actors can manage this, but

the CloudSocket Customer only can see and manage instances of his/her

organization.

Actors CloudSocket Broker and CloudSocket Customer

Use Case

Objective

Allow to perform necessary operations to configure/manage the Workflow Engine. These

include:

• Deployed workflows (included in the BPaaS Bundles) lifecycle management.

• Workflow Instances management (lifecycle and configuration)

Database, users and organizations management.

Pre-

Conditions

A number of BPaaS Bundles and workflows exist for the CloudSocket Broker. These

bundles/workflows have been already been deployed in the BPaaS Execution Environment.

The users identification is delegated to the authentication mechanism of the Marketplace in

order to enable single sign on for users when requiring to interact with platform/environment

components.

Process

Dialog

This process will happen through interactions with the Workflow Engine GUI.

The administration aspects related with the Workflow Engine:

• CloudSocket Broker will be presented initially with a list of existing organizations.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 97 of 149

Once an organisation is selected, the process will be the same for both actors.

• Edit Organisation details will allow to modify data associated with a specific

organisation. This process will be synchronized with Authentication Engine.

• Management of Users will allow adding, removing and modifying existing users for

a particular organisation. This process will be synchronized with authentication and

authorization, which is covered by the Marketplace.

• In addition to these, it will be possible that the CloudSocket Broker checks the

Database entities that the Workflow Engine is using internally for Workflow

definition and execution.

The necessary operations to manage and configure the workflows and their instances:

• The CloudSocket Broker accesses the Workflow Engine UI where all defined

workflows (defined in BPaaS bundles) and all workflow instances are presented,

for any organization. The CloudSocket Customer can only see the information

related with respect to his/her organisation (and is of course not able to manage

the workflows but just see their information mainly in terms of their specification).

• For any workflow of the BPaaS Bundle, the CloudSocket Broker is able to deploy

and undeploy it. The automatic workflow deployment is part of the overall bundle

deployment as identified in the aforementioned use case. The CloudSocket Broker

can also move workflows from one Workflow Engine to another one, when needed,

provided that a distributed version of the BPaaS Execution Environment exists.

• Regarding workflow execution, the CloudSocket Broker can access the list of all

active workflow instances as well as all details of workflow deployments (process

definitions, images, business rules, etc.). The CloudSocket Customer can only see

the information related with respect to his/her organization.

• The CloudSocket Broker can manage workflow instance lifecycles (launch / stop /

resume/ destroy). The CloudSocket Customer can only manage the instances of

BPaaS bundles purchased.

Variations n.a

Post-

Conditions

n.a

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 98 of 149

Diagrams

Figure 44 Use Case Diagram - EE-UC-4 – Workflow Environment Management

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 99 of 149

Figure 45 Sequence Diagram – EE-UC-4 – Workflow Environment Management

Table 17 BPaaS Execution Environment – Use Case 4 - Workflow Environment Management

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 100 of 149

6.3 Components

The architecture supports a multitier topology to decouple the user interface from the business logic core.

Nevertheless, it depends on the specific component whether to apply more tiers or patterns to create a loosely

coupled design. In the following subsections, the two main layers and their components are analysed, beside

their interactions with the rest of environments.

6.3.1 User Interface workspace

This layer contains all the graphical interfaces components to interact with the users (CloudSocket Brokers, and

CloudSocket Customers). The interface should be mainly web-based, but it could contain other interface

approaches for example for backend configuration. The following components are included at this level.

6.3.1.1 Web UI / Workflow-Engine

Web UI / Workflow-Engine is responsible for interacting with the different actors involved in the lifecycle of a

workflow. The CloudSocket Customer, considered as a tenant, can purchase the business processes, follow up

the different instances and assign their tasks to its employees. Besides, the CloudSocket Broker can manage the

business process for the different tenants by using the graphical user interface. However, the respective

information needed for realizing the underlying functionalities is not stored and managed by this component but

by the Workflow Engine core.

Figure 46 BPaaS Execution Environment – Workflow Engine User Interface Mockup

Figure 46 indicates a possible user interface from YourBPM (integrated with Activiti based Workflow Engine).

6.3.1.2 SLA Dashboard

SLA Dashboard is responsible to present summaries of the status of the different agreements between providers

and the consumers (e.g., CloudSocket Brokers and CloudSocket Customers) with respect to how well the service

levels agreed are maintained. The information on agreements and respective violations is collected through the

SLA Engine and just visualized. As indicated above, the SLA Engine realizes the respective logic for SLA

information collection.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 101 of 149

Figure 47 BPaaS Execution Environment – SLA Monitoring Dashboard User Interface Mockup

Figure 47 indicates the user interaction of the SLA monitoring.

6.3.1.3 Monitoring Dashboard

Monitoring Dashboard is able to show the monitoring data associated to different BPaaS artefacts, such as

atomic services, VMs, workflow engines, and instances of already specified and running workflows (plus their

activities as another type of artefact that can be monitored). Moreover, when something goes wrong and a

violation is generated, the user can drill down to see the performance of the underlying components and identify

which ones to blame for this violation. Thus, the SLA Dashboard redirects to the Monitoring Dashboard to see

more fine-grained analysis of the monitoring information but only in the context of the CloudSocket Broker.

Figure 48 BPaaS Execution Environment – Monitoring Dashboard User Interface Mockup

Figure 48 shows the indicated user interface of the monitoring of a workflow on several levels and the

corresponding SLA monitoring.

6.3.2 BPaaS Middleware

This layer is in charge of managing all business logic and the data bases involved and exposing the

functionalities via respective APIs through which interaction with other components and environments is enabled.

This layer constitutes the core of the BPaaS Execution Environment. There is not a common data layer for each

component in the core, due to the components' complexity and heterogeneity. Hence, each component will

contain its own definition of the data base, internal sublayers and design patterns in order to have a completely

decoupled and scalable environment.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 102 of 149

6.3.2.1 Workflow-engine

It is responsible for managing the deployment, execution and management of the different workflow instances. It

will be multi-tenant leading to executing a workflow instance on behalf of one organisation by also taking care of

the corresponding workflow and organisation data level. This component will expose a REST API interface

allowing programmatic access to the different types of functionalities offered. This interface will be used both to

support user interaction through the Web UI / Workflow Engine component as well as enable interaction with the

rest of environments, e.g., to allow persisting, deploying and executing the business process.

• Tasks:
o Deploy/redeploy a workflow in the workflow-engine, instantiate it and execute it.
o Manage and follow the workflow instances, according to the workflow description in BPMN.
o Interact with manual tasks of the workflow.
o Manage the workflow engine environment.

• Main interfaces:
o Deployment workflow phase:

� Input: BPMN executable file (including the service endpoints for external service
tasks), which is part of the BPaaS bundle defined in the allocation phase.

� Output: when creating a new workflow instance, the identification of the instance and
its status.

o Execution workflow instance phase:
� Input: actions to be executed; for example the identifier of the workflow instance to be

modified (to be suspended/resumed, change the service endpoints)
� Output: Status message indicating the status/result of API method call, for example if

the suspension of the instance request has succeeded or if the service task endpoint

has been changed.

6.3.2.2 SLA Engine

It is responsible to follow up the different agreements created and assigned to the different BPaaS bundles. This

component should interact with the Monitoring Engine to obtain the measurements needed to enable assessment

of SLOs. The interaction will be managed by a publish/subscribe mechanism or a pull model to obtain only the

measurements for those metrics that directly map to the SLOs to be assessed. The defined SLOs will always be

mapped to the actual metrics to be collected and supplied by the Monitoring Engine. The definition of metrics is

done in the BPaaS Allocation Environment, where the Business KPIs have to be translated to the actual metrics

pertaining to the monitoring of SLOs. Hence, the BPaaS Allocation Environment generates and configures the

agreements while it is developing the BPaaS bundle. Afterwards, the CloudSocket Customers can select the

appropriated BPaaS bundle in the Marketplace and accept the associated agreement. Then, the BPaaS

Execution Environment needs to enforce the agreement, since the SLA is included in the BPaaS bundle that the

environment receives during the BPaaS deployment.

If any violation arises, the SLA Engine will notify/broadcast to all registered components that are interested to be

informed about the violation of the agreements, like the Adaptation Engine component which requires analysing

adaptation rules and executing the respective actions. Moreover, such violations would be communicated to

external components, such as the accountability and billing components, which would manage the necessary

actions including the enforcement of penalties, discounts and charges.

• Task:
o Subscribe to metrics directly related to SLOs of SLAs
o Generate and store violation events following the boundaries associated to the guarantee

terms/SLOs.
o Manage the agreements and violations.
o Notify/broadcast to all registered components any violation of the agreements on which they

have subscribed.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 103 of 149

o Access to the agreement and violation details, including historical data.

• Main interfaces.
o Purchase phase:

� Input: Agreements details in order to manage them.
� Output: Consolidated agreement.

o Deployment phase
� Input: the agreement, included in the BPaaS bundle.
� Output: the confirmation of the agreement enforcement and the status.

o Execution phase:
� Input: The agreement identifier in order to identify its associated metrics.
� Output: The notification of SLA violations, which is composed by the identifier of the

agreement plus what has been violated, how and when (i.e. SLO identifier and
measurement).

6.3.2.3 Monitoring Engine

It is responsible to monitor a BPaaS and correlate/aggregate monitoring data from different levels, from atomic

services or cloud components up to the level of workflows. It will expose an API in order to allow components,

such as the SLA Manager and the BPaaS Evaluation Environment, to draw the information monitored by

subscribing to particular metrics and perform the respective tasks assigned to them. In the case of the SLA

Manager, this will involve performing an SLO evaluation, while, in the case of the BPaaS Evaluation Environment,

this will involve performing background analysis of the monitored information in order to discover interesting

patterns in the context of one or more business processes. The component will cover both raw metrics (direct

measurements provided by deployed sensors or external measurement systems like PaaSs) and aggregated

metrics (formulas to exploit metrics already implemented and produce the respective aggregated measurements).

This component will also handle the monitoring of contextual information which will be handed over (through

exposing a particular API) to the Adaptation Engine to enable it to completely assess adaptation rules.

As metrics are involved in SLO and contextual conditions, it is essential that they need to be defined beforehand

in order to allow the Monitoring Engine to measure them and thus enable the evaluation of such conditions. The

BPaaS Evaluation Environment has an interface to this component via the publish-subscribe mechanism.

• Task:
o Allow implementation and description of user-defined metrics;
o Metric specification modification leading to changing the monitoring infrastructure/environment,

and new metrics definition for a BPaaS.
o Monitor and aggregate metrics;
o Inform interested parties about fresh metric values through the publish/subscribe mechanism
o Inform interested parties about historical metric values through the use of the REST-API
o Inform interested parties about contextual information

• Main interactions.
o Input: Description of metrics (Sensor configuration for raw metrics and metric formula

description to allow aggregation); Configuration of user-defined metrics (which includes how to
download the implementation, for example as a rar file);

o Output: Measurement DB (which can be realized by a time series database or a semantic
database or even both); Context DB (storage & update of contextual information); notification to
subscribers.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 104 of 149

6.3.2.4 Adaptation Engine

This component is responsible for the change of the BPaaS deployment (different services, different service

configuration and workflow structure, new services) to resolve the problematic situations identified by adaptation

rules. Different types of adaptations will be performed at different levels of abstraction. In particular adaptation

actions on VMs (deploy, migrate), services (substitute, rebind), workflow tasks (e.g., re-execute, map to different

service composition) and the workflows themselves (recompose workflow) are provided.

The management of the adaptation rules will be covered by a subcomponent called Rule Engine, which is

responsible to take decisions based on the environment variables and the performance levels encountered. So, it

should interact with the Monitoring Engine and the SLA Engine to collect the needed data required for the

evaluation of the rules exploited. The required data include SLO violations communicated by the SLA Engine as

well as contextual information produced by the Monitoring Engine (in which the Rule Engine needs to subscribe).

Such data are required in order to assess SLO and contextual conditions which constitute the left part of

adaptation rules. In case that one or more rules are triggered, the respective adaptation actions will be executed -

based on the settings from the BPaaS Allocation Environment - to maintain the quality of the service promised

and of the experience of the stakeholders by, e.g., migrating services to other providers and deploying software

components over different clouds.

The need for adaptation will be indicated by the Rule Engine as it possesses the knowledge of the adaptation

rules (covering scalability and the fault-tolerance) and be supported by the Adaptation Engine which includes an

adaptation library of actions that can be exploited to perform the different types of adaptation needed at the

different levels. The Adaptation Engine will need to perform either one or more adaptation actions. In the first

case, it will be responsible for just executing or delegating this action to another component (e.g., Cloud Provider

Manager). In the second case, the actions to be executed will be described in a form of a workflow which will also

dictate the sequence in which the adaptation actions have to be run, hence, there is a need for a (possibly

internal to the Adaptation Engine) workflow engine able to execute the adaptation workflows.

• Task:
o Evaluate adaptation rules which involves assessing contextual and SLO conditions (where the

latter are already evaluated and sent in the form of SLO violations to the Adaptation Engine)
o Manage the execution of an adaptation strategy (in the context of the triggering of a specific

rule)
o Adapt the BPaaS according to the adaptation strategy provided.

• Main interface:
o Input:

� To manage the rules: Violations, Metrics, description of adaptation rules (including
event patterns that lead to their triggering) to adapt a BPaaS, policies for adaptation
(e.g. max amount of VMs or service instances, cost limits), which are specified in the
allocation environment. The following functionalities are covered:

• register adaptation rules,

• modify adaptation rules on demand,

• get adaptation history for a certain BPaaS,

• allow executing personalized/customized adaptations.
� Referencing of the actual adaptation workflow (by the Rule Engine which is a sub-

component of the Adaptation Engine) in rules stored in the Rule Engine, part of the
Adaptation Engine, to allow its instantiation when a respective adaptation need arises.

o Output:
� Result of the executed adaptation.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 105 of 149

6.3.2.5 Cloud Provider Engine

This component is responsible for the complete deployment and lifecycle management of all the required

components of the BPaaS, including software components and VMs across multiple clouds, with transactional

semantics (at least for the deployment part). These capabilities will be managed by different subcomponents of

the Cloud Provider Engine to provide a modular, flexible and scalable architecture. To exhibit these capabilities,

the Cloud Provider Engine will build upon existing functionalities offered through the interfaces exposed by the

cloud providers.

The BPaaS deployment with transactional semantics will be managed by the Deployment Engine, responsible to

deploy, configure and operate all appropriate software and VM components before deploying a workflow in the

Workflow Engine. In essence, the Deployment Engine will be responsible for executing the deployment plan

included in the BPaaS bundle by orchestrating all necessary steps. This deployment plan will not only cover

component deployment but also agreement registration and validation, monitoring infrastructure deployment and

configuration, and workflow deployment in the Workflow Engine in order to guarantee that in the end the workflow

of the BPaaS bundle will be ready for execution. If something goes wrong, then the transactional/failure

semantics, which is defined as part of the deployment plan, will dictate what actions will have to be performed to

remedy for this, which could involve rolling back the system or compensating previous deployment actions and

performing new ones with the same goal.

The Cloud Provider Engine will expose two interfaces: (a) an interface to enable the performance of re-

deployment actions in order to interact with the Adaptation Engine component, and (b) an interface to interact

internally with the Deployment Engine for managing deployment transactionally.

The Deployment Engine sub-component will comprise different plug-ins to connect to the different clouds (by also

exploiting previously generated end-user cloud credentials), allowing to interact with these clouds to execute a

common action as, e.g., the concrete deployment actions for a VM will be different depending on the cloud

provider, but the actual abstract action is the same: deploy a VM. Hence, this sub-component will allow providing

an abstraction over the different specificities of cloud providers with respect to cloud management actions and it

will be responsible for transforming abstract management actions to cloud-specific ones.

• Task:
o Manage the complete BPaaS deployment.
o Manage and abstract from current IaaS capabilities.
o Manage the relationships with the different cloud providers.
o Offer scaling & migration capabilities to the Adaptation Engine

• Main interfaces
o Input:

� Deployable workflow (BPaaS bundle):

• BPMN executable file (including the endpoints services of the services tasks)

• SLA agreement definition (mapping the Service Level Objectives to
measurable metrics)

• List of applicable (adaptation) and alternatives rules to be applied

• Semantic Metadata (describing metrics or adaptation actions) to allow taking
decisions in the execution phase.

� Deployment plan along with transactional semantics, deployment actions to be
executed in the context of an adaptation rule which are dictated by the Adaptation
Engine (as part of the BPaaS bundle)

o Output: The result of executing the deployment plan.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 106 of 149

6.3.2.6 Process Data Mediator

The component is responsible for mapping output data of one component/service to the input data of a

subsequent component/service in execution and performing the respective data integration/transformation in

order to guarantee an error-free execution of the workflows. It will rely on ontology based mapping (when the IO

of the process activities/components is annotated via ontology concepts during the design of the business

process and workflow) as well as data mapping and transformation techniques (even in case where no ontology

annotations are provided by relying on the schemata of the data involved - we can assume XML schemata here).

The following scenarios through the use of such component are foreseen.

• At design time, when the complete BPaaS workflow has been generated, it can include the specification
of data transformation tasks. The process data mediator offers an API through which the respective
required transformation tasks can be realized while external data transformation services could also be
alternatively exploited.

• At design time, when the BPaaS workflow has been completed but there is no specification of any
transformation task for data incompatible services, there can be some annotations mapping data to
ontology concepts and also indicating that the output data of one service has to be mapped to the input
data to the next service. Such annotations can then be exploited by the workflow engine in order to
interrupt the workflow execution, run the respective API method of the Process Data Mediator, and once
this is done, use the transformed data as input to the next service after of course the respective workflow
execution is resumed. The API method of the Process Data Mediator should be responsible for finding
the mapping between the data of the pair of services involved and then run the respective data
transformation.

• At runtime, the workflow of a BPaaS has to be adapted through the substitution of one service (B) with
another one (B1). If the output of the previous service in execution (A) is not compatible with the new
service (B1), then there is a need for data transformation. As such, the respective API method of the
Process Data Mediator could be exploited which could inspect the (possibly ontology-based) definitions
of the services involved (A and B1) in order to produce the mapping and then use it to perform the
respective transformation. Then, as the workflow execution has been suspended, the workflow will be
resumed with the execution of the new service (B1) which has now the appropriate input.

Based on the above analysis, we can identify the three main modes of usage for the Process Data Mediator: (a)

at runtime to realize a particular data transformation task already specified in a BPaaS workflow; (b) at runtime to

realize a data transformation functionality required between two services with incompatible data in a certain

BPaaS workflow in an actually indirect manner (as no data transformation is prescribed directly in the workflow

but there is only an annotation dictating it); (c) at runtime to check and adapt the data of a previously executed

service with those needed by a new service which substitutes the one that was next in the execution order.

• Task:
o Map output data of one component/service to the input data of another component/service;
o Perform the respective transformation based on the mapping specification/result

• Main interfaces:
o Input: data schema for a service/component or ontology annotation, specification of the

mapping in a specific language (optionally transformation logic/specification)
o Output: transformed data to be used as input to the next service in execution order

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 107 of 149

6.3.2.7 Component Diagram

Figure 49 BPaaS Execution Environment – Component Diagram

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 108 of 149

6.3.2.8 Roles

Figure 50 BPaaS Execution Environment – Actors

The following actors and roles will be involved in the BPaaS Execution Environment:

• CloudSocket Operator for hosting the CloudSocket instance

• CloudSocket Broker for managing BPaaS bundles as well as their own Marketplace (offered as service

by the CloudSocket Operator).

• The CloudSocket Customer which needs to exploit a certain BPaaS. There are different roles that could

be undertaken by different users of this actor. Each role covers different phases of the life-cycle

management of the BPaaS, and the skills are different such as business, technical and operative,

nevertheless every role can be cover by the same actor.

One type of CloudSocket Customer role will be the Business Engineers (business skills), which are

responsible of assessing business requirements and costs in order to find and purchase the different

BPaaS bundles at the Marketplace. The Process Responsible (technical skills) will deal with the

execution and management of the business process instances in order to follow up the status of the

purchased BPaaS

Another type of BPaaS Customer role will be the Knowledge Worker, which is responsible to manage the

manual tasks of the workflows mapping to the BPaaS bundles purchased.

• The Cloud Providers offering different services at different levels (i.e., IaaS, PaaS, SaaS) enabling the

creation of virtual machines to host software components as well as the direct SaaS call to realize a

certain functionality, which may be required for the BPaaS.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 109 of 149

6.3.3 Data Interface

The Execution Environment exposes three main interfaces with the rest of the environments to manage the

deployments and the SLA, besides exposing the monitored information. The following data is used to interact

between the different environments.

Figure 51 BPaaS Execution Environment – Interfaces

6.3.3.1 Interface to Deploy the BPaaS Bundles.

The Marketplace uses this interface to send the BPaaS bundle for deployment, which contains all the details to

configure the BPaaS environment. Such data include the details of rules, adaptations, cloud providers, the

software component, atomic services, the business process definition and the executable workflow. We can

consider some standards to cover the different parts of the interchangeable data.

• Adaptation workflows/strategies: BPMN could be exploited

• Adaptation history: mapping of workflow instances to certain adaptation workflows that were executed

for them, respective adaptation rules and reasons for adaptation - here the own format/language is

deployed (e.g., defining mappings through IDs to respective information stored elsewhere)

• Adaptation rules in form of SRL (SRL 2015) as part of CAMEL (CAMEL 2015) will be used with

extension to be able to specify adaptation strategies and contextual conditions: the form is the following:

rule: event_pattern -> adaptation plan/workflow/strategy

where rule can have an ID as well as an organisation/user owning it as well as other meta-data (e.g.,

date of creation). An event pattern maps to a combination of events through the use of logical or time

operators, similarly to other event pattern description languages. We can have a pointer to the

adaptation strategy/workflow/plan which is formally described by BPMN. If we desire not to use BPMN

as adaptation plans can be quite simplistic and only sequence-based, then action specification

constructs in SRL can be exploited along with some possible extensions to cover different types of

adaptation actions (not only scaling but fail-over and other actions on higher-levels).

• User/Organisation information : Pointers to users and organisation information to be drawn through the

SCIM (SCIM 2015) protocol/standard from the Marketplace.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 110 of 149

• Workflows are specified in BPMN.

• Data mappings: need to check the format/language to be used for their specification. There can be

different languages depending on the task that has to be performed (e.g., map ontology concepts, XML

document elements, etc.). Potential candidates are RML (RDF Mapping Language) (RML 2015), R2R

(R2R 2015) and CIDOC (CIDOC 2015) mapping language. The latter has already been used for

generating particular mappers which have been used in data integration tasks.

• Deployment plans CAMEL (CAMEL 2015) deployment meta-model (CloudML 2014) with any kind of

extension needed.

The following example indicates the interchangeable data:

Workflow Nightly-Search Analysis

CloudProvider {

 Cloud {

 name: EC2

 endpoint: http://apigateway.eu-west-1.com/

 }

 Cloud {

 name: OpenstackUlm

 endpoint: http://apigateway.uulm.de/

 }

}

CloudTenant {

 Tenant {

 cloud_id: EC2

 name: CloudSocketAmazon

 secret: amazonsecret

 }

 Tenant {

 cloud: OpenstackUlm

 name: CloudSocketOpenstack

 secret: openstacksecret

 }

}

Service Requirements {

 Requirement {

 name: CustomAnalysisCrawlerRequirement

 hardware requirement {

 min # cores: 1

 max # cores: 4

 min memory: 1024

 max memory: 4096

 min disk: 10

 max disk: 50

 }

 image requirement {

 os: Ubuntu_amd64_14.04

 //alternative: cloud specific uuid

 uuid: uuid-1234

 }

 virtual machine instances requirement {

 initial # instances: 1

 max # instances: 3

 }

 }

 Requirement {

 name: CustomAnalysisServerRequirement

 hardware requirement {

 min # cores: 2

 max # cores: 8

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 111 of 149

 min memory: 1024

 max memory: 4096

 min disk: 10

 max disk: 50

 }

 image requirement {

 os: Ubuntu_amd64_14.04

 uuid: uuid-1234

 }

 virtual machine instances requirement {

 initial # instances: 1

 max # instances: 1

 }

 }

}

communication CustomAnalysisCommunication To WikiCommunication {

 from Wiki.WikiCommunication to CustomAnalysisSoftware.CustomAnalysisCommunication

}

communication CustomAnalysisCrawlerCommunication To CustomAnalysisServerCommunication {

 from CustomAnalysisCrawlerComponent.CustomAnalysisCrawlerCommunication to

CustomAnalysisServerComponent.CustomAnalysisServerCommunication

}

Services {

 Service {

 name: Jira

 serviceType: external

 endpoint: http://jiraprovider.com/

 provided communication JiraCommunication {

 port: 80

 }

 }

 Service {

 name: Wiki

 serviceType: external

 endpoint: http://wikiprovider.com/

 provided communication WikiCommunication {

 port: 1234

 }

 }

 Service {

 name: CustomAnalysisSoftware

 serviceType: internal

 errorPolicy: to be specified

 software component {

 name: CustomAnalysisCrawlerComponent

 cloud: EC2

 requirement: CustomAnalysisCrawlerRequirement

 configuration {

 download: wget http://analysis-crawler.com/ -O analysis-crawler.zip

 install: unzip analysis-crawler.zip

 start: ./analysis-crawler.sh start

 stop: â€¦

 }

 provided communication CustomAnalysisCrawlerCommunication {

 port: 4567

 }

 required communication CustomAnalysisCommunication To WikiCommunication {

 port: 1234

 }

 }

 software component {

 name: CustomAnalysisServerComponent

 cloud: OpenstackUlm

 requirement: CustomAnalysisServerRequirement

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 112 of 149

 configuration {

 download: wget http://analysis-server.com/ -O analysis-server.zip

 install: unzip analysis-server.zip

 start: ./wait-for-crawler-up.sh | ./analysis-server.sh start

 stop: â€¦

 }

 provided communication CustomAnalysisServerCommunication {

 port: 80

 }

 required communication CustomAnalysisCrawlerCommunication To CustomAnalysisServerCommunication {

 port: 4567

 }

 }

 }

}

6.3.3.2 Interface to Manage Service Level Agreements

Two potential approaches are foreseen to define the SLA specification language: a) to enrich WS-Agreement

(WS-Agreement 2011) by using/referencing quality terms, such as quality metrics, defined in OWL-Q (OWL-Q

2015); b) extend OWL-Q to be able to specify SLAs.

If the SLA Engine is based on the first approach relying on WS-Agreement specification (WS-Agreement 2011)

and OWL-Q (which will be extended), then an agreement specification will be defined using the WS-Agreement

schema (WS-Agreement 2009) and it will refer to metrics and other quality terms defined in OWL-Q (OWL-Q

2015) to complete the specification of SLOs. The main parts of the WS-Agreement schema are the following:

Figure 52 SLA Interface

A simple example of the agreement description, following this WS-agreement schema:

<?xml version="1.0" encoding="UTF-8"?>

<wsag:Agreement xmlns:wsag="http://www.ggf.org/namespaces/ws-agreement" wsag:AgreementId="BPaaS_JIRA_ticketing_01">

 <wsag:Name>Agreement JIRA ticketing </wsag:Name>

 <wsag:Context>

 <wsag:AgreementInitiator>CompanyA</wsag:AgreementInitiator>

 <wsag:AgreementResponder>CloudSocket BrokerA</wsag:AgreementResponder>

 <wsag:ServiceProvider>AgreementResponder</wsag:ServiceProvider>

 <wsag:ExpirationTime>2015-03-07T12:00:00+0100</wsag:ExpirationTime>

 <wsag:TemplateId>template_JIRA_ticketing</wsag:TemplateId>

 <sla:Service xmlns:sla="http://sla.cloudsocket.eu">Jira_ticketing</sla:Service>

 </wsag:Context>

 <wsag:Terms>

 <wsag:All>

 <wsag:ServiceProperties wsag:Name="ServiceProperties" wsag:ServiceName="Jira_ticketing">

 <wsag:VariableSet>

 <wsag:Variable wsag:Name="CPULoad" wsag:Metric="xs:double">

 <wsag:Location>

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 113 of 149

 http://www.cloudsocket.eu/owlq/taxonomy/CPULoad

 </wsag:Location>

 </wsag:Variable>

 </wsag:VariableSet>

 </wsag:ServiceProperties>

 <wsag:GuaranteeTerm wsag:Name="GT_CPULoad">

 <wsag:ServiceScope wsag:ServiceName="Jira_ticketing"></wsag:ServiceScope>

 <wsag:ServiceLevelObjective>

 <wsag:KPITarget>

 <wsag:KPIName>CPULoad</wsag:KPIName>

 <wsag:CustomServiceLevel>

 {"constraint" : "CPULoad LT 90"}

 </wsag:CustomServiceLevel>

 </wsag:KPITarget>

 </wsag:ServiceLevelObjective>

 </wsag:GuaranteeTerm>

 </wsag:All>

 </wsag:Terms>

</wsag:Agreement>

6.3.3.3 Interface to publish the monitored information.

This interface semantically describes and aggregates the measures from the BPaaS Execution Environment to

be further abstracted towards domain specific business process level in the BPaaS Evaluation Environment.

In OWL-Q (OWL-Q), there is a concept representing a measurement which is related to the measured value, the

timestamp indicated when it was generated and to the respective metric measured. Metrics are defined in turn via

respective concepts in OWL-Q in a semantically rich way. To this end, any kind of aggregated measurement

which could exposed to different components via the publish/subscribe or the REST interface of the Monitoring

Engine will be mapped to the description of instances of this measurement concept.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 114 of 149

7 BPAAS MARKETPLACE

7.1 Introduction

The foreseen Cloud Marketplace is based on the YMENS cloud marketplace, which is an online storefront

through which customers may subscribe to and access native cloud applications provided by Ymens or other

independent software vendors (ISVs). The Marketplace and it’s underlying components act as a Cloud Service

Brokerage (CSB) platform acting as an intermediary between cloud providers and cloud consumer and assisting

companies in choosing the services and offerings that best suits their needs.

The Marketplace, in the context of CloudSocket, has been selected as a dedicated environment to facilitate

customer and provider on boarding, from customer ordering and procurement of BPaaS to provider registration of

its atomic cloud services.

This Marketplace, in the context of CloudSocket, provides the following high-level features:

• BPaaS & SaaS Product Catalog

• Decision Support System for BPaaS procurement

• Customer & User Registration & On-boarding

• Identity Provisioning & Identity Lifecycle Management

• Cloud Service Provider registration of atomic cloud services

• Registry Services

• Authorization (at service level) & Authentication (at user level)

The following major building blocks fulfil the functional capabilities of the Marketplace Environment:

i. Customer UI Layer: Frontend Portal used by Business User to purchase and administer services.

ii. Product Management Layer: Product Information System that manages product marketing data.

iii. Identity Management System: Provides identity federation, provisioning, authentication and

authorization.

iv. Service Orchestration Layer: Manages service provisioning, ordering and billing.

v. Cloud Provider Hub: Gateway for registering and consuming atomic cloud services.

vi. Service Repository Manager: Set of registries for cloud services and software components.

7.2 Functional Capabilities

The Marketplace is a software system used in production that already serves multiple customers and, as such,

has objectives beyond the scope of CloudSocket. As a CloudSocket environment, the Marketplace will support its

existing functionalities and will be extended to support additional scenarios for the CloudSocket objectives in

BPaaS procurement.

The following scenarios were identified as part of the CloudSocket context. These scenarios are depicted using

the UML nomenclature:

- Publish a BPaaS Bundle to Product Catalog

- Purchase a BPaaS Bundle

- Register New Customer and Users

- On-board Atomic Service Provides

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 115 of 149

7.2.1 Publish BPaaS Bundle to Product Catalogue

Use Case ID MP UC2 - Publish BPaaS Bundle to Product Catalogue

Title &

Description

A CloudSocket Broker publishes a BPaaS Bundle in the Marketplace Product Catalog.

The Broker publishes a completed and hence final BPaaS Bundle in the Marketplace

Product Catalog so that CloudSocket Customer can purchase, deploy and use it.

Actors CloudSocket Broker

Use Case

Objective

To publish a BPaaS Bundle into the Marketplace and enable CloudSocket Customer to

buy it.

Pre-Conditions The Bundle exists in the Bundle Repository, and it is in the Complete state.

Process Dialog 1. The Broker selects a BPaaS Bundle.

2. The Broker issues the command to publish the BPaaS Bundle in the

Marketplace Product Catalog.

3. The BPaaS Allocation Environment invokes the Product API exposed by the

Product Management Layer.

4. The Broker browses the bundles using the Catalog Management UI.

5. The Broker selects the published bundle and edits it description

Variations 5.a) The published Bundle is not found. The publish command is repeated.

Post-Conditions The BPaaS Bundle is published in the Marketplace Product Catalog and the Business

Process Users can find and buy it using the Marketplace.

Diagrams

Figure 53 Use Case Diagram – MP UC2 - Publish BPaaS Bundle to Product Catalogue

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 116 of 149

Figure 54 Sequence Diagram – MP UC2 – Publish BPaaS Bundle to Product Catalogue

Table 18 BPaaS Marketplace – Use Case 1 – Publish BPaaS Bundle to Product Catalogue

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 117 of 149

7.2.2 Purchase BPaaS Bundle

Use Case ID MP-UC2-Purchase BPaaS Bundle

Description

The CloudSocket Customer browses the Product Catalog for Business Processes that fulfill his/
her needs. He/she performs searches based on business criteria and is presented with BPaaS
Bundles that match these criteria.

After selecting a bundle, the user is presented with a guided decision wizard in which the user
can further choose the most appropriate BPaaS Bundle.

Making the final selection, triggers the ordering flow. Depending if the cusomter is a new or
returning, the client has the chance to provision the organization he belongs to, the account and
other organization user, and to add the billing & payment details.

Upon final confirmation of the order, the Marketplace sends the deployment request to the
BPaaS Execution Environment.

Actors CloudSocket Customer and CloudSocket Broker

Use Case
Objective

Select & Oder the most appropriate BPaaS Bundle in the environment.

Pre-
Conditions

All accounts and agreements with third parties (for atomic services) and Cloud Providers (for
cloud capabilities) have been previously generated and achieved, respectively.

BPaaS Bundles have been defined in the BPaaS Design Environment and published to the
Marketplace’s Product Catalog.

Process
Dialog

1. The CloudSocket Customer browses BPaaS bundles in the Marketplace.

2. The Marketplace presents to the user a decision wizard to enable choices based on

business criteria.

3. The CloudSocket Customer selects the preferred BPaaS bundle according to domain

specific business process properties.

4. The Marketplace collects identity information from the CloudSocket Customer and

creates a new organization and account:

a. Inside the Identity Management System

b. With the Atomic Cloud Services associated with the BPaaS Bundle

5. The Marketplace manages or validates all the preconditions of the BPaaS.

6. If the preconditions are fulfilled, the Marketplace triggers the deployment via an Web

Service call inside the BPaaS Execution Environment

7. The BPaaS bundle is deployed and available for the Business User.

Variations

If something happens along the ordering process:

• The environment rolls back all the previous steps and settles all billing transactions.

• The CloudSocket Broker can analyze the problem in order to resolve it and notify it to the

Business Process User.

During the ordering process, the different actors can see the status of the service orders so they
can react on them:

• The CloudSocket Customer can track the order fulfilment status and be notified upon

completion.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 118 of 149

• The CloudSocket Broker can see the history and status of all orders placed.

Post-
Conditions

The BPaaS bundle deployment request is received by the execution environment.

Diagrams

Figure 55 Use Case Diagram – MP-UC2-Purchase BPaaS Bundle

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 119 of 149

Figure 56 Sequence Diagram – MP-UC2-Purchase BPaaS Bundle

Table 19 BPaaS Marketplace – Use Case 2 - Purchase BPaaS Bundle

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 120 of 149

7.2.3 Register New Customer User

Use Case ID MP-UC3-Register New Customer User

Description
The user, belonging to a CloudSocket Customer organisation, wants to create an organisational
account in the Marketplace and register the organization’s end-users so that he can order
BPaaS bundles without the need for further registration.

Actors CloudSocket Customer and CloudSocket Broker

Use Case
Objective

Create organisation and user identity information

Pre-
Conditions

N/A

Process
Dialog

1. The CloudSocket Customer user accesses the Marketplace and clicks on register.

2. The user submits the identity data pertaining to the organization and the administrative

account

3. The Customer Portal inside the Marketplace send the data to the Provisioning Service

4. The Provisioning Service orchestrates the data submission

a. to the Marketplace Identity Server and

b. if necessary to the Atomic Cloud Services

5. In case of success, an organizational account is created and the CloudSocket

Customer User can add multiple end-user accounts

6. The end-user accounts are created through the same procedure via the Provisioning

Services

The accounts are created and confirmation emails are sent to the users.

Variations

If something happens along the identity registration process:

• The environment rolls back all the previous steps and organisation/user accounts are

marked for deletion.

After the registration process, the different actors can see the status of organization and its
users:

• The CloudSocket Customer user can add/delete/update user accounts.

• The CloudSocket Broker can add/delete/update user accounts and organizations.

Post-
Conditions

A confirmation email is received by the Business User and.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 121 of 149

Diagrams

Figure 57 Use Case Diagram – MP-UC3-Register New Customer User

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 122 of 149

Figure 58 Sequence Diagram – MP-UC3-Register New Customer User

Table 20 BPaaS Marketplace – Use Case 3 - Register New Customer User

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 123 of 149

7.2.4 Onboard Cloud Service Provider

Use Case ID MP-UC-4-Onboard Cloud Service Provider

Description

The Independent Software Vendor, providing an atomic cloud service, wants to publish its
service in the Marketplace.

Actors Service Provider

Use Case
Objective

Register atomic cloud service and publish in Product Catalogue.

Pre-
Conditions

A commercial agreement is reached between the CloudSocket Broker and the Service Provider.

Process
Dialog

1. The Service Provider accesses the Cloud Service Hub and clicks on register.

2. The Service Provider submits service metadata: urls, service description, prices, …,

3. The registry metadata is submitted to the Service Registry

4. The product metadata is submitted to the Product Management System

5. The Service Provider tests its service for compliance. If:

a. Success: The Product and Service are marked as active

b. Fail: The Service Provider is notified and can update the data

The Service is registered and marked as active.

Variations

If something happens along the registration process:

• The environment rolls back all the previous steps and service metadata is marked for

deletion

After the registration process, the different actors can see the status of organization and its
users:

• The Service Provider can update the service and product metadata.

• The CloudSocket Broker update/delete the service and product metadata.

Post-
Conditions

The registered service is tested successfully for compliance

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 124 of 149

Diagrams

Figure 59 Use Case Diagram – MP-UC-4-Onboard Cloud Service Provider

Figure 60 Sequence Diagram – MP-UC-4-Onboard Cloud Service Provider

Table 21 BPaaS Marketplace – Use Case 4 – Onboard Cloud Service Provider

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 125 of 149

7.3 Components

The Marketplace architecture supports multitier topologies in order to decouple the user interface and the

business logic core. Nevertheless it is responsibility of every component to apply more tiers or patterns to create

a loosely coupled design. The following sections the major components in the Marketplace and the interaction

with the other BPaaS Environments.

7.3.1 Customer UI Layer

7.3.1.1 Marketplace

This frontend allows the users to browse, order, provision, and manage their resources. This Portal is the user’s

single pane of glass to remotely browse a storefront catalogue of cloud services and provision desired services. It

has a catalogue of cloud services that users can browse (storefront), an e-commerce Shopping Cart integrated

with PayPal and other Payment Gateways and an account registration module to support new customer

onboarding.

Decision Wizard: Part of the Marketplace, the Decision Engine helps users automatically find the appropriate

BPaaS bundle for their needs from among an extensive offer. Is will be a wizard like interface to enable service

selection based on location, compliance, cost, SLAs and other domain specific business process criteria.

7.3.1.2 Customer Portal

The Customer Portal provides a single point of entry for CloudSocket Customer to login and manage system

accounts, resources, access control and purchased cloud services (through the User Management UI). End-

users are able to access their entitled services in a seamless manner, with web SSO, via the Cloud Portal and

received feedback and statistics about service usage via the pre-configured Dashboard(s).

Figure 61 Marketplace – Customer Portal – User Interface Mockup

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 126 of 149

7.3.2 Cloud Broker Engine

The Cloud Broker Engine provides the core cloud automation capabilities and a business rules management. It

ensures catalogue management, order orchestration, service provisioning and identity synchronization in an

authorized manner.

Product Management Layer: The Product Information System manages product-marketing data. It is the core

sales component that transforms a set of cloud services into products and bundles, with prices, discount and

promotions, with sales description, product sheet and variants.

Decision Support System: Customized rule engine that supports the service selection process, with customer

defined criteria that are linked to business requirements like cost, location, data protection level, etc.. The criteria

and the decision matrix are extendable and customizable.

Service Orchestration Layer: The orchestrator supports managing service provisioning, ordering and billing and

assures the fulfilment of cloud services provision.

7.3.3 Identity Management System

Identity Manager is the authentication component responsible for verifying the identity of a principal requesting

authorization, as well as group membership inquiries. It ensures interoperability and Cross-Domain SSO by

relying on standards such as SAML (SAML 2015), OpenID Connect (OIDC 2015) and SCIM (SCIM 2015). It

ensures identity propagation and just-in-time provisioning. The Access Manager is responsible for authorization

and access policy management, which serves as the basis for the decisions of the Policy Manager that either

grants or denies the requests for capabilities.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 127 of 149

The supported functionalities of the Identify Management System are as follows:

• Identity Management (IM)

o General Identity Management

o Federated Identity Management (FIM)

• Authentication

o General Authentication

o Single Sign-On (SSO)

• Authorization

o Account and Attribute Management

o Account and Attribute Provisioning

Supported use cases include:

Table 22 Identify Management Use Cases

Title Description

Identity Provisioning
Feature the need support and manage customer policies for identity decommissioning
including transitioning of affected resources to new identities.

Identity Configuration
Feature the need for portable standards to configure identities in cloud applications and
infrastructure (virtual machines, servers etc.).

Organization/Customer
Administration

Feature the ability for enterprises to securely manage their use of the cloud provider’s
services (whether IaaS, PaaS or SaaS), and further meet their compliance requirements.
Administrator users are authenticated at the appropriate assurance level.

Access to Enterprise Cloud
Hosted Applications

Exhibit the need for seamless authentication and access privileges conveyance from an
enterprise that is wishes to host their workforce applications on a public cloud.

Cloud Identity Management,
SSO and Authentication

A user (or cloud consumer) is able to access multiple SaaS applications using a single
identity.

Federated User Provisioning
and Management

Show the need for provisioning, administration and governance of user identities and their
attributes for organizations that have a distributed structure which includes many central,
branch offices and business partners where each may utilize cloud deployment models.

Federated SSO and Attribute
Sharing

Feature the need for Federated Single Sign-On (F-SSO) across multiple cloud
environments

Enterprise to Cloud SSO

A user is able to access resource within their enterprise environment or within a cloud
deployment using a single identity. Users expect and need to have their enterprise identity
extend to the cloud and used to obtain different services from different providers. By
accessing services via a federated enterprise identity, not only the user experience of SSO
is to gain, but also Enterprise compliance and for control of user access

Offload Identity Management
to External Business Entity

Show the need for federated identity management which enables an enterprise to make
available cloud-hosted applications to either the employees of its customers & partners or
its own institutional consumers and avoid directly managing identities for those users

Per Customer Identity
Provider Configuration

Show the need for cloud tenants to securely manage cloud services using automated tools
rather than navigating and manually configuring each service individually

Delegated Identity Provider
Configuration

Show the need for cloud tenant administrators need to delegate access to their identity
services configuration within a multi-tenant cloud service to their chosen IdP service

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 128 of 149

7.3.4 Cloud Provider Hub

This component represents the gateway for registering and consuming atomic cloud services. The integration of

new Service Providers provides the following functionalities:

• Provisioning new instances of the service / application: purchase, modification or cancellation.

• Provisioning users who can make use of the application / service.

• Validation of user credentials in order to use application / service contracted.

Provider Management UI: The aim of this portal is to enforce the integration of every Service Provider to

become a part of the Marketplace. It manages Service Provider integration and lifecycle.

Cloud Service Gateway: It enables atomic cloud services routing proxy and adaption layer that supports

provisioning and SSO.

7.3.5 Repository Manager

This component offers access to the repositories and therefore to the meta-data of the services. Different options

to manage the access are considered to the different registries (a) someone may indicate the repository/registry

apart from the query itself and then let the Repository Manager to perform the respective call and return back the

result from the registry, (b) an API is provided by the Repository Manager for each repository/registry - in this

case, there is a need of calling the API methods of the corresponding registry with the respective query needed

and, (c) direct access to repositories - in this case, the endpoint of the repositories has to be known in order to be

able to execute a particular query.

Based on the following requirements, we consider the two first options in order to be more modular and flexible:

a) there is a need for a component to manage these repositories;

b) the access API can be uniform to hide specifies of the technologies used to realize these

repositories - otherwise, different forms of queries will need to be run for different repositories in

possibly different query languages which might be overwhelming for components which need to

interact with more than one registry in the end;

c) this is needed for accounting reasons - otherwise, there should be a sophisticated mechanism

which detects who is performing which query on what repository in order to proceed with the

respective charge or to check if the access is allowed due to non-payment reasons (component

owner did not pay this month to access the repository service).

Hence the Repository Manager is characterised by:

• Tasks: Handles access to the repositories;

• Main Interfaces:

o Input: Endpoint of repositories (data to be collected) and credentials

o Output: Information retrieved through calling the respective access method of the Repository

Manager API.

The following three registries are part of the Repository Manager.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 129 of 149

7.3.5.1 Atomic Service Registry

The Atomic Service Registry describes the cloud services that a Service Provider offers. There are three

essential components to the Service Catalogue:

• The data model (in a self-describing JSON format) holding the information for the Service Catalogue to

describe standard and extended attributes of Service Providers and service offerings.

• The standard set of structures to describe the Service Provider and Service Provider’s products and

services.

• The API to interact with the Service Catalogue.

The different workflows use them to be part of the service tasks in the business process definition. Hence, these
descriptions have to include both functional descriptions, as business details and technical specification (as the
interface description). Besides, this is required certainly in case of adaptation reasons, as we might need to
substitute one service with another one. Additionally, it can also be used to draw additional information about a
particular service, which could then facilitate its (adaptive) execution.

7.3.5.2 Software Component Registry

This is required in the context of a BPaaS realization, deployment and adaptation as we need to know how to

obtain a software component and deploy/run it in a particular VM. Such information can be drawn on demand

(based on the component identifier and other references in the BPaaS bundle) when the respective task

(deployment/adaptation) has to be performed. As in the case of the atomic service, the business process needs

to know details about the functional descriptions, the business details and the technical specifications (as the

interface description) in order to include and use them in the design of the BPaaS.

7.3.5.3 Cloud Provider Registry

This component will be responsible to store and describe the different cloud provider configuration (local or

remotes) as the login, front-end, the definition of the APIs. This registry is not just a simple configuration

description, it is also related with the complete management information; only the cloud providers included in the

registry will be able to be used in the BPaaS bundle. This information will be use in the execution and the

allocation phase.

7.3.5.4 Component Diagram

Figure 62 BPaaS Marketplace Components

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 130 of 149

Figure 63 BPaaS Marketplace Component Interaction

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 131 of 149

7.4 Roles

The main CloudSocket roles that interact with the Marketplace are:

i. CloudSocket Operator who is for providing and maintaining the environment to manage BPaaSs

ii. CloudSocket Broker who is responsible for designing and publishing BPaaS bundles in the

CloudSocket

iii. CloudSocket Customer, a user of an end-user organisation which is assigned with the task to find,

purchase and manage the different BPaaS bundles to be used by his organisation

iv. Service Provider who wants to make it’s atomic cloud services available in the Marketplace and

orchestratable via BPaaS.

7.5 Data Interface

The interfaces supported by the Marketplace environment are REST based interfaces, working over http, derived

from the SCIM protocol and extend to support additional functionalities. They support both JSON and XML data

format and are extensible so that enrichment with metadata information is enabled for every operation. These are

as follows:

• Identity API: SCIM extension that deals with user identity provisioning and management

• Auth API: OpenID Connect 1.0 single sign-on implementation (REST, HTTP based)

• Product API: SCIM inspired REST protocol that extends the concept of Resource to Product and manages

product lifecycle

• Registry API: SCIM inspired REST protocol that extends the concept of Resource to Service and deals with

Atomic Cloud Service registration and management

• Cloud API: set of REST APIs that support identity provisioning (SCIM inspired), SSO and service adaption

for external cloud services

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 132 of 149

8 EVALUATION ENVIRONMENT

8.1 Introduction

The BPaaS Evaluation Environment has the main aim to perform an analysis over the information produced

during the execution phase of the BPaaS lifecycle in order to discover bottlenecks as well as optimisation points.

Such information can then be exploited in a next cycle by the BPaaS Design and Allocation Environments in

order to optimize the BPaaS such that it is able to exhibit a particular service level as well as improve the

business benefits of the CloudSocket Broker offering it.

In order to support such evaluation, the BPaaS Evaluation Environment follows, similarly to the previous

environments, a multi-layer architecture which comprises three main layers: (a) the UI layer which visualizes the

results of the analysis; (b) the business logic layer which offers the analysis functionality to the layer above, the UI

one; (c) the data layer which provides all information that is required in order to support the analysis.

In each layer, different components have been put in place. At the UI layer, we have the Hybrid Business Process

Dashboard which visualises KPI evaluations as well as other findings from the analysis, such as business

process bottlenecks. At the business logic layer, there is: (a) the Hybrid Business Process Management Tool

which is responsible for the evaluation of KPIs; (b) the Conceptual Analytics Engine which is responsible for

performing analysis over the underlying data in order to assist in the evaluation of the KPIs as well as provide

useful design and allocation suggestions in the form of best deployments and adaptation patterns & rules; (c) the

Business Process Miner which mines the execution history of the business process of the BPaaS in order to

discover bottlenecks as well as discrepancies between what has been designed and what has been in place

during production.

One main actor is involved in the Evaluation Environment and this is the CloudSocket Broker. Two main roles are

foreseen in the broker's organisation to participate in the BPaaS evaluation phase, which maps to a business and

a technical role. The business role is responsible for the evaluation at the domain specific business process level

while the technical role is responsible for the evaluation at the workflow level. The cooperation between the roles

is supported by the BPaaS Evaluation Environment as it enables the smooth switch between business and

workflow levels in a controlled way. It has to be noted that the results of the BPaaS Evaluation Environment can

be exploited by the same roles during the design and allocation phase of the BPaaS. In this sense, the

CloudSocket will support the alternation between the different environments in order to enable the rapid

optimisation of the BPaaS based on the findings of the evaluation phase. This means that the evaluation results

could be directly exploited by the tools of the BPaaS Design Environment in order to load the respective artefacts

and immediately apply on them in the BPaaS Allocation Environement the provided optimisation suggestions,

once of course the respective roles agree on them.

8.2 Functional Capabilities

The following main functional capabilities are envisaged to be exposed by the BPaaS Evaluation Environment:

• Aggregation and decomposition from technical logs to domain specific business KPIs.

• Conceptual Analytics providing results which enable root cause analysis, drill down of business

indicators and propagation of technical indicators

• Discovery of best deployments for BPaaSs

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 133 of 149

• Derivation of adaptation rules or event patterns leading to critical events, such as violation of KPIs and

SLOs. The latter can be transformed into adaptation rules to support pro-active BPaaS adaptation in a

semi-automatic manner.

• Process mining analysis to support the discovery of bottlenecks and places for improvement inside

business processes and corresponding workflows.

To support and highlight the benefits of the aforementioned main functionality, we have the following visualisation

and data building functionalities:

• Bottom up mapping of process, service and monitoring logs with semantic descriptions

• Presentation of a monitoring dashboard that enables a management overview of the business processes

that run in the cloud.

This high-level functionality is manifested through the following scenarios which are captured by use case

description in conjunction with certain types of UML diagrams.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 134 of 149

8.2.1 KPI Analysis & Visualisation

Use Case id EvE-UC-1-KPI Analysis and Visualisation

Title &

Description

While the BPaaS execution phase focuses on the adaptive provisioning of a BPaaS, the

aim of the evaluation phase is to discover those optimisation points which will enable to

optimise a BPaaS in order to better fulfil the business and technical requirements posed to it

as well as decrease costs and increase the business assets of the Cloud Socket Broker.

One form of optimisation checking is through the use of KPIs which span the business and

technical/workflow level. Such KPIs indicate how well a BPaaS behaves according to

particular functional and quality aspects. In this respect, their evaluation can show whether

the BPaaS behaviour is suitable or has to be modified in order to better support the

requirements posed to it.

To support the KPI evaluation, the BPaaS Evaluation Environment collects information from

the BPaaS Execution Environment spanning process, service and monitoring logs and links

it together in a semantic manner, building in this way a semantic repository. This semantic

repository can then be exploited in order to derive new knowledge and pose queries on it

which could lead to the evaluation of KPIs.

The main actor in the BPaaS Evaluation Environment is the CloudSocket Broker, who

would exploit the Hybrid Business Dashboard in order to select a BPaaS and its respective

business process. Once this is done, then the dashboard should, by performing particular

queries over the semantic repository, present to the broker the high-level business KPIs in

different colours indicating which KPIs are met and which have been violated. The

CloudSocket Broker then can select a violated business KPI, see how much it has been

violated and request a drill-down into more related technical KPIs which will then be

visualised, in the same manner, by the dashboard. In the background, a set of queries will

be performed over the semantic repository in order to draw the information of the technical

KPIs. Through this drill-down, the broker has the opportunity to discover what exactly the

root cause of a KPI violation is and then act upon it.

Actors CloudSocket Broker

Use Case

Objective

Top-down browsing of KPIs with semantic analysis and querying at the background

Pre-

Conditions

The BPaaS has been already purchased and be executed in the context of one or more

users. Otherwise, it is not meaningful to provide any evaluation result as the BPaaS would

not have been used.

The existence of a BPaaS Execution Environment which produces the appropriate

information that is used to build up the semantic repository. This environment should also

provide an API (REST-API) through which this information can be retrieved.

Business and technical KPIs have been specified for the BPaaS in the previous phases,

indicating what they represent and what are their main components (target value, metric

and evaluation period). Of course, there is the flexibility to describe the KPI in the context of

the BPaaS Evaluation Environment. In this case, the business and technical roles are

supported to complete the specification of KPIs and then they will be able to see the results

of the respective semantic analysis.

Process • The broker selects a particular BPaaS/business processes from those offered. In

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 135 of 149

Dialog particular, he is able to see a list of business processes along with any indicative

visual element which shows whether there is a violation of one or more KPIs for each

business process. In this manner, he/she will be more supported as he/she can

select only to check interesting BPaaSs (e.g., having KPIs violated).

• The CloudSocket Broker is prompted or decides to complete the information of some

KPIs defined in the previous phases in order to be able to see assessment results

also for them.

• The CloudSocket Broker is able to see a high-level overview of the business process

with a set of business KPIs coupled with their current status (i.e., respected or

violated).

• The CloudSocket Broker can select a KPI and see how well it is satisfied or how

much it has been violated.

• The broker can drill-down from a business KPI to a set of technical KPIs from which

the business KPI is derived in order to enable him/her to understand what the root

cause of a business KPI violation is.

• For each KPI assessment requesting step, the Hybrid Business Dashboard perform

requests on the Conceptual Analytics Engine, which performs the necessary

computations for KPIs whose definitions have been completed during the current

user session and the appropriate queries in order to obtain the respective values of

KPIs already computed. This information is then sent back to the dashboard in order

to visualize it by a so-called “business process model assimilation” technique in order

to show the CloudSocket Broker the results within the business process model.

Variations • If KPIs are already complete, then there is no need to complete their information.

This can be checked by processing all KPIs posed for a particular BPaaS

• KPI completion can be performed even after the overview for a BPaaS is graphically

represented. In this case, the KPI would be shown with an indication that it cannot be

evaluated. As such, the broker, if he/she desires to assess this KPI, will have to

complete its information.

Post-

Conditions

Measurements and respective evaluations for KPIs are produced. For some KPIs, there can

be a completion of their specification.

Diagrams

Figure 64 Use Case Diagram – EvE-UC-1-KPI Analysis and Visualisation

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 136 of 149

Figure 65 Sequence Diagram – EvE-UC-1-KPI Analysis and Visualisation

Table 23 BPaaS Evaluation Environment – Use Case 1 - KPI Analysis and Visualisation

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 137 of 149

8.2.2 Derivation & Visualisation of Best Deployments and Adaptation

Patterns/Rules

Use Case id EvE-UC-2-Derivation & Visualisation of Best Deployments and Adaptation

Patterns/Rules

Title &

Description

The goal of this use case is to enable the generation of particular knowledge in the form of

best deployments and adaptation rules for BPaaS which can be used as suggestions for

improvement in the BPaaS Design and Allocation Environments. Such knowledge can only

be produced if the respective data are available in the semantic repository. Such data

include process, service and monitoring logs through which we can for instance know for

which process structure and respective deployment, we have the best possible performance

for a set of KPIs.

The CloudSocket Broker can exploit best deployment hints during the allocation phase in

order to modify the deployment plan of a BPaaS based on the respective execution history

of this BPaaS or similar BPaaSs. Of course, such deployment hints are just suggestions -

the CloudSocket Broker should have the appropriate expertise in order to follow or modify

the respective hint such that it suits a certain BPaaS.

The CloudSocket Broker can also exploit adaptation patterns/rules in order to incorporate

them as they are in a BPaaS bundle or modify them based on his/her expertise. Depending

on the form of the adaptation suggestion, the respective modification effort could be

different. If deployment rules are suggested, then the broker can just inspect them and

make slight modifications. If event patterns leading to violation of KPIs/SLOs are suggested,

then the broker should be able to complete the remaining part of the adaptation rule

pertaining to the specification of an adaptation strategy.

The CloudSocket Broker will exploit the Hybrid Business Dashboard in order to select the

respective business process/BPaaS and perform an analysis on it. Then, he/she can see

the analysis results and export them in the appropriate form in order to exploit them in the

next cycle of the BPaaS.

Actors CloudSocket Broker

Use Case

Objective

Derivation & visualisation of deployment and adaptation suggestions

Pre-

Conditions

The BPaaS and/or similar BPaaSs have been already purchased and have been executed

in the context of one or more users. To obtain deployment suggestions, there is the need

that at least similar BPaaS have already been executed. To obtain adaptation suggestions,

there is the need that at least the BPaaS has been executed.

The existence of an BPaaS Execution Environment which produces the appropriate

information that is used to build up the semantic repository on which the analysis takes

place. This environment should also provide an API (REST-API) through which such

information can be retrieved.

Obviously, there should be some violations for KPIs/SLOs in order to be able to derive

adaptation event patterns or rules.

Similarly, for a BPaaS, there should obviously be not one but many deployments. If this

BPaaS is similar to other BPaaSs, then at least one deployment per similar BPaaS in order

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 138 of 149

to have a meaningful comparison which will lead to a suitable result is required.

As the best deployment analysis considers a set of KPIs, then obviously the KPIs of this set

should be fully specified.

Process

Dialog

• The CloudSocket Broker selects a particular business process/BPaaS from those

offered. He might select an interesting BPaaS which has critical or important KPIs.

• The CloudSocket Broker is prompted or decides to complete the information of some

KPIs defined in the previous phases in order to be able to perform the analysis over

the set of KPIs desired.

• The CloudSocket Broker selects to perform deployment or adaptation analysis:

o The user selection is forwarded in the form of a respective request to the

Conceptual Analytics Engine. This engine might have to first to adapt the

execution history of the BPaaS (and possibly also for similar BPaaSs) in

case that one or more KPIs have their specification completed during the

current user session. Then, it executes the respective analysis algorithm(s)

based on the user selection over the semantic repository which should have

been properly set up by drawing the appropriate information from the

Execution Environment.

• Depending on the CloudSocket Broker's choice, the dashboard shows the analysis

results.

• In case of adaptation analysis, the CloudSocket Broker can select incomplete rules in

the form of event patterns (leading to SLO/KPI violations) which can then be finalized

through the mapping of these patterns to specific adaptation actions or strategies. If

strategies are represented by BPMN workflows, then the broker should be presented

with a BPMN design tool to perform the adaptation workflow specification.

• The CloudSocket Broker selects some (automatically generated or manually

completed) analysis results and exports them in the suitable format for further

processing in the next cycle.

Variations • If KPIs are already complete, then there is no need to complete their information.

This can be checked by processing all KPIs posed for a particular BPaaS

• We could by default perform all sorts of analysis without requiring from the broker to

select the one sort or the other.

• The option to complete adaptation rules can be communicated to the users working

with the BPaaS Allocation Environment.

Post-

Conditions

Adaptation and/or deployment suggestions are derived. They might also be exported in

case that the broker selects this option.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 139 of 149

Diagrams

Figure 66 Use Case Diagram – EvE-UC-2-Derivation & Visualisation of Best Deployments and
Adaptation Patterns/Rules

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 140 of 149

Figure 67 Sequence Diagram – EvE-UC-2-Derivation & Visualisation of Best Deployments and
Adaptation Patterns/Rules

Table 24 BPaaS Evaluation Environment – Use Case 2 – Derivation & Visualisation of Best Deployments and
Adaptation Patterns/Rules

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 141 of 149

8.2.3 Process Mining Analysis & Graphical Representation

Use Case id EvE-Uc-3-Process Mining Analysis & Graphical Representation

Title &

Description

The goal of this use case is to perform process mining over the workflow logs in order to

discover any kind of optimisation finding. Such findings can take the following form: (a)

process bottlenecks; (b) paths that are never followed; (c) new paths that were not initially

anticipated; (d) process discrepancies with respect to a path that has been designed and

the actual path that is followed during process execution. All these findings can then lead to

optimising the BPaaS on different levels. To this end, they can be used as a guide for the

next cycle of the BPaaS.

We envisage that the CloudSocket Broker selects a particular BPaaS, and then requests to

perform a process mining over its logs in order to find bottlenecks or discrepancies. The

mining results are then visualized in order to enable the broker to see what is going wrong

and what the main discrepancies are by using appropriate interaction elements in

conjunction to the normal ones that are used to graphically represent the BPaaS business

process. In the end, the CloudSocket broker can select to export the mining results in order

to exploit them in the next cycle.

Actors Cloud Socket Broker

Use Case

Objective

Perform process mining & visualise respective results

Pre-

Conditions

The BPaaS has been already purchased and be executed in the context of one or more

customers.

The existence of an BPaaS Execution Environment which produces the appropriate

information that is used to build up the semantic repository on which the mining takes place.

This information should at least comprise process and workflow log data. The BPaaS

Execution Environment should provide an API through which this information can be

retrieved.

Process

Dialog

• The CloudSocket Broker selects a particular BPaaS from those offered. Depending

on the context of the CloudSocket Broker, different characteristics of the BPaaS

business process may be of interest. The hybrid dashboard also presents meta

information of the business process, such as KPIs, human interaction and the like to

enable the CloudSocket Broker to take an informed decision of which BPaaS to

select for the analysis.

• The CloudSocket Broker demands to perform process mining on the selected BPaaS

o The user selection is forwarded in the form of a respective request to the

Process Mining Engine. This engine first collects the appropriate information

and stores it in the semantic repository. Then, it executes one or more state-

of-the-art process mining algorithms.

• The dashboard shows the analysis results over the so-called “assimilation”

technique, where information is “assimilated” into business process models.

• The CloudSocket Broker selects to export the process mining results to the suitable

format for further processing in the next cycle.

Variations • The CloudSocket Broker might be able to choose the mining algorithms for the

analysis in order to focus on certain aspects.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 142 of 149

Post-

Conditions

Process mining results are produced and possibly exported

Diagrams

Figure 68 Use Case Diagram - EvE-Uc-3-Process Mining Analysis & Graphical Representation

Figure 69 Sequence Diagram - EvE-Uc-3-Process Mining Analysis & Graphical Representation

Table 25 BPaaS Evaluation Environment – Use Case 3 - Process Mining Analysis & Graphical Representation

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 143 of 149

8.3 Components

As already indicated, there are three layers involved in the architecture of the BPaaS Evaluation Environment. To

this end, we present the components involved in this architecture based on the layer in which they exist.

8.3.1 User Interface Layer

8.3.1.1 Hybrid Business Dashboard

There is currently only one component in the UI layer, namely the Hybrid Business Dashboard. This component is

responsible for enabling the user to select the appropriate analysis technique as well as visualize the respective

analysis results. Depending on the type of analysis, the user has also the ability to export the results in an

appropriate form. In addition, different visualisations and flows of interactions are involved.

In particular, when KPI analysis is involved, then the visualisation concentrates on depicting the assessment

results over high-level business KPIs. The user is then enabled to select an e.g. problematic business KPI and

inspect the assessment of technical KPIs from which the business KPI is derived. This form of top-down

interaction enables to perform a root cause analysis for problematic performance situations. As a side-effect of

having incomplete KPIs, the dashboard also enables the completion of the KPI specification in order to enable

assessment for it over the Semantic Repository.

In case of process mining, the dashboard enables the user to select a BPaaS and perform analysis over it. It then

graphically represents the mining results by “assimilating” analysis findings into the usual business process

model. The analysis results can also be exported as was the case of the adaptation & deployment analysis in

order to be exploited in the next cycle.

The dashboard consists of three major views:

(c) The Business Indicator view enables to see business and technical goals and KPIs represented

in different categories. Those goals and KPIs are represented as a business dashboard using

common representations like traffic lights to indicate if a KPI has been successfully reached or

violated. Different drill down mechanisms or search mechanisms enable to identify violating

business and technical (e.g., deployment, processing) indicators by supporting the

CloudSocket Broker in finding cause and effect relations.

(d) The Process Deployment/Adaptation Analysis view consists of tables showing improvement

potentials by listing the findings in a similar way like process analysis reports or process

simulation results are represented. Additional features to use those reports are provided such

as sort, search or the export in an appropriate format.

(e) The Process Mining view represents the original business process model, but “assimilates”

process log findings into the business process model to indicate process mining results within

the corresponding business process model.

The Hybrid Business Dashboard, depending on the type of analysis, has to invoke the respective component in

the business logic. This means that in case of KPI assessment and deployment/adaptation analysis, the

Conceptual Analytics Engine is to be involved, while in case of process mining, the Process Mining Engine needs

to be invoked.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 144 of 149

Figure 70 BPaaS Evaluation Environment - Business Dashboard User Interface Mockup

Figure 70 indicates a business dashboard, where KPIs are presented according their monitoring information.

8.3.2 Business Logic Layer

This layer comprises two components that perform different types of evaluation: (a) the Conceptual Analytics

Engine and (b) the Process Mining Engine which provide all the core analysis functionality of the BPaaS

Evaluation Environment. Both components exploit the REST API of the BPaaS Execution Environment in order to

retrieve and link information in a semantic manner into the Semantic Repository in the Data Layer. Such

information is then exploited in order to perform the respective analysis.

Additionally there is the Hybrid Business Process Management Tool that integrates the findings of the two

engines, and orchestrates the communication from user interface to the analysis engines and the corresponding

business process models.

8.3.2.1 Conceptual Analytics Engine

The Conceptual Analytics Engine presupposes that all information that can be used to assess KPIs already exists

and can be drawn and integrated. It then enables to pose semantic queries over the Semantic Repository in order

to derive the measurement value of a KPI. We envision that such semantic queries could involve the formulas

over which the KPI measurement value can be produced as well as the required input parameters for those

formulas. The completion of KPI information would then map to just specifying these semantic queries.

In case of deriving best deployments and adaptation rule suggestions, the Conceptual Analytics Engine can

employ semantic rules which are able to reason over the existing knowledge in the Semantic Repository. As a

similar approach has been developed in the PaaSage project, such an approach will be used and enriched to

become semantically enhanced. The rules specified in the PaaSage KnowledgeBase could be exploited,

extended and transformed into semantic rules.

For adaptation rule derivation, the engine relies on posing semantic queries over the Semantic Repository which

will be used to draw all necessary information that is required in order to run the respective event pattern

discovery algorithm exploited for a certain set of KPIs/SLOs. Such knowledge can of course be drawn from the

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 145 of 149

existing adaptation rules of the BPaaS which could have been manually modelled by the technical consultant in

the BPaaS Allocation Environment or be produced in previous executions of the adaptation analysis.

• Tasks:
o Perform adaptation rule/event pattern derivation
o Perform best deployment analysis
o Perform KPI assessment
o Collect appropriate information from Execution Environment

• Main interfaces:
o Evaluation phase:

� Input: Process logs, monitoring logs, service logs, KPI specifications, SLO
specifications, BPaaS (on which the analysis/assessment will be applied)

� Output: assessment and analysis results to be visualized by the Hybrid Business
Dashboard.

8.3.2.2 Process Mining Engine

The Process Mining Engine needs to have access to workflow logs and monitoring logs in order to be able to

perform its analysis. The main analysis logic will focus on executing state-of-the-art process mining algorithms

possibly extended with the capability of exploiting semantic information. One or more algorithms can be executed

depending on their capabilities and the required focus aspects. This is due to the fact that each algorithm has

different capabilities and performance, makes different assumptions on the content of a process log, and can

focus on different aspects or different parts of a business process.

• Tasks:
o Perform workflow mining by executing one or more state-of-the-art algorithms
o Collect appropriate information from BPaaS Execution Environment

• Main interfaces:
o Evaluation phase:

� Input: Process logs, monitoring logs, service logs, KPI specifications, SLO
specifications, BPaaS (on which the analysis/assessment will be applied)

� Output: process mining results to be visualized by the Hybrid Business Dashboard.

8.3.3 Data Layer

The Semantic Repository will contain, after drawing it from the BPaaS Execution Environment, all the information

that is required for the execution of the two core components of the Business Logic Layer. This information, which

spans process, workflow, service, infrastructure and monitoring logs, will be semantically described and

integrated such that it enables a meaningful browsing over it as well as the posing of smart queries which allow

the derivation of information that can be invaluable for the required analysis on the next higher layer. The

semantic information will be specified in OWL. The Semantic Repository will be realized in the form of a Triple

Store which provides facilities to perform queries over a SPARQL endpoint. Various different Triple Stores could

be exploited for this purpose with different functional and non-functional characteristics. On top of the Triple

Store, there will be a reasoner which will enable validating the information stored as well as the derivation of new

knowledge via the firing of semantic rules.

The Meta Model Platform stores all business process, workflow and KPI models that are needed to view

dashboards, business processes or select workflows for analysis. It hence provides all necessary models and

their corresponding functionality such as export, transformation or graphical representation.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 146 of 149

8.3.4 Component Diagram

Figure 71 BPaaS Evaluation Environment – Components

8.4 Roles

The Cloud Socket Broker can involve users with different roles from the CloudSocket Broker organisation for

conducting the evaluation and analysis for BPaaSs. The roles involved can be the following:

• Business role (e.g., busines goal designer and business process designer) who is familiar with balanced

scorecard-like approaches and interested in the assessment of business KPIs and the discovery of

optimisation hints at the business process level.

• Technical role (e.g., cloud infrastructure designer, workflow designer, and technical consultant) that has

competence in technical rule management, and can thus configure the technical deployment and

monitoring, as well as expertise in workflow design. This role will be interested in the assessment of

technical KPIs and in obtaining optimisation hints at the technical/workflow level in the form of best

deployments, adaptation rules and workflow discrepancies/bottlenecks. It will certainly have the

expertise in completing the specification of adaptation rules by connecting event patterns to certain

adaptation actions or strategies.

8.5 Data Interface

The following data are envisioned to be exchanged internally in this environment or externally with respect to the

interaction with other CloudSocket environments:

• KPIs as well as SLOs can be exported from the dashboard in XML format and further translated –

required the corresponding modelling of the KPIs - to formats like OWL-Q, or WS-Agreement.

• Process/workflow logs can rely on a standardized format or can be specific to the Workflow Engine

implementation exploited. In either case, a transformation of logs to semantic information will be

required. Monitoring logs will be specified in OWL-Q. This means that aggregated measurements are

semantically enriched at the BPaaS Execution Environment. In Section 6, we have explicated the form

that the measurements contained in the logs will take based on the OWL-Q specification.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 147 of 149

9 SUMMARY AND CONCLUSIONS

The first Architecture of CloudSocket has been developed based on the use case and evaluation criteria analysis

as well as based on the original idea of the BPaaS Environment, corresponding to each phase of the Business

Process Management System Paradigm (BPMS).

The high level architecture describes the core functional capabilities of each BPaaS Environment to encourage

the development of alternative environments and hence enable a flexible configuration of different CloudSockets

depending on the needs of the CloudSocket Broker.

This intension is stressed by the fact that the so-called BPaaS Bundle, the configuration file that enable the

Business Process as a Service to become operative, allows missing sections to avoid vendor lock.

The conceptual bridge from domain specific business processes towards workflows that are in production in the

cloud, is established by a layers model-based approach, using extensions to standards that enable the linkages

and hence alignment between the different layers.

The description of each BPaaS Environment is not only understood as a technical specification but also as a

contribution to the terminology WIKI of CloudSocket that is seen as a living document.

The first iteration of the CloudSocket Architecture builds on tools and prototypes that need to be linked together to

a complete CloudSocket. The second iteration will integrate research findings to not only improve each individual

BPaaS Environment but to improve the CloudSocket as a whole.

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 148 of 149

10 REFERENCES

(ADONIS 2015) ADONIS Community Edition, www.adonis-community.com/, access: 2015.07.24

(ADOxx 2015) ADOxx, www.adoxx.org, access: 2015.07.24

(BPMN 2015), OMG, http://www.bpmn.org, access: 16.03.2014

(CAMEL 2015), Rossini, A., Nikolov, N., Romero, D., Domaschka, J., Kritikos, K., Kirkham, T., Solberg, A.: D2.1.2

– CloudML Implementation Documentation. Paasage project deliverable (April 2014)

(CIDOC 2006) H. Kondylakis, M. Doerr and D. Plexousakis. Mapping Language for Information Integration.

Technical Report 385, ICS_FORTH, 2006.

(CloudML 2014) Ferry, N., Song, H., Rossini, A., Chauvel, F., Solberg, A.. CloudMF: Applying MDE to Tame the

Complexity of Managing Multi-Cloud Applications. In: Bilof, R., editor. UCC 2014: 7th IEEE / ACM International

Conference on Utility and Cloud Computing. IEEE Computer Society; 2014, p. 269–277.

doi:10.1109/UCC.2014.36.

(CSBT 2015) CloudSocket Broker Tools, CloudSocket Project, Web Page: Broker Entry Point,

https://cloudsocket.eu/web/guest/brokercloudsocket, access: 31.07.2015

(Del2.1 2015) CloudSocket Project, D2.1 Use Case Analysis, www.cloudsocket.eu, access: 2015.05.18

(Del2.2 2015) CloudSocket Project, D2.2 BPaaS References, Definitions & Common Terms,

www.cloudsocket.eu, access: 2015.07.01

(Del2.3 2015) CloudSocket Project, D2.3 Cloud Transformation Framework Demonstrator,

https://cloudsocket.eu/transformation/, access: 31.07.2015

(Del2.3a 2015) CloudSocket Project, D2.3 Cloud Transformation Framework Report,

https://www.cloudsocket.eu/deliverables, access: 31.07.2015

(DMN 2015) OMG, 2015, Decision Model and Notation, http://www.omg.org/spec/DMN/1.0/Beta2/, access:

31.07.2015

(Kar 1996) Karagiannis, D., Junginger, S. and Strobl, R.,1996, Introduction to Business Process Management

System Concepts, in: B. Scholz-Reiter, E. Stickel (Eds.): Business Process Modelling, Lecture Notes in Computer

Science, Springer.

(Kar 2002) Karagiannis, D.; Kühn, H.: Metamodelling Platforms. Invited Paper. In: Bauknecht, K.; Min Tjoa, A.;

Quirchmayer, G. (Eds.): Proceedings of the Third International Conference EC-Web 2002 – Dexa 2002, Aix-en-

Provence, France, September 2-6, 2002, LNCS 2455, Springer-Verlag, Berlin, Heidelberg, p. 182.

(Kar 2006) Karagiannis, D., Höfferer, P. 2006: Metamodels in Action: An overview, In: J. Filipe, B. Shishkov, M.

Helfert, ICSOFT 2006 - First Int. Conf. on Software and Data Technologies:IS27-36. Setúbal: Insticc Press.

(OAuth 2.0 2015) OAuth, www.oauth.net/, access: 25.08.2015

(OIDC 2015) OpenID, openid.net/connect/, access:25.08.2015

Copyright © 2015 BOC and other members of the CloudSocket Consortium
www.cloudsocket.eu Page 149 of 149

(OWL 2012) OWL 2 Web Ontology Language: Structural Specification and Functional-Style Syntax (Second

Edition) Boris Motik, Peter F. Patel-Schneider, Bijan Parsia, eds. W3C Recommendation, 11 December 2012,

http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/. Latest version available at http://www.w3.org/TR/owl2-

syntax/.

(OWL-Q 2006) K. Kritikos and D. Plexousakis, “Semantic QoS Metric Matching,” in ECOWS. IEEE Computer

Society, 2006, pp. 265–274.

(PaaSage 2015) PaaSage Project, http://www.paasage.eu/, access: 17.04.2015

(R2R) 1.Bizer, C., Schultz, A.: The R2R Framework: Publishing and Discovering Mappings on the Web. 1st

International Workshop on Consuming Linked Data (COLD 2010), Shanghai, November 2010.

(RDF 2014) Guus Schreiber, Yves Raimond. RDF 1.1 Primer. W3C Working Group Note, 25 February 2014. The

latest version is available at http://www.w3.org/TR/rdf11-primer/.

(RML) A. Dimou and M. Vander Sande. RDF Mapping Language (RML). Unofficial Draft, iMinds Multimedia Lab,

Ghent University. Available at: http://semweb.mmlab.be/rml/spec.html

(SAML 2015) OASIS Security Assertion Markup Language, www.oasis-open.org/standards#samlv2.0, access:

25.08.2015

(SCIM 2015) System for Cross-domain Identity Management, tools.ietf.org/wg/scim/, access: 31.08.2015

(SRL 2014) Kyriakos Kritikos, Jörg Domaschka, Alessandro Rossini: SRL: A Scalability Rule Language for

Multi-cloud Environments. CloudCom 2014: 1-9.

(Str 1996) Strahringer S (1996) Metamodellierung als Instrument des Methodenvergleichs: eine Evaluierung am

Beispiel objektorientierter Analysemethoden. Shaker, Aachen

(USDL 2015) J. Cardoso and C. Pedrinaci. Evolution and Overview of Linked USDL. In IESS, 2015.

(WS-Agreement 2009) Open Grid Forum, WS-Agreement Schema, http://schemas.ggf.org/graap/2007/03/ws-

agreement, access: 25.08.2015

(WS-Agreement 2011) Open Grid Forum, WS-Agreement, https://www.ogf.org/documents/GFD.192.pdf, access:

25.08.2015

(yourBPM 2015a) yourBPM, Installation Manual:

forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Light_Semantic_Composition_-

_Installation_and_Administration_Guide, access: 2015.07.24

(yourBPM 2015b) yourBPM, User Manual, forge.fi-

ware.eu/plugins/mediawiki/wiki/fiware/index.php/Light_Semantic_Composition_-_User_and_Programmer_Guide,

access: 2015.07.24

